
Verification to Static Sign-off: Automotive
Approach

Krishna B Pandit

PG – VLSI Design and Embedded
Systems

Dept of ECE RVCE

Bangalore -59

Sudha R Karbari

Assistant Professor

Dept of ECE RVCE

Bangalore - 59

Abstract— As the technology nodes are getting smaller

and smaller the design of a SoC is becoming more

complex day by day. Modern day SoCs are a collection

of individual intellectual properties [IP]. Each IP has its

own clocking regime and each clock belongs to the

separate clock domains. This leads to the challenge in

verification of SoCs. The functional verification of SoCs

is becoming more and more difficult due to the data

transferred between individual IP modules. When data

transfers between two IPs the data crosses clock

domains leading to clock domain crossing [CDC]. For a

SoC to be free of all CDC errors, verification is

paramount along with meeting the timing requirements.

This work focuses on the conversion of SVAs to timing

constraints for timing sign-off. Timing sign-off requires

the need to detect all the untimed paths present in the

design. Validating each data path is meeting the timing

requirements. Automation of the detection and

conversion of assertion to timing constraints is done

here.

Keywords—Clock Domain Crossing, Verification, System

Verilog Assertions, Verification, Sign-off

I. INTRODUCTION

Modern day SoCs are extremely complex in their

composition. Each SoC is composed of smaller individual

modules called as intellectual properties. Each IP block

operates on its own clock and clock domains. When data

transfers in-between the IPs, the data crosses clock domains

giving raise to clock domain crossing [CDC]. When

transfers from one clock domain to another, it is called as

clock domain crossing. CDC usually happens when the

sending and the receiving clocks are asynchronous w.r.t to

each other.

Figure 1: Clock Domain Crossing
In figure 1, flip-flop FA and flip-flop FB are clocked by two

clocks C1 and C2. C1 and C2 are asynchronous w.r.t each

other. Data is said to cross from C1 domain to C2 domain.

The major issues of CDC are metastability, data loss and

data incoherency. Metastability is the major error of CDC.

Metastability is the state of the flip-flop when the sampled

data is in the unknown state of either 1 or 0.

Figure 2: Metastability

When the transition on signal A happens very close to the

rising edge of C2, violates the setup time or the hold time of

the flip-flop clocked by C2 i.e FB goes metastable. The value

sampled by the flip-flop may settle to either B1 or B2 and is

completely unknown. Metastability leads to data loss and

data incoherency. Two of the most common problems of

CDC. Data loss whenever the destination flip-flop captures

source data, if each transition is captured, then data is not

lost. Data loss happens in a serial transmission of data bits

where each transmitted bit may settle at either 0 or 1 due to

metastability owing to data loss. To prevent data loss, the

sending end data is to be held stable for a minimum period

of 1.5x clock period of the receiving clock. This includes the

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 32 Vol.6, Issue.6, July 2020

setup-hold margin and the single clock cycle latency in the

receiving domain.

 Figure 3: Data Loss
Figure 3 represents data loss. Here instead of capturing 1011

the flip-flop captures 0011 losing the first bit. Data

incoherency is the third most common error of CDC. When

multi-bit data cross clock domains, due to metastability each

bit transferred may settle at a different logic state compared

to the input. The data sent and the data received will not

match and hence are incoherent. To solve this problem

handshaking and asynchronous FIFO based synchronizers

are employed.

Figure 4: Data Incoherency

Figure 4 represents data incoherency. The data being sent is

X[0] and X[1] and the data received is Y[0] and Y[1]. Due

to metastability, Y[1] does not match with X[1] leading to

data incoherency.

Verification and Static Sign-off

As known from the previous section, the problems of CDC

are enormous when gone unnoticed. It may even lead to

functional and electrical failure of the chip. To combat this

problem, synchronizers are employed across clock domains

to synchronize data with the receiving clock. There are

various types of synchronizers present and based on the data

being sent, one can employ different types of synchronizers.

Each synchronizing scheme comes with a set of built in

SystemVerilog Assertions [SVAs] to verify their

functionality and their usage. The verification of Practices

from the past have made use of this part to verify

synchronizers and declare a chip as CDC bug free.

Clock Domain Crossing Synchronizers

There are various types of synchronizers used for CDC

synchronization. Here are the most common schemes along

with their SVAs.

2 Flip-flop synchronizer

The basic of all the type of synchronizer is the 2 flip flop

synchronizer. It consists of 2 back-to-back flip-flops. The 2

flip-flop synchronizer resolves metastability issues.

Figure 5: 2 flip-flop Synchronizer

The major checks for 2FF synchronizer are the metastability

check and data stability check when it comes to verification.

Metastability check checks whether there are glitches in the

data path and the data stability check checks whether the

data is stable for a minimum of 1.5x the receiving clock

cycles. The SVAs for the two checks are given below.

property p_stability;
@(posedge clk-B)
!$stable(Din) |=> $stable(Din) [*2];
endproperty : p_stability

property p_no_glitch;
logic data;
@(D_in)
(1, data = !Din) |=> @(posedge clk-B)
(Din == data);
endproperty : p_no_glitch

assert property(p_stability);
assert property(p_no_glitch);

The above properties describe the SVAs for a 2 flip-flop

synchronizer. SVAs must pass in the simulation for the

design to be functionally correct.

Handshaking Synchronizer

Handshaking synchronizer works on the protocol of request

and acknowledge. There are two types of handshaking

synchronizers- 2phase and 4phase. The major functional

criteria for a handshaking synchronizer are – each request

must get an acknowledge, each acknowledge must be

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 33 Vol.6, Issue.6, July 2020

preceded by a request and when the request is asserted, the

data sent must be stable.

Figure 6: Handshaking Synchronizer

The sample SVAs for a handshake synchronizer are:
sequence Data_tx;
@(posedge clk)
req ##1 !req [*1:max] ##0 ack;
endsequence

property Req_G_Ack;
@(posedge clk)
req |-> Data_tx;
endproperty

property Ack_H_Req;
@(posedge clk)
ack |->Data_tx.ended;
endproperty

property Data_Stability;
@(posedge clk)
req |=> $stable(data) [*1:max] ##0 ack;
endproperty

assert property(Req_G_Ack);
assert property(Ack_H_Req);
assert property(Data_Stability);

Asynchronous FIFO Based Synchronizer

The most commonly used synchronizer is dual clock

asynchronous FIFO based synchronizer. It is composed of a

memory element a block RAM or a dual port SRAM, a 2

flip-flop synchronizer, binary to gray and gray to binary

counters write and read control logics separated by

asynchronous read and write clocks. This synchronizer is

used to synchronize multibit data crossing clock domains

such as address bus.

Figure 7: Asynchronous FIFO Synchronizer

Figure 7 shows the basic block diagram of asynchronous

FIFO synchronizer. The basic checks for a FIFO

synchronizer are – never write a full FIFO, never read to an

empty FIFO, binary to gray checks and 2 flip-flop

synchronizer checks. The sample SVAs of a FIFO based

synchronizer is given below.

property Access;

@(posedge clk)

inc |->!flag;

endproperty

property Gray_Code

@(posedge clk) disable iff (!rst_n)

!$stable(data) |-> $onehot(data ^ $past(data));

endproperty

The property Access is used for both the write and read

domains. The property Gray_Code checks whether the

consecutive pointers have a single bit change between them.

Sign-Off

For the proper functioning of SoC, not only should it be

functionally correct but also it must meet the timing

requirements. The timing requirements are checked at the

synthesis stage. There are a variety of timing checks that are

performed on the SoC for timing sign-off. They are:

Setup Check [max-delay check]

Setup checks are done on the receiving flip-flop to check
whether the incoming data meets the set-up time of the flip-
flop. For positive edge triggered launch and capture flops,
setup checks are called as single cycle checks. Since the
data launched in the present posedge is checked for setup
violation in the next posedge. Setup checks consider the
maximum delays of the data and clock paths. Hence called
as max-delay checks.

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 34 Vol.6, Issue.6, July 2020

Figure 8: Setup Check hold check

Hold Checks [min-delay checks]

Hold checks check if the hold time of the flip-flop is met by
the incoming data. For flip-flops triggered on the same clock
edge, the hold checks are termed as zero cycle checks.
Hence hold checks are not dependent on the frequency of
the clock triggering the flip-flop.

Verification to Sign-off Methodology

Previous works in this domain have treated verification and

sign-off as two separate entities in the design of an SoC. The

verification checks verify the SoC based on functionality

whereas the timing sign-off checks verifies the SoC based

entirely on timing. The functional pre-synthesis verification

does not consider the net and the cell delays and the timing

sing-off checks post synthesis, do not take into account the

functionality of the chip. For a proper and reliable

functioning of the chip both in terms of logical functionality

and meeting the timing requirements, there must be an

intersection between verification and sign-off.

Methodology

The verification to sign-off methodology bridges the gap

between verification and static sign-off first manually and

then the process is automated. In the manual process the

methodology is as follows:

Step 1:

For the closing the gap between verification and sign-off, it

is paramount to find out the number of asynchronous paths

present in the given design. This is done by running CDC on

RTL on the tool spyglass. This tool verifies the each and

every asynchronous crossing and the presence of

synchronization scheme for that particular crossing. This

step requires the inputs to the tool about the design in the

form of tcl constraints and based on the design, waivers.

Step 2:

After a successful CDC run, with resolution of all the CDC

violations by writing proper constraints and waivers, the

tool generates the SVAs for each waiver present in the

waiver file and each constraint in the constraint file. These

SVAs are verified along with the SVAs written for each

type of synchronization cell in the simulation of the design.

Step 3:

After verifying the SVAs for constraints, waivers and

synchronization schemes, we need to detect the presence

and the number of untimed paths present in the design.

Untimed paths are basically paths where we cannot put a

timing check. All asynchronous paths present in the design

are untimed paths along with multi-cycle paths and false

paths. Here to perform the timing checks on these paths, the

constraints are written by the conversion of SVAs for the

synchronization cell to timing check. This timing check

verifies the timing of that given data path along the

synchronization cell. Hence, we’re verifying the
functionality through SVAs and the timing by converting

those SVAs to timing checks for the timing sign-off.

Step 4:

As this is a manual and time-consuming job, scripts were

written to find out the number of asynchronous paths and to

find the type of synchronization scheme used and the

number of a synchronization scheme present in the design.

 Step 5:

The manual mapping of SVAs to the timing checks were put

in a file for each of the synchronization scheme present in

the design. This gives the necessary timing check for a

given SVA for a given synchronizer present in the design.

Discussion and Future Scope

This project combines two of the most important part of

VLSI design flow i.e verification and synthesis. The

transition from verifying the design functionally into the

sign-off of the design w.r.t timing has a huge impact on how

future SoCs are designed. The verification to sign-off

methodology removes the human dependency in the type

and manner of checks that are supposed to be done on a

multi clock complex SoC. This project does not take into

account the resets present in the design. The major factor for

resets is the de-assertion of resets if it is close w.r.t the

clock, it requires a reset synchronizer and gives raise to

extra complexities. This can be used as a reference for the

future works on resets.

References

[1] Pranav Ashar, Vinod Viswanath “Closing the

Verification Gap with Static Sign-off” ISQED

2019

[2] Pranav Ashar, Vikas Sachdeva, Vinod Viswanath,

"Failures and verification solutions related to

untimed paths in SOCs," ISQED 2017: 460-465

[3] Sourabh Verma, Ashima S Dabare “Understanding

clock domain Crossing Issues” EE Times India

December 2007

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 35 Vol.6, Issue.6, July 2020

[4] Matt Litterick Verilab “Pragmatic Simulation-

Based Verification of Clock Domain Crossing

Signals and Jitter using SystemVerilog Assertions”

DVCon 2006

[5] Sachin Hatture, Sudhir Dighe, “Open loop and

closed loop solutions for clock domain crossing

faults” GCCT - 2015

[6] Ghaith Tarawneh, Andrey Mokhov, Alex

Yakovlev, “Formal Verification of Clock Domain
Crossing using Gate-level Models of Metastable

Flip-Flops” DATE – 2016 : 1060 – 1065

[7] Salomon Beer, Ran Ginosar “Eleven Ways to boost

synchronizer” IEEE Transactions on VLSI Systems

2014

[8] Sachin Hatture, Sudhir Dighe “Multi Clock

Domain Synchronizers” 2015 INTERNATlONAL

CONFERENCE ON COMPUTATlON OF

POWER, ENERGY, INFORMATlON AND

COMMUNICA TlON: 403-408

[9] Matej Bartik “Clock Domain Crossing- An

Advanced course for Future digital engineers”

Mediterranean Conference on Embedded

Computing 2018

[10] Clifford E Cummings “Clock Domain Crossing

Design and Verification Using System Verilog”

SNUG 2008

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 36 Vol.6, Issue.6, July 2020

