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Abstract 

 
Recently, compatibility between privacy protection and 

information utilization has been considered to be a major 

challenge. Hence, researches on homomorphic crypto- 

system which can realize secure computation draw 

growing attention. The Paillier encryption with additive 

homomorphism is widely used in fields such as electronic 

voting and secure biometrics. At the same time, the large 

amount of data in the database and the requirements of 

Paillier security require computationally expensive 

processes each authentication and comparison, so the 

improvement of computational efficiency is particularly 

important. In this research, in order to reduce the 

computation time of Paillier, we design an ASIC based 

hardware architecture dedicated to Paillier encryption, 

and realize high-speed encryption and decryption by 

using high radix arithmetic core and the parallelism in the 

decryption process. 

 
1. Introduction 

 
Recently, with the rapid development of IoT, the 

communication of information has become more efficient, 

but at the same time, the problem of increasing security 

risks has gradually received attention. In the previous 

encryption mode, if the third party needs to perform 

statistics on the encrypted data in the database or perform 

authentication comparison with the new data, it is often 

necessary to decrypt the ciphertext first, and use the 

decrypted data to obtain the result. If the three parties are 

not trusted or attacked by the outside world, the original 

information in the database will be leaked. 

In response to this problem, in recent years, the special 
cryptographic form which is possible to perform a series 

of operations on the ciphertext in the cipher domain 

through the encrypted data to achieve statistical, that is, 

the homomorphic encryption that can achieve the secret  

calculus has gained people's attention. This special cryp- 

tosystem can be used in many areas such as e-commerce, 

e-health and secure biometric systems while protecting 

the confidentiality of users' personal information. 

Homomorphic cryptography consists of partial homo- 

morphic algorithms and fully homomorphic algorithms. 

For fully homomorphic encryption algorithms, Gentry 

proposed a lattice-based homomorphic encryption 

scheme, which supports both addition and multiplication 
homomorphism. However, the noises added by the 

encryption process in fully homomorphic algorithms 

increase rapidly as the calculation progresses, and once 

the threshold is exceeded, the decryption results are 

unreliable making it difficult to implement the complex 

verification calculations required by biometrics. 

The partially homomorphic encryptions with additive 
homomorphism such as Paillier algorithm, with low noise 

and the advantage of calculating lightweight, have the 

flexibility to construct a more complex homomorphic 

operations, which has been verified in many applications. 

But for the huge amount of data in the database, the total 

time required for a single authentication will still grow 

significantly with the volume of the database. Since the 

security level and computational efficiency of encryption 

are the two conflicting goals, there are often some 

performance losses in authentication systems that 

consider security issues. It is necessary to find a solution 

to improve the efficiency of the operation. In this study, 

we mainly pay attention to the Paillier Encryption with 

additive homomorphism. In order to improve the compu- 

tational efficiency while ensuring security, in this research, 

with the 65-nm CMOS standard cell library, we designed 

a 1024-bit Paillier circuit with 256 radix arithmetic. 

This paper is organized as follows. Section 2 shows 
algorithms of Paillier cryptosystem, modular exponentia- 

tion and Montgomery multiplication adopted in this study. 

In section 3, circuit design of Paillier crypto-processor is 

shown. In Section 4 the results are presented and 

compared and Section 5 concludes this research. 

 
2. Algorithm 

 

 Paillier cryptosystem 

 
Paillier is a public key cryptosystem proposed by 

Pascal Paillier in 1999 [1]. Paillier is a probabilistic 

asymmetric algorithm for public key cryptography. The 

problem of computing n-th residue classes is believed to 

be computationally difficult. The decisional composite 

residuosity assumption is the intractability hypothesis 

upon which this cryptosystem is based. 

Let input text be m, public key be G and N, private key 
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𝑁 

be λ and μ, cipher text be C, R is selected randomly in 𝑅 ∈ 𝑍∗ 2 , then the Paillier encryption function Enc (m) is 

defined as follows. 

Montgomery modular multiplication requires less area 
than its high cardinal version, but its computational 

performance is worse. Higher computationally efficient 

high-base multiplication modules introduce area costs. 𝐶 = 𝐸𝑛𝑐(𝑚) = 𝐺𝑚 × 𝑅𝑁 mod 𝑁2 (1)    

The decryption function Dec (c) is defined as follows. 𝑚 = 𝐷𝑒𝑐(𝐶) = 𝐿�𝐶 𝜆𝜆 mod 𝑁2� ⋅  𝜇 mod  𝑁 (2) 

 
Paillier algorithm has the additive homomorphism that 

the product of two ciphertexts becomes a new ciphertext 

of the ciphertext of the sum of the two origin plaintexts as 

follows: 

  𝐸(𝑚1) ⋅ 𝐸(𝑚2) mod 𝑁2 = 𝐸(𝑚1 + 𝑚2) mod 𝑁2 (3) 

 Modular exponentiation 
 

In 1024bit Paillier, m, N, μ, λ are 1024 bit numbers and 

C, G, R are 2048 bit numbers. Like the algorithm for the 

Paillier Encryption in the previous chapter, the Paillier 

homomorphic cryptosystem is based primarily on 

modular exponentiation. It includes a modular operation 

and integer operations, including encryption, decryption, 

and the same state during operation and modular 

multiplication modulo 𝑁2 and N of the modular 
exponentiation arithmetic. These operations take a lot of 

time in a security-based (key size higher than 512-bit) 

operand environment. The implementation of modular 

exponentiation is often achieved by multiple modular 

multiplication operations. In hardware implementation, 

an efficient implementation algorithm for modular 

exponentiation is a Left-to-Right binary modular 

exponentiation algorithm. Since the operation performed 

when the index is 0 or 1 is different, such an algorithm 

exhibits data correlation in both time and power 

consumption, and is vulnerable to simple power consump- 

tion attacks and time attacks. 

The Montgomery Power Ladder algorithm, as shown in 
Algorithm 1, eliminates the correlation between the 

operation and the exponent by introducing a certain 

redundancy, ie, whether the exponent is 0 or 1, a modular 

multiplication operation and a modular squaring operation 

will be performed. This will resist simple power attacks 

and time attacks. 

 

 Montgomery multiplication 

 
In the cryptographic operations required to process 

large integers of hundreds to thousands of bits required by 

the Paillier cipher, the division at the time of modulo 

requires a large amount of time. Montgomery multipli- 

cation [2] is widely used as an efficient modular multip- 

lication algorithm executed in hardware. The radix-2 

Consulting [3], we studied the cardinality of the most 
balanced area and computational efficiency, and chose the 

most appropriate radix value. Finally, we prepared a 256 

radix Montgomery multiplier that pursues best balance. 

The algorithm is shown in Algorithm 2. 

 

Algorithm 2: Radix-r Montgomery 

Calculate 𝑍 = 𝑋𝑋𝑌2−𝑟⋅𝑚 mod 𝑁 

Multiplication. 

Input: X = (𝑥𝑚−1, … , 𝑥0, 𝑥0)𝑟 
2 

Y = (𝑦𝑚−1, … , 𝑦0, 𝑦0)𝑟 
2 

N = (𝑛𝑚−1, … , 𝑛0, 𝑛0)𝑟 
2 

w = −𝑁−1 mod 𝑁 

Output: 𝑍 = 𝑋𝑋𝑌2−𝑟⋅𝑚 mod 𝑁 
1: Z = 0, v = 0 

2: for i = 0 to m − 1 do 

3: (𝑐𝑎, 𝑧0) = 𝑧0 + 𝑥𝑖𝑖 𝑦0 

4: 𝑡𝑖𝑖 = 𝑧0𝑤 mod 2𝑟 
5: (𝑐𝑏, 𝑧0) = 𝑧0 + 𝑡𝑖𝑖 𝑛0 

6: for j = 0 to m − 1 do 

7: �𝑐𝑎 , 𝑧𝑗𝑗 � =  𝑧𝑗𝑗  +  𝑥𝑖𝑖 𝑦𝑗𝑗  +  𝑐1 

8: �𝑐𝑏, 𝑧𝑗 𝑗−1� =  𝑧𝑗𝑗  +  𝑡𝑖𝑖 𝑛𝑗𝑗  +  𝑐𝑏 

9: end for 

10: (𝑣, 𝑧𝑚−1) = 𝑐𝑎 + 𝑐𝑏 + 𝑣 
11: end for 

12: if Z > N then 

13: 𝑍 = 𝑍 − 𝑁 
14: end if 

  15: return Z  

Algorithm 1: Montgomery Power Ladder 
  With Montgomery Multiplication 

Method 

Input: X, N, R(=2k) 

E = (𝑒𝑚−1, … , 𝑒1, 𝑒0)2 

Output: Z = XE mod N 

1: W = −𝑁−1 mod 𝑁 
2: A = MontMult( X, R2, N, W) 

3: B = MontMult( 1, R2, N, W) 
4: for i = k – 1 downto 0 do 

5: if Ei = 1 then 

6: B = MontMult( A, B, N, W) 
7: A = MontMult( A, A, N, W) 

8: else 

9: A = MontMult( A, B, N, W) 

10: B = MontMult( B, B, N, W) 

11: end if 

12: end for 

13: Z = MontMult( B, 1, N, W) 

  14: return Z  
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According to the Algorithm 2, our arithmetic core of 
Montgomery multiplier consists of two adders, a carry 

save adder, and a radix-r partial product multiplier. The 
core computes as follows: 

 𝑧 = 𝑎 + 𝑏 ⋅ 𝑐 + 𝑑 (4) 

 
The number of cycles required for one Montgomery 

multiplication by this Montgomery multiplier is as 

follows using the bit size size of the input value given 

from the control block and the radix r. 

 

2(size/r)2 + 3(size/r) + 1 (5) 

 

3. Circuit Design and Synthesis 

Figure 2 illustrates the computation flow of decryp-tion, 
which includes modular multiplication, exponent-tiation, 

and L(u) operation. At the time of decryption, both exist 

ModMult components are reused to perform the same 

only one exponentiation operation in parallel to achieve 

the reduce of calculation time because they operate using 
different input resources. L(u) is a division module to 

perform (u-1)/n. We use restoring method to implement 

our division component. And the precomputed value μ is 
multiplied with the result of L(u) with the reused 

ModMult component to obtain the final outcome of the 

decryption. 

 

In this design, we focus on designing Paillier crypto- 
processer to accelerate Paillier cryptosystem's encryption 

and decryption to further improve its efficiency in a 

variety of practical applications. 

In this case, the maximum modulus M (which equals to 
N2) and the maximum bit width of the cipher domain are 

2048 bits, that is, the bit width of the input and output of 

each core multiplication operation is 2048 bits. We use a 

total of eight 2048-bit Blocks, and one 256-bit Block to 

form our Registers. 

Paillier homomorphic cryptosystem mainly consists of 

 
 

 
 
 

 
 
 
 

4. Result 

 

 

 

 

 

 

 
Figure 2. Decryption architecture 

encryption, homomorphic operation and decryption. We 

describe the computation flow of encryption and 

decryption of it, which includes modular multiplication 

(ModMult) and exponentiation (ModExp) operations. 

Encryption function requires two ModExp operations 

and decryption function requires only one. According to 

the Montgomery ladder method, each step in ModExp 

requires two times of modular multiplication in Algorithm 

2. We totally use two ModMult components each of which 

consists of one MontMult Block, and using each of them 

to perform each of the exponentiation operation in 

encryption. One of the ModMult components is reused for 
the last modular multiplication operation required in the 

Encryption. 
 

Figure 1. Encryption architecture 

The experimental results on chip in this design are 

shown in Table 1. At this time, the gate count is 

1820kGates. Although the maximum frequency of this 

design is only about 14% compared with the previous 

study, the clock cycles of the encryption process are 

reduced to 7% of the previous research. Due to the 

parallelization in the decryption process, the clock cycles 

of the decryption process are reduced by nearly half 

compared to the encryption process, which is about 4% of 

the previous research. The time cost by the encryption 
process is 5.90 ns, which is about 52% of the previous 

research. The total decryption process costs 2.74 ns, 

which is about 20% of the previous research. Compared 

with the previous research, the computational efficiency 

has been greatly improved. The homomorphic operation 

in the cipher domain and the decryption of the calculation 

result cost a total of 2.86 ns. With such efficiency, the 

application such as [4] can achieve nearly 500 times data 

authentication comparisons in one second. 

Decryption operation is considered to be the core com- 
putation in applications such as secure authenticate. The 

results presented in Figure 3 show the trend of frequency, 

operation time, power and energy per Paillier decryption 

operation with VDD. The figure shows that with the 

growth of VDD, the energy shows an upward trend. When 

VDD = 1.3V, we get the fastest one with the energy cost 

of 1.7mJoules. Out chip can also work at such low voltage 

as VDD = 260mV, with the energy of only 0.13mJoules. 
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Table 1. Comparison with previous implementation 

  
Design 

 
Platform 

 
Resources 

Encryption 

# of Cycles 
Frequency 

[MHz] 
Time 

[ms/OP] 
Power 
[mW] 

Energy 
[mJ/OP] 

①  San[5] 
Xilinx 7vx330t-3 

28nm 
3690 slices / 

45DSP48E1 blocks 
4,357,692 386 11.29 993*1 11.21 

 

② 

 
This work 

 
65nm FDSOI 

 
1820kGates 

 
327,995 

0.16 2000.77 0.11 0.29 

27.78 11.81 111.90 1.32 

52.63 6.23 568.44 3.54 
55.56 5.90 715.00 4.22 

 

 Decryption Add Operation + Decryption 
VDD 
[V] # of Cycles 

Frequency 
[MHz] 

Time 
[ms/OP] 

Power 
[mW] 

Energy 
[mJ/OP] 

# of Cycles 
Frequency 

[MHz] 
Time 

[ms/OP] 
Power 
[mW] 

Energy 
[mJ/OP] 

① 4,414,420 323 13.67 993*1 13.57 ~ 4,418,659*2 323 13.68 993*1 13.58 1.00 

 

② 

 
174,704 

0.16 1096.99 0.12 0.13  
178,955 

0.15 1163.21 0.11 0.13 0.26 
30.30 5.66 116.70 0.66 30.30 5.91 116.63 0.66 0.75 

58.82 2.91 584.40 1.70 55.56 3.22 559.92 1.73 1.20 

62.50 2.74 741.78 2.03 62.50 2.86 745.16 2.04 1.30 

*1 Estimated by Xilinx Power Estimator (XPE) – 2019.1 
*2 Estimated by Total # of cycles and # of ModMult with n2 in San[5] 

 

5. Conclusion 

 

Paillier with homomorphism has high application value 

in the field of secret calculation. Since the security level  

and computational efficiency of encryption are the two 

conflicting goals, there are often some performance losses 

in authentication systems that consider security issues. 

We propose a high-speed Paillier crypto processor that 

can be used to overcome the cumbersome calculations of 

each authentication. For the first time, we attempted to 

design an ASIC implementation for a Paillier-based 

homomorphic cryptosystem. In this study we designed a 

high-performance cryptographic processor with a 1024- 

bit Paillier homomorphic algorithm. Our hardware archi- 

tecture primarily uses 32-bit IO and 256-bit arithmetic 

core to implement the operations required for Paillier 

cryptosystem. 

We conducted experiments and simulations to evaluate 
the proposed design in terms of latency, area, and time to 

complete encryption and decryption. Our empirical 

results show that the proposed architecture is much faster 

than the FPGA implementation of the Paillier homomor- 

phic cryptosystem in the previous study. Our research 

results show that this study proposes a good solution to 

solve the performance loss problem caused by the 

application of a secure authentication system at a higher 
security level and database data volume. In addition to this 

application, our design can also be considered for other 

applications, such as e-voting and third-party statistics. 
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