LOAD FLOW ANALYSIS, SHORT CIRCUIT ANALYSIS, AND RELAY PROTECTION USING ETAP

Dr. S. SANKARAKUMAR M.E., Ph.D., Assistant Professor(Sr.Grade), National Engineering College - Kovilpatti A.SRI BALA KRISHNAN National Engineering College – Kovilpatti M.SRINIVASAPANDIAN National Engineering College – Kovilpatti

ABSTRACT:

For the development of any country, energy is a fundamental resource. In this paper load flow analysis, short circuit analysis, and relay protection of substation in ETAP software. These three tests are essential for both the design and operating stage and monitoring the performance of the grid. The capacity of the power grid and the protections are verified by conducting these tests. The load flow analysis helps the power generation and load distribution. Measured short circuit analysis helps to prevent the heavy equipment from damage and values are compared with the values given by the power plant sources. The results have been accomplished through ETAP for power system analysis. Relays and circuit breakers are known as the main components of the power system. Proper coordination is essential to reduce the unnecessary outages of the grid.

INTRODUCTION:

The fact that the Unit of electric energy generated by Power Station does not match with the units distributed to the consumers. Some percentage of the units is lost during the transmission of power from generation to distribution network. This difference in

S.TAMILSELVAN

National Engineering College - Kovilpatti S. SURDISH MUTHU National Engineering College - Kovilpatti

the generated & distributed units is known as Transmission and Distribution loss. The technical losses are due to energy dissipated in the conductors, equipment used for transmission Line, Transformer, sub-transmission Line and Distribution Line, and magnetic losses in transformers. To compensate and reduce the losses in the Transmission line Load flow analysis was used. This helps to improve the power supplied to the customer(Loads).

In a power system, the components are highly sensitive and expensive. If any major and sudden fault occurs means the equipment may damage. To prevent the equipment from damage short circuit analysis can be conducted. To design the relay coordination system short circuit analysis is needed.

For relay protection, this project uses the overcurrent relay and the circuit breaker opens the circuit when the short circuit happens. Relay is an important component for the protection of the power system. It senses the overcurrent in the system and sends the trip command to the circuit breaker based on the trip timing.

ETAP DESCRIPTION:

Power System study and analyses are important parts of power system engineering. Electrical engineers have been focusing on power system studies for the past few years using software tools. Recent advances in engineering sciences have brought a revolution in the field of electrical engineering after the development of powerful computer-based software. This research work highlights the effective use of Electrical Transient analyzer Program (ETAP) software for analyses and monitoring of large electrical power systems which comprises of large power distribution network.

System studies are an integral part of power system engineering and design. A structured computer program that uses technically correct models, employs a user-friendly interface, uses a common database, and traps user error is a powerful tool that greatly enhances the engineer's efficiency and productivity. ETAP is an engineering design and analysis program which satisfies these criteria. Also, ETAP performs numerical calculations with tremendous speed, automatically applies industryaccepted standards to provide easy-to-follow output reports.

ETAP PROGRAMS:

- One-Line Diagram
- Load Flow
- Short Circuit
- Dynamic Stability
- Motor Acceleration
- Motor Starting
- Cable Derating
- Cable Pulling
- Ground Grid Design
- Induction Machine Parameter Estimation
- Induction Machine Torque/Slip Curve

LOAD FLOW ANALYSIS:

- Draw the single line in the editor window of the ETAP.
- Set the values for the components.
- Do the connections with the wire.
- Run load flow analysis
- Obtain the results using display options.

Rating of components is an important note for load flow analysis because based on these values only load flow results may be varied.

Component	Туре	Rating (KVA)	Primary voltage (KV)	Secondary Voltage (KV)
Transformer	Transformer 1	Rating (KVA) r 1500 r 1000 r 1200 r 1500 r 1500 r 1500 r 1500 r 1500	11	0.4
	Transformer 2	1000	11	0.4
	Transformer 3	1200	11	0.4
	Transformer 4	1500	11	0.4
	Transformer 5	1200	11	0.4
	Transformer 6	1500	11	0.4
	Transformer 7	1000	11	0.4

Bus	Type	Load (KVA)	Type of Load		
	Bus 1	0	None		
	Bus 2	500	Residential		
	Bus 3	1000	Residential		
	Bus 7	450	Residential		
	Bus 9 1000		Residential		
	Bus 12	800	Residential		
TX line	Type		Length/km		
length	Line 12		1km		
	Line 23		2km		
	Line 34		1.5km		
	Line 45		2km		
	Line 56		1.5km		

Component and rating

BUS INPUT DATA:

Bus Input Data

		Bus			Initial V	oltage
D	Тура	Nom. kV	Base kV	Sub-sys	%Mag.	Ang.
Busl	SWING	11.000	11.000	1	100.00	0.00
Bus2	Load	11.000	11.000	1	100.00	0.00
Bus3	Load	11.000	11.000	1	100.00	0.00
Bus5	Lord	0.400	0.400	1	100.00	-30.00
Busó	Lord	0.400	0.400	1	100.00	-30.00
Bus7	Lord	11.000	11.000	1	100.00	0.00
Bus9	Lord	11.000	11.000	1	100.00	0.00
Buslo	Lord	0.400	0.400	1	100.00	-30.00
Busll	Lord	0.400	0.400	1	100.00	-30.00
Busli	Lord	11.000	11.000	1	100.00	0.00
Bus13	Load	0.400	0,400	1	100.00	-30.00
BuslJ	Load	0.400	0.400	1	100.00	-30.00
Bush	Lord	0.400	0.400	1	100.00	-30.00

13 Buses Total

All voltages reported by ETAP are in % of bus Nominal kV. Base kV values of buses are calculated and used internally by ETAP.

LOAD FLOW OUTPUT:

LOAD FLOW RESULTS:

CKT/ Branch ID	From- To Bus		To From Bus		Losses		%Bus		VD %
	MW	MVAR	MW	MVAR	KW	KVAR	FROM	TO	
Line12	3.33	2.093	-3.273	-2.075	60.3	17.7	100	98.5	1.54
Line 23	2.851	1.805	-2.759	-1.778	91.5	26.8	98.5	95.8	2.67
Tl	0.422	0.270	-0.42	-0.261	1.3	9.4	98.5	973	1.2
Line 34	1.925	1.238	-1.891	-1.228	33.3	9.8	95.8	94.4	1.39
T2	0.417	0.272	-0.415	-0.257	2.6	15.3	95.8	93.8	2.01
B	0.417	0.268	-0.416	-0.258	1.4	10.2	95.8	94.5	1.28
Line 45	1.518	0.989	-1.489	-0.981	28.7	8.4	94.4	92.9	1.49
T4	0.374	0.239	-0.373	-0.231	1.2	8.4	94.4	93.2	1.16
Line56	0.663	0.447	-0.659	-0.446	4.3	13	92.9	92.4	0.5
T5	0.413	0.268	-0.411	-0.255	1.9	13.3	92.9	91.3	1.64
Tć	0.413	0.266	-0.411	-0.255	1.5	10.6	92.9	91.6	<u>13</u>
T7	0.659	0.446	-0.652	-0.404	7.3	0.42	92.4	89.1	3.36
Total	1				235.3	173.1			

SHORT CIRCUIT ANALYSIS:

- Draw the single line diagram in the ETAP editor window.
- Same as load flow set the ratings of the component.
- Run the short circuit analysis.
- For running the analysis make any one of the buses a fault bus.
- Obtain the results by display options.

There are three types of fault currents.

Sub-Transient: The number of faults current at the time on which the fault occurs.

Transient: The fault current after some time but still changing.

Steady-state transient: After the transient has reached the steady-state value.

SHORT CIRCUIT ANALYSIS OUTPUT:

SHORT CIRCUIT ANALYSIS RESULTS:

SHORT-CIRCUIT REPORT

Norrisol IV = 11.000 Wolzge c Factor = 1.10 (User-Defined) Contribution		3-Pha	e Enult		Line-R	-Ground f	fædt		Pesilin 1	e & Zero Se .eeking into	quence Imp "From Dus	etmo •
HonBu	Hon Bu It Bu		4V B		% Voltage at Hom Box		1A Synam may		Na hapedeace on 100 MVA has			e
D	۵	FromBos	Sjaan me	8	13	¥2	ù	300	RI	XI	30	3
Re2	Donal	0.06	12.91	0.00	1364	139.97	\$.332	8.282	158-001	4192-00	3.53E+001	113
Rel	Bul	96.96	12.096	102,41	110.09	110.05	1.045	1212	1995-001	437 E +00L	3.55E+001	113
Bra3	Bal	7,9	0,454	331	137.4	13130	0.335	0.000	4885-902	11%-009		
Bost	Bad	11.51	0.073	77.91	82.53	110.00	6.034	0,900	1605-003	6.92E-005		
Poze Gid	Bad	110.00	12.096	110.00	110.00	110.00	8.045	\$202	17E-001	51/2-000	173E-00	526
Bio ⁷	Bad	11.41	0.512	439	137.91	131.97	0.135	0.000	65至-003	1.59E+009		
Bei5	Basi	14.47	0.075	3829	82.44	110.00	0.093	6.980	17 E-0 05	661E-008		
Ref	Bui	13.31	0.076	78,90	82.14	110.00	0.053	0,900	167E-003	6.5.25-008		
lampl	Bas4	11066	2148	110.00	110.00	110.00	6513	0,000	1585-003	\$1 E-00 3		

SHORT CIRCUIT SUMMARY:

Bits Jähne Endt Line-o-Ground Frak <thLine-o-Ground Frak</th> <thLine-o-Ground Frak</th>

Shert-Circuit Summary Report

RELAY PROTECTION:

- Draw the single-line diagram using the ETAP editor window.
- Fix the over-current relay to operate the circuit breaker.
- Set the time delay for the relay.
- Place a fault in the bus.
- Simulate star protection coordination.
- Obtain the results using the display option.

RELAY PROTECTION OUTPUT:

Tesle et have

D-1

RELAY PROTECTION RESULTS:

Sequence-of-Operation Event Summary Report

Symmetrical 3-Phase Fault at Bus2.

Time (ms)	D	If (kA)	Tl (ms)	T2 (ms)	Condition
10.0	Relayl	12.096	10.0		Phase - OC1 - 50
Б.7	Relayl	12.096	Б.7		Overload Phase - Thermal
B.7	Reby2	0.078	15.7		Overload Phase - Thermal
15.7	Relay7	0.075	B.7		Overload Phase - Thermal
15.7	Rebyl	0.076	15.7		Overload Phase - Thermal
19.2	Rebyl	12.096	19.2		Phase - OCI - 51
30.0	CB28		20.0		Tripped by Relay1 Phase - OC1 - 50
39.2	CB28		20.0		Tripped by Relayl Place - OCI - 51
7051	Reby2	0.078	7051		Phase - OCI - 51
7071	CB10		20.0		Tripped by Relay2 Phase - OC1 - 51
8500	Relays	0.076	\$600		Phase - OCI - 51
1610	CB19		20.0		Tripped by RelayS Phase - OC1 - 51
9453	Reby7	0.075	9453		Phase - OCI - 51
9473	CB18		20.0		Tripped by Relay? Plaze - OCI - 51
13441	Relay3	0.066	>13441		Phase - OC1 - 51
13441	Relays	0.070	>13441		Phase - OCI - 51
13441	Relayó	0.070	>13441		Phase - OCI - 51
13461	CB4		20.0		Tripped by Relay5 Phase - OCI - 51
13461	CB7		20.0		Tripped by Relayd Phase - OCI - 51
13461	CB13		20.0		Tripped by Relay3 Phase - OC1 - 51

CONCLUSION:

In this project Load Flow, short circuit study, and relay protection using ETAP software is carried out with an approach to overcome the problem of an under-voltage, and the maximum short circuit current is simulated by ETAP and to protect the system from fault. Load flow studies determine if system voltages remain within specified limits under various contingency conditions and whether equipment such as transformers and conductors are overloaded.

A number of operating procedures can be analyzed such as the loss of a generator, a transmission line, a transformer, or a load. Also, they are useful in determining the system voltages under conditions of suddenly applied or disconnected loads. The current of the short circuit is 12kA the existing CB panel bus of the system is 80 kA, which means the safety margin is still far above that installed.

From these short circuit analyses, we designed the relay coordination by the over-current relay. Finally, it opens the CB when the fault occurs.

REFERENCES:

- Ali M. Eltamaly et al "Load Flow Analysis by Gauss-Seidel Method: A Survey", International Journal of Mechatronics, Electrical and Computer Technology, PISSN: 2411-6173, EISSN: 2305-0543, Egypt (2016).
- Kiran Natkar, et al, "Design Analysis of 220/132 kV Substation using ETAP", International Research Journal of Engineering and Technology (IRJET), vol 2, India, 2015.
- Charles Mozina, "Undervoltage Load Shedding", ISBN: 978-1-4244- 0855-9, IEEE, Page(s): 39-54
- Load Flow Analysis of 11 kV Test feeder with and without the injection of DG Umar Farooq, Shahryar Qureshi, Sanaullah.Ahmad, IQRA National University (INU) Pakistan, Dr. Fazal Wahab

Karam, COMSATS Institute of Information technology (CIIT) Pakistan.

 M.A.Pai, "Computer Techniques in Power System Analysis", second edition, ISBN: 0-07-059363-9, Tata McGraw Hill [2005].