

AN HETEROGENEOUS INFORMATION PROCESSING USING

BIG DATA

Presented By
1 R . NIVEDHA B.Tech, M.Tech

1Assistant Professor,
1Department of CSE,

1Golden Valley Integrated Campus

Andhra Pradesh

Presented By
1 S . ARSHIYA SULTHANA B.Tech, M.Tech

1Assistant Professor,
1Department of CSE,

1Golden Valley Integrated Campus

Andhra Pradesh

Abstract— Big Data though it is a hype u p-s pring ing m a ny
technical challenges that confront both academic research

communities and commercial IT deployment, the root sources of

Big Data are founded on data streams. It i s g e nera lly k n own

that data which are sourced from data streams accumulate

continuously making traditional batch -based model i n duct io n

algorithms infeasible for real-time data mining o r h i g h-spe ed

data analytics in a broad sense. In this paper, a novel data

stream mining methodology, called Stream -based Holistic

Analytics and Reasoning in Paralle l (SHARP) is proposed.

SHARP is based on principles of incremental l ea rnin g wh i ch

span across a typical data-mining model construction pro ce ss,

from lightweight feature selection, one -pass incremental

decision tree induction, and incremental swarm opt i miza t io n.

Each one of these components in SHARP is designed to function

together aiming at improving the classification/prediction

performance to its best possible . SHARP is scalable , that

depends on the available computing resources during ru nt im e,

the components can execute in parallel, collectively e nha nci ng

different aspects of the overall SHARP process for mining da ta

streams. It is believed that if Big Data are being mined by

incrementally learning a data mining model, one pass at a t i m e

on the fly, the large volume of such big data is no longer a

technical issue, from the perspective of data a n a ly ti cs. Th re e

computer simulation experimentations are shown in this pape r,

pertaining to three components of SHARP, for demo n stra ti ng

its efficacy.
Keywords- Data stream mining methodology; Cache-based

data stream classifier; CCV feature selection; Meta-heusristics

I. INTRODUCTION

Recently a lot of news in the media advocates the hype of Big

Data that are manifested in three problematic issues. They are the

3V challenges known as: Velocity problem that gives rise to a huge

amount of data to be handled at an escalating high speed; Variety

problem that makes data processing and integration difficult because

the data come from various sources and they are formatted

differently; and Volume problem that makes storing, processing,

and analysis over them both computational and archiving

challenging.
In views of these 3V challenges, the traditional data mining

approaches which are based on the full batch-mode learning may

run short in meeting the demand of analytic efficiency. That is

simply because the traditional data mining
model construction techniques require loading in the full

set of data, and then the data are partitioned according to some

divide-and-conquer strategy; two classical algorithms are CART

decision tree induction [1] and Rough-set discrimination [2].

Each time when fresh data arrive, which is typical in the data

collection process that makes the big data inflate to bigger data,

the traditional induction method needs to re-run and the model

that was built needs to be built again with the inclusion of new

data.
In contrast, the new breed of algorithms known as data stream

mining methods [3] are able to subside these 3V problems of big

data, since these 3V challenges are mainly the characteristics of data

streams. Data stream algorithm is not stemmed by the huge volume

or high speed data collection. The algorithm is capable of inducing a

classification or prediction model from bottom-up approach; each

pass of data from the data streams triggers the model to

incrementally update itself without the need of reloading any

previously seen data. This type of algorithms can potentially handle

data streams that amount to infinity, and they can run in memory

analyzing and mining data streams on the fly. It is regarded as a

killer method for big data hype and its related analytics problems.

Lately researchers concur data stream mining algorithms are meant

to be solutions to tackle big data for now and for the future year s t o

come [4][5].
Although there are not short of algorithms in the computer

science and machine learning areas for incremental learning, a

holistic approach in summing up different aspects of data stream

mining with the aim of improving the ultimate accuracy

performance is needed. In this paper, we propose a novel data

stream mining methodology. It is called Stream-based Holistic

Analytics and Reasoning in Parallel (or SHARP in short) which is

based on principles of incremental learning and lightweight

processing. SHARP is comprised of several components which

cover a typical data-mining model construction process. They are

lightweight feature selection, one-pass incremental decision tree

induction, and incremental swarm optimization. Each one of these

components in SHARP is supposed to complement each other

towards the common objective of improving the

classification/prediction performance as a whole. SHARP is scalable

in computation; additional CPUs can be included in parallel for

increasing the execution threads of independent

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 219 Vol.5, Issue.7, July 2019

performance enhancement. The benefits of SHARP include

attaining the highest possible prediction accuracy while maintainin g

the computation as lightweight as possible; some components can be

run independently thereby allowing parallel processing and scalable

solution; and the operation of SHARP is in stochastic manner

implying the longer it runs for, the better the performance it can

achieve.
The remaining of the paper is structured as follow.

Section 2 describes the SHARP methodology and its
components in full details. Section 3 presents three computer
simulation experimentations for validating the efficacy of
SHARP components for data mining big data. Section 4
concludes the paper.

II. SHARP METHODOLOGY
To the best of the authors’ knowledge there is no methodology

for data stream mining in the academic literature, especially that

covers an optimizer for fine-tuning the performance in real-tim e. A

model of SHARP processes which aims to shed light in the

methodology of data stream mining is shown in Figure 1. It includes

several components that work cooperatively together during the data

stream mining operation. The components are; 1. Cache Receiver

(CR); 2. Incremental Classifier (IC); 3. Incremental Feature

Selection Module (IFS); 4. Factor Analysis Module (FA); and 5.

Swarm Optimizer (SO). The methodology offers a holistic approach

which takes care of most if not all the possible aspects in data

mining for improving performance. These five components are

meant for achieving the following objectives respectively: CR-

objective is to subside the problems of missing/incomplete data; IC-

objective is to enable stream forecasting/prediction/classification by

incremental learning manner; IFS and FA- objective is to understand

the reasons and influences of the respective data attributes towards

the predicted class; and SO- objective is to fine-tune the parameter

values including selecting the optimal feature subset regularly. All

these components contribute to the overall performance

improvement, and they can function concurrently as the data stream

in.

 Shrinked feature space

 Incremental Feature

 R
eceiv

erC
ach

e

 Selection

stre

a
m

d
a
ta

P
ro

c
e
sse

d

 ters
Swarm

 m e
 Para

 Optimize r

R
a
w d

 imize
Opt ters d

a
ta

 am e

 par ues

 Incremental val
 stre

a
m

 Classifier Optimal Factor Analysis

 feature subset

 Performance measures

 Test
Reasoning

 results

Figure 1: SHARP processes

The multiple rectangles in Figure 1 that represent IC and SO

respectively, depict the possibility that these processes can run

concurrently over some parallel computing devices.

The components are briefly described as follow. It is
acknowledged that there exist many possible solutions or
algorithms for implementing these components. Our
discussion however highlights only some of the state-of-the-

arts developed from our previous projects. The methodology
serves as an abstract guideline on the possible integration o f
several data streaming components, discussing their
functions (rather than implementation), interfaces and

advantages.
A. Cache Receiver (CR)

The cache receiver is a front -end pre-processing mechanism that

holds certain amount of data from the incoming data stream for a

while. The main function is to minimize the latency of data ar r iv als

as it is possible and likely that data streams that are being

aggregated from various sources would be received at different

speeds. CR acts as a delay regulator and buffer allowing

opportunities for efficient data cleansing mechanism to operate

upon, in real-time. It is not uncommon that data streams are st a in ed

with noise and incomplete information; techniques have been

proposed and studied previously. The techniques [6] mainly

centered on delivering and synchronizing the cache-buckets,

estimating missing data, and detecting and alleviating concept -drift

problems etc. CR also handles other basic data pre-processing tasks

similar to those for traditional data mining in the KDD process. Data

stream is partitioned into two portions, one is for training t h at go es

to the IFS and the other one is for testing at the IC.
B. Incremental Classifier (IC)

Many choices exist when it comes to data stream mining

algorithms such as those which are available on Massive Online

Analysis (MOA) [7] developed by University of Waikato, New

Zealand. Some popular algorithms include but not limited to:

Decision Stump, Hoeffding Tree, Hoeffding Option Tree, Hoeffding

Adaptive Tree, and ADWIN etc. The algorithms have a common

design basis that works by incremental learning approach. The

model gets rebuilt partially by only seeing enough samples that are

qualified (or biased) for growing an additional decision tree branch

(or rule). In such way, the model in induced progressively from

scratch to a full-grown mature decision tree which has seen enough

data stream samples, being able to recognize the mappings between

the attributes and the target classes.
Out of the many implementation, lately there is a decision tree

design called “Cache-based Classifier” (CBC) which is claimed to
be able to detect and overcome the problem of concept -drift [8] . I n

this particular design, CBC has an auxiliary data cache similar to

CR from which data are copied to a Decision Table Classifier

(DTC) and a Main Tree Classifier (MTC). While the MTC remains

as the main classifier from which the output result is derived, the

main function of DTC is only to test if a concept drift has o ccur red

hence the need of refreshing the MTC is assured. By this logic,

MTC is spared from excessive updating and its accuracy is not

diluted unless a concept drift happens at the incoming data streams.

A loss function is defined by counting simple statistics of the

frequencies of agreement

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 220 Vol.5, Issue.7, July 2019

and disagreement between the predicted outputs by DTC and MTC

respectively. The counting method is in Eqn. 1 and 2.

(1)

(2)

where yk is the predicted value at k th iteration, the Loss
variables are counters for the classifiers, T is the number o f
times both predicted values are in agreement, F is the count
of otherwise.

A coefficient Pk is used as a normalized single factor for

deciding whether a decision tree should grow by inducing an

additional tree path. Pk is defined in Eqn. 3 and 4.

(3)

(4) The values of the variables are remembered between the

current and the previous steps, and they do get updated when

fresh data arrives. If it were detected that current Pk <

previous Pk-1 , it indicates that the accuracy of MTC is

declining, and the need for updating to be updated by εk
which is defined by Eqn. 5, materializes.

(5) This dual concept of test-first-before-update leads to

good accuracy, compact tree size and fast processing.
Furthermore, CBC is scalable in nature implying the

possibility of parallel processing. For instance, the DTC and
MTC can be made as independent processes. The design of

CBC can be extended by incorporating with multiple MTC’s
like an ensemble tree which is very common in traditional
data mining. Each MTC could well be implemented by
different incremental learning algorithms; the prediction
result is to be taken from one winner among all the models
that outperforms the rest.
C. Incremental Feature Selection Module (IFS)

The objective of this module is twofold; one is supposed to

shrink down the total combination of feature subsets by simple

selection algorithm, the other is to reason about the importance of

the attributes with respective to the predicted classes, such as

attribute scoring. There are plenty of available algorithms for

incremental feature selection. Some popular ones include Grafting

[9] which is based on the heuristic of gradient descent in function

space, some is based on rough set theory on dynamic incomplete

dataset [10], and the incremental feature ranking method over

dynamic feature space [11], to just name a few.

One of the latest state-of-arts called Clustering Coefficients of

Variation (CCV) is relatively simple hence suitable for lightweight

computation in SHARP. CCV is founded on a basic belief that a

good attribute in a training dataset should have its data vary

sufficiently wide across a range of values, so that it is significant to

characterize a useful prediction model. The coefficient of variation

(CV) is expressed as a real number from - to + and it describes the

standard deviation of a set of numbers relative to their mean. I t can

be used to compare variability even when the units are not the same.

In general CV informs us about the extent of variation relative to the

size of the observation, and it has t he advantage that the coefficien t

of variation is independent of the units of observation. The

coefficient of variation, however, will be the same over all the

features of a dataset as it does not depend on the unit of

measurement. So you can obtain information about the data

variation throughout all the features, by using the coefficient of

variation to look at all the ratios of standard deviations to mean in

each feature. Intuitively, if the mean is the expected value, then t h e

coefficient of variation is the expected variability of a measurement,

relative to the mean. This is useful when comparing measurements

across multiple heterogeneous data sets or across multiple

measurements taken on the same data set – the coefficient of

variation between two data sets, or calculated for two attributes of

measurements in the case of feature selection, can be directly

compared, even if the data in each are measured on very different

scales, sampling rates or resolutions. In contrast, standard deviation

is specific to the measurement/sample it is obtained from, i.e. it is an

absolute rather than a relative measure of variation. In statistics, it is

sometimes known as measure of dispersion, which helps compare

variation across variables with different units. A variable with

higher coefficient of variation is more dispersed than one with lower

CV. Readers are referred to [12] for the formulation and details. In

the case of SHARP, CCV helps to shrink the feature space by

eliminating the disqualified features (by the CV principle) and the

combinations of such features. The feature space that has been

reduced in size will then been used by the SO for finding the most

optimal feature subset by metaheuristics search algorithms.
D. Factor Analysis Module (FA)

IFS and FA are usually work together (or in parallel as in

SHARP), having IFS to produce the selected features and FA offers

insights about the significance of attributes to the predicted classes.

In general, this method is to correlate a large number of features in a

dynamic dataset with an outcome variable, such as the predicted

class. Computationally this is done by scoring each feature by some

statistical means (correlation is one of them). The other types of

feature scoring exist such as gain ratio, information gain, Chi-square

evaluation, etc. that have similar methods for scoring. As a result o f

FA, a list of features sorted by values in ascending or descending

order would be produced; their rankings could be visualized too. It

offers insights to users about the importance of each attribute for

inquisitives.

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 221 Vol.5, Issue.7, July 2019

E. Swarm Optimizer (SO)

A swarm optimizer is essentially a search module that looks for

optimal parameter values of the classifier in use, and the optimal

feature subset for the IC module. SO takes the out put of IFS which

is a reduced search space of feasible combinations of feature subsets

as input. Multiple search agents, which often are inspired by natural

phenomena or behaviors of biological creatures, scout over the

search space for the optimum solution. The search operation is in

parallel as these multiple agents are working autonomously but

collectively through some stochastic process. The search iterates

through generations, thereby evolving the solution to an optimum

one at the end. Some researchers call such methods meta-heuristics

as it is meant to be a high-level strategy (therefore the name met a -)

that guides the underlying heuristic search in achieving a goal. In

the case of SHARP, SO is an optimized implemented by Swarm

Search [13] which is a latest search method for finding the optimum

feature subset using meta-heuristics from large datasets.
Swarm Search is particular useful for datasets that are

characterized by a very large amount dimensionalities, so called

features. Although the meta-heuristics is generic which is able to

integrate any type of bio-inspired optimization algorithms into

any type of classifier (at least theoretically), the work by [13]

tested 9 different combinations – three classifiers: neural

network, decision tree, and Naïve Bayes, and three bio-inspired

optimization algorithms: Wolf Search Algorithm, Particle

Swarm Optimization and Bat Algorithm.
For SHARP that demands for incremental learning and therefore

progressive search for the best feature subset, Swarm Search should

be configured to embed with only incremental algorithms, like those

mentioned in Section IIB. Depending on the setup at IC which may

be an ensemble method where multiple classifiers are being tested,

the most accurate model got selected, SO should operate in parallel

too having each execution thread corresponds to each candidate

classifier as in IC. The composite optimization applies where the

possible parameters values and the possible feature subsets search

space are blended together into a large search space, over which the

Swarm Search attempts to find the best combination. This approach

was pioneered by Iztok et al in [14].

III. EXPERIMENTS
In order to validate efficacy of SHARP, three sets of

experimentation are shown hereafter, with each set tests on some o f

the core components of SHARP such as IC, IFS and SO. The

datasets being used are big data, not only in volume but they are

large in number of features that pose great computational challenges

in data stream mining. All the experiments run on a Windows 7 6 4 -

bit workstation with Intel Quad 2.83 GHz processor and 8 Gb RAM.
A. Testing Performance of CBC as IC

In this experiment, CBC is tested versus two state-of-the-art dat a

streams mining algorithms, namely HOT [15] and ADWIN [16].

The representative big data is Cover-type data

that are available for free download from the UCI data archive

(www.ics.uci.edu/~mlearn). It has 42 categorical attributes and 12

continuous attributes, for predicting seven types of cover lands. Th e

number of instances is 581,012.
The CBD is comprised of DTC+MTC with varying window

sizes and it uses node-splitting bound computed from the loss

function in Eqn 2. The selected window sizes (ws) are 50, 200,

500, and 1000. For τ = 0.05 which is a default value by MOA

for controlling the learning speed, accuracy is better when ws =

50 and ws = 500, but the tree becomes larger than it does with

the other ws. The classifier attains higher accuracy but smaller

tree size than HOT. Furthermore, when ws = 50, the accuracy is

better and the tree size is reduced compared with ADWIN. The

performance comparison is shown in Figures 2 and 3.

Figure 2: CBC performance by accuracy with τ = 0.05

Figure 3: CBC performance by tree size with τ = 0.05

As it can be seen from Figure 2, CBC (which are named as

HT that stands for Hoeffding Tree) in the right setting

combination of τ and ws, is able to outperform HOT and

ADWIN. For the tree size in Figure 3, which is presumed to be

the smaller the better with less memory space required in run-

time, HOT and ADWIN requires more than CBC. One

shortcoming however is the requirement of manually setting the

right values of parameters for the algorithms to run.

Nevertheless it can be shown that CBC is able to achieve good

accuracy and compact tree size. This strongly suggests that

integrating with SO for finding the right parameters values are

imperative, especially when different versions of MTC

implemented by different algorithms are running in parallel.

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 222 Vol.5, Issue.7, July 2019

B. Testing Performance of CCV as IFS

In order to validate the effectiveness of a simple and lightweigh t

feature selection algorithm, called CCV, versus the other existing

methods, we test them on forty-four different datasets from UCI

using four popular classification algorithms in data mining, namely

ADABoost, J48 decision tree, Naïve Bayes and SMO. We compare

the performance of CCS against the four classical ones like

Correlation-based
(CFS), Consistency-based (Consist) and Relief-based (Relief)
Subset Evaluation methods, and Principle Component
Analysis (PCA). A typical 10-fold cross-validation is used to
valid and generate the outputs of performance indicators in
each test.

The forty-four datasets are first preprocessed by the different

feature selection algorithms. After that they are processed in

turn by each one of the four classification algorithms, and then

the results are averaged out. The performance results are

expressed in terms of Accuracy (number of correctly classified

instances over the total number of instances), pre-processing

time (which is crucial in SHARP that demands for high-speed
processing), and the percentage of attributes being selected. The

results are shown in Table 1.

Table 1: Averaged performance results of feature selection methods by

classification models built over the forty-four datasets
Feature selection method Accuracy Time (ms) % Selected Features
CCV 0.7749 2 6 298.0681 8 2 62.466024 22
CFS 0.7493 7 1 109.7272 7 3 11.045218 68
Relief 0.7549 5 5 56426.15 9 1 66.790214 97
Consist 0.7377 3 3 1269.818 1 8 9.9332839 14
PCA 0.7281 3 1 3717.295 4 5 75.142080 55

875, are obtained from UCI. They are called Lung Cancer, Heart

Disease, Libra Movement, Hill Valley and CNAE.
The following comparisons show that different couple of

meta-heuristics and classification algorithms for different

datasets yield variable results, as showing in Figures 4, 5, and 6

for classification error comparison and Figures 7, 8 and 9 for

time consumption comparison.

Figure 4: Swarm Search error comparison, with Neural Network

Figure 5: Swarm Search error comparison, with Decision Tree

As it can be observed from Table 1, CCV rates second after CFS

for speed, which is far shorter the time when compared with the

other three feature selection algorithms – Relief, Consist and PCA.

The accuracy achieved by CCV is the highest, and it can retain a

moderate amount of features.
When CCV is applied in SHARP, it exhibits supposedly

the benefits of producing a moderate size of reduced s earch
space (in terms of features and their combinations), at a
reasonable run-time speed, and the search space would be
likely to produce good accuracy for the classification
algorithms in IC.

C. Testing Performance of Swarm Search as SO

Swarm Search is a vital part of SO that searches for the optimal

feature subset given the reduced search space of feasible feature

combinations by IFS. There are many meta-heuristics available,

however in this experiment, the same settings and collection of

Swarm Search algorithms are used as in [13]. They are FS-PSO,

FS-BAT and FS-WSA integrated with neural network, decision tree

and Naïve Bayes classification algorithms. Though this is a

preliminary experimentation with the aim of demonstrating the

viability of Swarm Search to be used in SHARP, future experiments

might be needed by integrating Swarm Search with incremental

algorithms, particularly with CBC. Five testing datasets with

varying number of features, ranging from 56 to

Figure 6: Swarm Search error comparison, with Naïve Bayes

Figure 7: Swarm Search time comparison, with Neural Network

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 223 Vol.5, Issue.7, July 2019

Figure 8: Swarm Search time comparison, with Decision Tree

Figure 9: Swarm Search time comparison, with Naïve Bayes

The variable results as shown from the above Figures testify

the need of multiple tests that are supposed to run in parallel,

from which the best performance collection of meta-heuristics as

well as the classification algorithms and the related parameters

values are required to be chosen out. This could only be made

possible by parallel computation where different combos are

tested on individual processor and execution thread. The

SHARP methodology allows and encourages SO to operate on

some appropriate parallel computing devices.

IV. CONCLUSION
In this paper, a scalable data stream mining called Stream-based

Holistic Analytics and Reasoning in Parallel (SHARP) was

introduced. SHARP is holistic because it consists of several

components and they target to improve different aspects of data

mining functions such as smoothing the input data streams, reducin g

the feature search space, finding the optimum feature subset,

optimizing parameter values for the classifiers, and allowing

incremental classifiers to go ensemble by spawning different

classifiers in parallel. Preliminary experiments for three individual

components have been tested and demonstrated superiority over

existing methods. In the future, it is planned that all the components

would be fully integrated and tested as a holistic data stream mining

system that can produce the best possible performance. It is

anticipated that SHARP is capable of eliminating some of the key

problems in Big Data especially

those associated with high-dimensionality and in fin ite and

continuous data streams.

REFERENCES

[1] Quinlan, J. R., C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers, 1993

[2] Ping-Feng Pai, Tai-Chi Chen, "Rough set theory with discriminant

analysis in analyzing electricity loads", Expert Systems with

Applications 36 (2009), pp.8799–8806
[3] Mohamed Medhat Gaber, Arkady Zaslavsky, Shonali Krishnaswamy,

"Mining data streams: a review", ACM SIGMOD Record, Volume 34

Issue 2, June 2005, pp.18-26

[4] Wei Fan, Albert Bifet, "Mining Big Data: Current Status, and Forecast

to the Future", SIGKDD Explorations, Volume 14, Issue 2, pp.1-5
[5] Arinto Murdopo, "Distributed Decision Tree Learning for Mining Big

Data Streams", Master of Science Thesis, European Master in

Distributed Computing, July 2013
[6] Hang Yang, "Incremental Decision Tree Learning for Streams of

Imperfect Data", PhD Thesis, Department of Computer and

Information Science, University of Macau, 2014
[7] Bifet, Albert; Holmes, Geoff; Kirkby, Richard; Pfahringer, Bernhard

(2010). "MOA: Massive online analysis". The Journal of Machine

Learning Research, Volume 99, pp.1601–1604
[8] Hang Yang, Simon Fong, "Improving the Accuracy of Incremental

Decision Tree Learning Algorithm via Loss Function", 2013 IEEE 16th

International Conference on Computational Science and Engineering,

pp.910-916
[9] Simon Perkins, Kevin Lacker, James Theiler, "Grafting: Fast,

Incremental Feature Selection by Gradient Descent in Function Space",

Journal of Machine Learning Research, Volume 3 (2003), pp.1333-

1356
[10] Wenhao Shu, Hong Shen, "Incremental feature selection based on

rough set in dynamic incomplete data", Pattern Recognition, Volume

47, Issue 12, December 2014, pp.3890–3906
[11] I. Katakis, G. Tsoumakas, and I. Vlahavas, "On the Utility of

Incremental Feature Selection for the Classification of Textual Data

Streams", PCI 2005, LNCS 3746, Springer, pp.338–348
[12] Simon Fong, Justin Liang, Raymond Wong, Mojgan Ghanavati, "A

Novel Feature Selection by Clustering Coefficients of Variations",

ICDIM, 2014, pp.205-213
[13] Simon Fong, Suash Deb, Xin-She Yang, Jinyan Li, "Feature Se lec t ion in Life

Science Classification: Metaheuristic Swarm Search", IT Professional, Volume 16,

Issue 4, July-Aug. 2014, pp.24-29

[14] Janez Brest, Borko Boskovic, Ales Zamuda, Iztok Fister, Efrén

Mezura-Montes, "Real Parameter Single Objective Optimization using

self-adaptive differential evolution algorithm with more strategies",

IEEE Congress on Evolutionary Computation, 2013, pp.377-383
[15] B. Pfahringer, G. Holmes and R. Kirkby. "New Options for Hoeffding

Trees", Advances in Artificial Intelligence, Springer, 2007, pp. 90-99
[16] A. Bifet, R. Gavaldà. "Learning from time-changing data with adaptive

windowing". SIAM International Conference on Data Mining, 2007

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 224 Vol.5, Issue.7, July 2019

