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Abstract— As the technology nodes are getting smaller 

and smaller the design of a SoC is becoming more 

complex day by day. Modern day SoCs are a collection 

of individual intellectual properties [IP]. Each IP has its 

own clocking regime and each clock belongs to the 

separate clock domains. This leads to the challenge in 

verification of SoCs. The functional verification of SoCs 

is becoming more and more difficult due to the data 

transferred between individual IP modules. When data 

transfers between two IPs the data crosses clock 

domains leading to clock domain crossing [CDC]. For a 

SoC to be free of all CDC errors, verification is 

paramount along with meeting the timing requirements. 

This work focuses on the conversion of SVAs to timing 

constraints for timing sign-off. Timing sign-off requires 

the need to detect all the untimed paths present in the 

design. Validating each data path is meeting the timing 

requirements.  Automation of the detection and 

conversion of assertion to timing constraints is done 

here.  
 

Keywords—Clock Domain Crossing, Verification, System 

Verilog Assertions, Verification, Sign-off 

I. INTRODUCTION  

Modern day SoCs are extremely complex in their 

composition. Each SoC is composed of smaller individual 

modules called as intellectual properties. Each IP block 

operates on its own clock and clock domains. When data 

transfers in-between the IPs, the data crosses clock domains 

giving raise to clock domain crossing [CDC]. When 

transfers from one clock domain to another, it is called as 

clock domain crossing. CDC usually happens when the 

sending and the receiving clocks are asynchronous w.r.t to 

each other. 

 

 
 

Figure 1: Clock Domain Crossing 
In figure 1, flip-flop FA and flip-flop FB are clocked by two 

clocks C1 and C2. C1 and C2 are asynchronous w.r.t each 

other. Data is said to cross from C1 domain to C2 domain. 

The major issues of CDC are metastability, data loss and 

data incoherency. Metastability is the major error of CDC. 

Metastability is the state of the flip-flop when the sampled 

data is in the unknown state of either 1 or 0.  

 

 
 

Figure 2: Metastability 
 
When the transition on signal A happens very close to the 

rising edge of C2, violates the setup time or the hold time of 

the flip-flop clocked by C2 i.e FB goes metastable. The value 

sampled by the flip-flop may settle to either B1 or B2 and is 

completely unknown. Metastability leads to data loss and 

data incoherency. Two of the most common problems of 

CDC. Data loss whenever the destination flip-flop captures 

source data, if each transition is captured, then data is not 

lost. Data loss happens in a serial transmission of data bits 

where each transmitted bit may settle at either 0 or 1 due to 

metastability owing to data loss. To prevent data loss, the 

sending end data is to be held stable for a minimum period 

of 1.5x clock period of the receiving clock. This includes the 
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setup-hold margin and the single clock cycle latency in the 

receiving domain.  

 

 
                               Figure 3: Data Loss 
Figure 3 represents data loss. Here instead of capturing 1011  

the flip-flop captures 0011 losing the first bit. Data 

incoherency is the third most common error of CDC. When 

multi-bit data cross clock domains, due to metastability each 

bit transferred may settle at a different logic state compared 

to the input. The data sent and the data received will not 

match and hence are incoherent. To solve this problem 

handshaking and asynchronous FIFO based synchronizers 

are employed. 

 

 
 

Figure 4: Data Incoherency  
 

Figure 4 represents data incoherency. The data being sent is 

X[0] and X[1] and the data received is Y[0] and Y[1]. Due 

to metastability, Y[1] does not match with X[1] leading to 

data incoherency.  

 

Verification and Static Sign-off  

As known from the previous section, the problems of CDC 

are enormous when gone unnoticed. It may even lead to 

functional and electrical failure of the chip. To combat this 

problem, synchronizers are employed across clock domains 

to synchronize data with the receiving clock. There are 

various types of synchronizers present and based on the data 

being sent, one can employ different types of synchronizers. 

Each synchronizing scheme comes with a set of built in 

SystemVerilog Assertions [SVAs] to verify their 

functionality and their usage. The verification of Practices 

from the past have made use of this part to verify 

synchronizers and declare a chip as CDC bug free.  

 

Clock Domain Crossing Synchronizers  

There are various types of synchronizers used for CDC 

synchronization. Here are the most common schemes along 

with their SVAs.  

2 Flip-flop synchronizer 

The basic of all the type of synchronizer is the 2 flip flop 

synchronizer. It consists of 2 back-to-back flip-flops. The 2 

flip-flop synchronizer resolves metastability issues.  

 

 

 
 

Figure 5: 2 flip-flop Synchronizer 

The major checks for 2FF synchronizer are the metastability 

check and data stability check when it comes to verification. 

Metastability check checks whether there are glitches in the 

data path and the data stability check checks whether the 

data is stable for a minimum of 1.5x the receiving clock 

cycles. The SVAs for the two checks are given below. 

property p_stability;    
@(posedge clk-B)      
!$stable(Din) |=> $stable(Din) [*2]; 
endproperty : p_stability   
 
property p_no_glitch;   
logic data;    
@(D_in)      
(1, data = !Din) |=> @(posedge clk-B)      
(Din == data);  
endproperty : p_no_glitch  
 
assert property(p_stability);  
assert property(p_no_glitch); 
 
The above properties describe the SVAs for a 2 flip-flop 

synchronizer. SVAs must pass in the simulation for the 

design to be functionally correct.  

 

Handshaking Synchronizer  

Handshaking synchronizer works on the protocol of request 

and acknowledge. There are two types of handshaking 

synchronizers- 2phase and 4phase. The major functional 

criteria for a handshaking synchronizer are – each request 

must get an acknowledge, each acknowledge must be 
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preceded by a request and when the request is asserted, the 

data sent must be stable. 

  

 
 

Figure 6: Handshaking Synchronizer  
 
The sample SVAs for a handshake synchronizer are:  
sequence Data_tx;    
@(posedge clk)      
req ##1 !req [*1:max] ##0 ack;  
endsequence  
 
property Req_G_Ack; 
@(posedge clk)      
req |-> Data_tx;  
endproperty  
 
property Ack_H_Req;    
@(posedge clk)      
ack |->Data_tx.ended;  
endproperty  
 
property Data_Stability;    
@(posedge clk)      
req |=> $stable(data) [*1:max] ##0 ack; 
endproperty  
 
assert property(Req_G_Ack);  
assert property(Ack_H_Req);  
assert property(Data_Stability); 
 
Asynchronous FIFO Based Synchronizer 

The most commonly used synchronizer is dual clock 

asynchronous FIFO based synchronizer. It is composed of a 

memory element a block RAM or a dual port SRAM, a 2 

flip-flop synchronizer, binary to gray and gray to binary 

counters write and read control logics separated by 

asynchronous read and write clocks. This synchronizer is 

used to synchronize multibit data crossing clock domains 

such as address bus.  

 
 
 

Figure 7: Asynchronous FIFO Synchronizer  
 

 

Figure 7 shows the basic block diagram of asynchronous 

FIFO synchronizer. The basic checks for a FIFO 

synchronizer are – never write a full FIFO, never read to an 

empty FIFO, binary to gray checks and 2 flip-flop 

synchronizer checks. The sample SVAs of a FIFO based 

synchronizer is given below.  

property Access;  

@(posedge clk)      

inc |->!flag;  

endproperty  

 

property Gray_Code 

@(posedge clk) disable iff (!rst_n)     

!$stable(data) |-> $onehot(data ^ $past(data));  

endproperty  

 

The property Access is used for both the write and read 

domains. The property Gray_Code checks whether the 

consecutive pointers have a single bit change between them.  

Sign-Off  

For the proper functioning of SoC, not only should it be 

functionally correct but also it must meet the timing 

requirements. The timing requirements are checked at the 

synthesis stage. There are a variety of timing checks that are 

performed on the SoC for timing sign-off. They are:  

 

Setup Check [max-delay check]  

Setup checks are done on the receiving flip-flop to check 
whether the incoming data meets the set-up time of the flip-
flop. For positive edge triggered launch and capture flops, 
setup checks are called as single cycle checks. Since the 
data launched in the present posedge is checked for setup 
violation in the next posedge. Setup checks consider the 
maximum delays of the data and clock paths. Hence called 
as max-delay checks.  
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Figure 8: Setup Check hold check 
 

Hold Checks [min-delay checks] 

Hold checks check if the hold time of the flip-flop is met by 
the incoming data. For flip-flops triggered on the same clock 
edge, the hold checks are termed as zero cycle checks. 
Hence hold checks are not dependent on the frequency of 
the clock triggering the flip-flop.  
 
 
 
Verification to Sign-off Methodology  

Previous works in this domain have treated verification and 

sign-off as two separate entities in the design of an SoC. The 

verification checks verify the SoC based on functionality 

whereas the timing sign-off checks verifies the SoC based 

entirely on timing. The functional pre-synthesis verification 

does not consider the net and the cell delays and the timing 

sing-off checks post synthesis, do not take into account the 

functionality of the chip. For a proper and reliable 

functioning of the chip both in terms of logical functionality 

and meeting the timing requirements, there must be an 

intersection between verification and sign-off.  

 

Methodology  

The verification to sign-off methodology bridges the gap 

between verification and static sign-off first manually and 

then the process is automated. In the manual process the 

methodology is as follows:  

Step 1:  

For the closing the gap between verification and sign-off, it 

is paramount to find out the number of asynchronous paths 

present in the given design. This is done by running CDC on 

RTL on the tool spyglass. This tool verifies the each and 

every asynchronous crossing and the presence of 

synchronization scheme for that particular crossing. This 

step requires the inputs to the tool about the design in the 

form of tcl constraints and based on the design, waivers.  

Step 2:  

After a successful CDC run, with resolution of all the CDC 

violations by writing proper constraints and waivers, the 

tool generates the SVAs for each waiver present in the 

waiver file and each constraint in the constraint file. These 

SVAs are verified along with the SVAs written for each 

type of synchronization cell in the simulation of the design.  

Step 3:  

After verifying the SVAs for constraints, waivers and 

synchronization schemes, we need to detect the presence 

and the number of untimed paths present in the design. 

Untimed paths are basically paths where we cannot put a 

timing check. All asynchronous paths present in the design 

are untimed paths along with multi-cycle paths and false 

paths. Here to perform the timing checks on these paths, the 

constraints are written by the conversion of SVAs for the 

synchronization cell to timing check. This timing check 

verifies the timing of that given data path along the 

synchronization cell. Hence, we’re verifying the 
functionality through SVAs and the timing by converting 

those SVAs to timing checks for the timing sign-off.  

Step 4:  

As this is a manual and time-consuming job, scripts were 

written to find out the number of asynchronous paths and to 

find the type of synchronization scheme used and the 

number of a synchronization scheme present in the design.  

 

 Step 5:  

The manual mapping of SVAs to the timing checks were put 

in a file for each of the synchronization scheme present in 

the design. This gives the necessary timing check for a 

given SVA for a given synchronizer present in the design.  

 

Discussion and Future Scope 

This project combines two of the most important part of 

VLSI design flow i.e verification and synthesis. The 

transition from verifying the design functionally into the 

sign-off of the design w.r.t timing has a huge impact on how 

future SoCs are designed. The verification to sign-off 

methodology removes the human dependency in the type 

and manner of checks that are supposed to be done on a 

multi clock complex SoC. This project does not take into 

account the resets present in the design. The major factor for 

resets is the de-assertion of resets if it is close w.r.t the 

clock, it requires a reset synchronizer and gives raise to 

extra complexities. This can be used as a reference for the 

future works on resets.  
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