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Abstract -  
Wireless Visual Sensor Networks 

(WVSNs) is a network of camera-equipped 
sensor nodes which can capture, process and 
transmit image/video information. VSNs have 
become an emerging multidisciplinary research 
area as the use of camera in sensor nodes 
powered by batteries poses a lot of new 
challenges. The visual data is much larger and 
complicated and therefore intelligent schemes 
are required to capture/process and transmit 
visual data in limited resources.  Many energy 
aware compression algorithms for VSN had 
gained wide attention. Compressive Sensing 
(CS) is a new paradigm that combines both 
acquisition and compression and is totally 
different from conventional compression 
algorithms. Conventional compression methods 
do not consider image acquisition while 
encoding. CS is a promising method to reduce 
power consumption and is highly requested for 
VSN applications. The implementation of CS 
for VSN reduces the amount of data to be 
processed and it reconstructs the image/signal 
using fewer samples. This paper explores the 
theory, basic principle and applications of 
compressive sensing mechanism in VSN. 
Key Words:  Compressive Sensing, Visual 
Sensor Network. 

1. INTRODUCTION 
 

A Wireless Visual Sensor Network 
(WVSN) is a wireless network of camera based 
sensor nodes that is widely used for surveillance 
purposes. As in Fig.1.1, the network normally 
has a large number of sensor nodes to monitor 
and detects critical events in a broad physical 
area. The development of image sensors and 
wireless technologies has greatly increased the 
surveillance capacity of wireless visual sensor 
networks.  
 

Visual processing before transmission 
can achieve a considerably improved results in 

terms of energy consumption which in turn 
reduces the bandwidth utilization. To reduce the 
energy used in transmission, the size of the 
images should be made small by applying a 
large compression ratio, which may reduce the 
image quality. Each node in a visual sensor 
network should be capable of extracting, 
processing and transmitting the visual data. 

  

 
 

Fig. 1.1 Visual Sensor Network architecture 
 
Therefore, a node consists of an image 

sensor, an embedded processor and a wireless 
transceiver. Since the sensor nodes are usually 
battery-operated the power consumption is one 
of the main concerns in the design, data 
processing and data transmission. 

In some applications, the entire sensing 
process should be real-time, thus requiring fast 
and less complex imaging and processing units. 
Therefore, each node should extract only useful 
and new data from the scene. Also, redundant 
information should be locally removed at each 
node to improve the efficiency and reduce the 
amount of the transmitted data. This leads to the 
use of local image processing and data 
compression algorithms. Therefore, low cost, 
low power and smart image sensor structures 
which are compatible with on-chip signal 
processing are required in visual sensor network 
applications. In conventional schemes, all 
samples of the original signal are acquired and it 
considers the redundancy in the acquired 
signal/image for representation.  

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 53 Vol.4, Issue.9, September 2018



The Compressive Sensing scheme 
allows that a signal can be acquired and 
reconstructed with fewer samples. Combining 
acquisition and compression of input image 
helps to considerably reduce the overall energy 
consumption of a visual sensor. This paper 
provides a survey on the theory and practical 
applications of CS in Visual sensor networks. 

 
 

2. COMPRESSIVE SENSING 

In a traditional acquisition system, all 
samples of the original signal are acquired. This 
number of signal samples can be in the order of 
millions, as is the case for instance with digital 
images. The acquisition process is followed by 
compression, which takes advantage of the 
redundancy in the signal to represent it in a 
domain where most of the signal coefficients 
can be discarded with little or no loss in quality. 
For instance, for a typical image of a natural 
scene, an almost lossless approximation can be 
achieved with only about 5% of the frequency 
(e.g., wavelet, DCT) coefficients.  

 
Hence, traditional acquisition systems 

first acquire a huge amount of data, a significant 
portion of which is immediately discarded 
(compression). This creates inefficiency in 
many practical applications. Compressive 
sensing addresses this inefficiency by 
effectively combining the acquisition and 
compression processes as shown in Fig. 2.1 

 
Traditional Acquisition Process 

 
 
 

 
 

 
 
 
 

 Traditional decoding is replaced by 
recovery algorithms in CS that exploit the 
underlying structure of the data (Fig. 2.2). 

 
 
 

2.1 Nyquist Sampling Vs Compressive 

Sampling 

Conventional approaches to sampling 
signals or images follow Shannon's theorem: the 
sampling rate must be at least twice the 
maximum frequency present in the signal 
(Nyquist rate). In the field of data conversion, 
standard analog-to-digital converter (ADC) 
technology implements the usual quantized 
Shannon representation - the signal is uniformly 
sampled at or above the Nyquist rate. 
Compressed sensing or CS is a novel 
sensing/sampling paradigm that goes against the 
common wisdom in data acquisition.  

 
Compressed sensing is a revolutionary signal 
acquisition scheme that allows a signal to be 
acquired and accurately reconstructed with 
significantly fewer samples than required by 
Nyquist-rate sampling. Unlike Nyquist 
sampling, which depends on the maximum rate-
of-change of a signal, compressed sensing relies 
on the maximum rate-of information in a signal. 
Compressed sensing has been emerging in 
research for low-power data acquisition 
methods. 
 

2.2 Theory of Compressive Sensing 

CS theory states that a signal can be 
sampled without any information loss at a rate 
close to its information content. The theory of 
CS seeks to recover a sparse signal from a small 
set of linear and non adaptive measurements. 
The most remarkable idea is that compressive 
sensing is possible to capture the useful 
information embedded in a sparse signal and 
condense it into a small amount of 
measurements without comprehending the 
signal. The full-length signal can later be 
reconstructed from the small amount of 
measurements by solving a numerical 
optimization problem. Therefore, it could save a 
lot in sampling rate and energy when 
compressive sensing is used in image and video 
compression in sensor networks. 

Fig. 2.1 Traditional acquisition Vs Compressive Sensing 

Fig.2.2 Conventional Vs Compressive Sensing 

Sensing Compressio

n 

Compressed Sensing 

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 54 Vol.4, Issue.9, September 2018



  
A sampled signal can be modeled as  

y = Φx 

  --- (1) 

where y is an m dimensional vector of sampled 
values, x is an n dimensional vector of the exact 
signal, and Φ is a m by n matrix which samples 
the exact signal. Φ represents the acquisition 
process Compressive sensing combines these 
two stages, sensing (sampling) and compression 

Let x € R be real-valued, finite-length, 
compressible in transform basis, one-
dimensional, discrete-time signal with sparse 
representation S in orthonormal basis Ψ. 
Mathematically,  

y = Φx = ΦΨs = Θs            

--- (2) 

Where Ψ is a compression basis (DCT / DWT) 
and Θ is the compressive sensing matrix-the 
product of the compression and sensing bases. 
So, we can take some small number of samples 
y, compute the sparse representation s of our 
exact signal x, and then apply the inverse 
compression approximation to recover x.  
 
To achieve reconstruction of signal x from y, the 

sensing matrix Φ has to satisfy few properties. 

1. Stable measurement matrix Φ such that the 
salient information is preserved during 
dimensionality reduction 
2. A reconstruction algorithm to recover x from 
only M ~ S log (N) measurements y 
 
Measurements in compressive sensing are 
random projections (Fig. 2.4) 

 
 

Fig.2.4 Random projections 
 

2.3 Terms and Definitions 

CS relies on following properties of signals and 
their representation and measurement basis: 

 Signal sparsity 
 Mutual coherence and 
 Restricted Isometry Property(RIP) 

 
2.3.1 Signal Sparsity  

The sparsity or compressibility of a 
signal means that most coefficients are zeros or 
close to zeros when the signal is expressed in 
proper basis. Take natural images as an 
example, even though pixels of a image have 
zero values, wavelet coefficients of the image 
are much more concise, which means that most 
wavelet coefficients are close to zeros and only 
a few coefficients are large which contain most 
of the information.  
 
2.3.2 Mutual coherence 

Signal cannot be sparsely synthesized 
from both the frequency side and from the time 
side at the same time if two bases are mutually 
incoherent. 

It measures the largest correlation between any 
two elements of Φ and Ψ(i.e., any row of Φ and 
column of Ψ ), can be defined as:  

µ(Φ,Ψ) = √N max │(Φk,Ψj) │            
--- (3) 

 where i≤k, j≤n 
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The coherence μ , can range between 1 and √N 

[5]. As it is shown in [2], the minimum number 
of measurements 
needed to recover the signal with over whelming 
probability is as follow: 

M ≥ Cμ 2 (Φ,Ψ)KlogN   

 --- (4) 

where, C is a positive constant, K is the number 
of significant non-zero coefficients in x, and N is 
the dimension of the signal to be recovered. In 
other words, the less coherence between Φ and 
Ψ the fewer number of measurements needed to 
recover the signal. Hence, to minimize the 
required number of measurements, it is required 
to have the minimum coherence between Ψ and 
Φ. Random matrices are a good candidate for 
sampling matrix as they have low coherence 
with any fixed basis, and, as a result, the signal 
basis Ψ is not required to be 
known in advance in order to determine a 
suitable sampling matrix, Φ [7]. 
 
2.3.3 Restricted Isometry Property (RIP) 

The restricted isometry property 
characterizes matrices which are nearly 
orthonormal, at least when operating on sparse 
vectors. The concept was introduced by 
Emmanuel Candès and Terence Tao [2] and is 
used to prove many theorems in the field of 
compressed sensing. 
 Let Φ be a matrix of dimension M x N with its 
row vectors € RN.For each integer S = 1,2,…N, 
S-Restricted Isometry Constant ∂S of matrix Φ  
is defined as the smallest number such that 

    
holds for all S-sparse vectors x. 
The above theorem is called restricted isometry 
property (RIP) [6]. RIP guarantees that with a 
proper matrix A, all subsets of K columns taken 
from A are in fact almost orthogonal. 
 
2.3.4 Sensing Matrices 

For stable reconstruction of S-Sparse signals 
the sensing matrix Φ must satisfy Restricted 
Isometry Property for 3S sparse signals. 

 Φ must be incoherent to representation 
basis 

 Sensing matrices  satisfy RIP in 
probabilistic sense 

Sensing Matrices may be Random or 
Deterministic matrices. Most popular random 
sensing matrices are generated by identical and 
independent distributions Gaussian Sensing 
Matrix, Symmetric Bernoulli Distribution. 
Random sensing matrices ensure high 
probability in reconstruction; they also have 
many drawbacks such as excessive complexity 
in reconstruction, significant space requirement 
for storage, and no efficient algorithm to verify 
whether a sensing matrix satisfies RIP property 
with small RIC value. Hence, exploiting specific 
structures of deterministic sensing matrices is 
required to solve these problems of the random 
sensing matrices. Recently, several deterministic 
sensing matrices have been proposed [14]-[16]. 
We can classify them into two categories. First 
are those matrices which are based on coherence 
[14]. Second are those matrices which are based 
on RIP or some weaker RIPs. 
 
2.3.5 Reconstruction Algorithms 

The signal reconstruction algorithm 
must take the M measurements in the vector y, 
the random measurement 
matrix ɸ (or the random seed that generated it), 
and the basis Ψ and reconstruct the length-N 

signal x or, equivalently, its sparse coefficient 
vector s. For K-sparse signals, since M < N in 
(2) there are infinitely many s that satisfy Θ s’= 
y. This is because if Θ s = y thenΘ (s + r) = y 
for any vector r in the space N(null Θ) of Θ. 
Therefore, the signal reconstruction algorithm 
aims to find the signal’s sparse coefficient 
vector in the (N − M)-dimensional translated 
null space H = N(Θ) + s.  
 
■ Minimum l2 norm reconstruction:  
Define the l p norm of the vector s as  
   (||s||p)p = ΣtN |si|p 

t ranges from 1 to r 
The classical approach to inverse problems of 
this type is to find the vector in the translated 
null space with the smallest l2 norm (energy) by 
solving 
 S =argmin||s`||2 such that θs’=y 
Unfortunately, l2 minimization will almost 
never find a K-sparse solution, returning instead 
a nonsparse s with 
many nonzero elements. 
■ Minimum l0 norm reconstruction: 

Since the l2 norm measures signal 
energy and not signal sparsity, consider the l0 
norm that counts the number of non-zero entries 

--- (5) 
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in s. (Hence a K-sparse vector has l0 norm equal 
to K.) The modified optimization  

S =argmin||s`||0 such that θs’=y 
can recover a K-sparse signal exactly with high 
probability using only M = K + 1 iid Gaussian 
measurements [5]. Unfortunately, solving (5) is 
both numerically unstable and NP complete, 
requiring an exhaustive enumeration of all 
possible locations of the nonzero entries in s. 
■ Minimum l1 norm reconstruction: 
Surprisingly, optimization based on the l1 norm 

S =argmin||s`||1 such that θs’=y 
can exactly recover K-sparse signals and closely 
approximate compressible signals with high 
probability using only M ≥ cK log(N/K) iid 
Gaussian measurements 
[8], [9]. This is a convex optimization problem 
that conveniently reduces to a linear program 
known as basis pursuit [8], [9] whose 
computational complexity is about O(N3). 
Other, related reconstruction algorithms are 
proposed in [11] and [12]. 
 

 
Fig. 6 Compressive Acquisition and 

reconstruction 
 

3. MOTIVATION FOR COMPRESSIVE 
SENSING IN VSN: 

VSN deal with larger amount of data 
and the acquisition and processing of images 
requires mechanisms to control the cost, 
complexity and bandwidth.  
Data processing in Visual sensor network 
demands 

 Faster Sampling 
 Acceptable Compression rate 
 Low computational complexity 
 Larger Dynamic Range 
 Reducing the Higher Dimensional Data 
 Lower Energy consumption 
 Embedded Encoding 

Therefore it is critical to use a model that 
summarizes information regarding the input 
where N-samples can be described by using 
only K parameters, where K<<N. The 
compressive sensing proves a promising 
technique for reducing sensing cost, data 
compression, parameter estimation, feature 
extraction and channel estimation. 
3.1 Features of Compressive Sensing 

The theory of CS seeks to recover a 
sparse signal from a small set of linear and non 
adaptive measurements. The tremendous 
advantage of CS is to exhibit recovery methods 
that are computationally feasible, numerically 
stable, and robust against noise and packet loss 
over communication channels. 

The features of Compressive sensing are 
 Single Sensor 
 Universality 
 Robustness 
 Scalable 
 Computational asymmetry 

 
Thus the Compressive sensing is highly 

requested for high dimensional data systems 
such as VSN.  

 
Table1.  Performance analysis of CS based schemes 
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4. APPLICATIONS OF COMPRESSIVE 
SENSING PARADIGM IN VSN 

 
The recent years have witnessed the 

emergence of a new sensing and acquisition 
modality that offers the means to succinctly and 
effectively represent the salient information of 
signals with no loss. This emerging sensing 
modality, emblematically known as 
Compressive Sensing, has been shown to have a 
myriad of applications ranging from signal, 
image and video compression and processing, to 
communications and medical applications. 

 

4.1 Imaging via CS 

 Linear measurements cannot adapt to 
changes in structure from one image to the next; 
they are stuck recording the same M transform 
coefficients for every image.  CS matches the 
adaptive approximation performance with a 
predetermined set of linear measurements. The 
difference between compressive and linear 
imaging is dramatic; not only are the 
reconstructions uniformly better, but they are 
improving at a faster rate as measurements are 
added. CI reconstruction is cleaner around the 
edges than the linear reconstruction. 
Compressive sensing has far reaching 
implications on compressive imaging systems 
and cameras [22]. It reduces the number of 
measurements, hence, power consumption, 
computational complexity and storage space 
without sacrificing the spatial resolution.  
 
4.2 Multi focus Image Fusion 

Image fusion is a technique that 
combines images of a scene from different 
sensors to discover knowledge that is not 
apparent from any single image alone. Image 

fusion finds applications in analysis of satellite 
images, surveillance and security.  

Fusion rule is guided by clarity 
measures. Fused image is reconstructed based 
on blocked CS. Because the compression takes 
place during sensing, fusing less data and 
reconstructing only one image takes less time 
in fusing a pair of multi focus source images 
on a PC. So it greatly improves the efficiency 
of processing for multi focus Image fusion. 

 
Fig.7 Fusion result of Clock: (a) and (b) Sampling 

rate 0.3, 
0.5 with block-size 16; 

 
4.3 Object Tracking in Surveillance 
applications 

 Surveillance application for WVSNs is 
one of the important applications that require 
high detection reliability and robust tracking, 
while minimizing the usage of energy as visual 
sensor nodes can be left for months without any 
human interaction. In surveillance applications, 
within WVSN, only single view target tracking 
is achieved to keep minimum number of visual 
sensor nodes in a ’wake-up’ state to optimize 
the use of nodes and save battery life time, 
which is limited in WVSNs.  

CS is investigated in designing target 
detection and tracking techniques for WVSNs 
based surveillance applications, without 
compromising the energy constraint which is 
one of the main characteristics of WVSNs. 
Results have shown that with compressive 
sensing (CS)  upto 31% measurements of data 
are required to be transmitted, while preserving 
the detection and tracking accuracy which is 
measured through comparing targets trajectory 
tracking using LMS (Least Mean Square) 
tracking. CS is a strong applicant to reduce the 
size of images as WVSNs are resource 
constrained In addition, for different schemes 
where the sparsity nature of each image differs, 
CS chooses the compression rates accordingly. 
Moreover, surveillance application within 

Parameters Performance 

Compression High compression ratio. 

Complexity Low complexity with simple encoder. 

Memory 
Only few sample values that are needed 
for reconstruction are taken and thus 
low memory usage 

Power  
Few samples are measured thereby 
reducing the data processing and thus 
high power efficiency 

Time Moderate execution time. 
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WVSNs is one of the important applications that 
require high detection reliability and robust 
tracking. 

 

4.4 Image representation 

The objective of image representation is to 
signify and express the resulting aggregate of 
segmented pixels in a form suitable for further 
computer processing after segmenting an image 
into regions. Compressing sensing theory have 
been favourable in evolving data compression 
techniques, though it was put forward with 
objective to achieve dimension reduced 
sampling for saving data sampling cost. CS uses 
sparse representation of the signal of interest in 
some basis (Representation Basis). BCS (Block 
Compressive Sensing) based image 
representation improves the recovered image 
quality. The BCS based image representation 
scheme could be an efficient alternative for 
applications of encrypted image compression 
and/or robust image compression. 

4.5 Multi-view Image Compression 
A multiview image compression 

framework, which involves the use of Block-
based Compressive Sensing (BCS) and Joint 
Multiphase Decoding (JMD), can be used for a 
Visual Sensor Network (VSN). In [18], one of 
the sensor nodes is configured to serve as the 
reference node, the others as nonreference 
nodes. The images are encoded independently 
using the BCS to produce two observed 
measurements that are transmitted to the host 
workstation. In this case, the nonreference nodes 
always encoded the images (INR) at a lower sub 
rate when compared with the images from the 
reference nodes (IR). 
The idea is to improve the reconstruction of INR 
using IR. After the two observed measurements 
are received by the host workstation, they are 
first decoded independently, and then image 
registration is applied to align IR onto the same 
plane of INR. Subsequently, the difference 
between the measurements of the IP and INR is 
calculated. The difference is then decoded and 
added to IP to produce the final reconstructed 
INR. 
 

4.6 Dynamic Resource Allocation 
For compressed data of lightweight 

encoding, compression sensing technology is 
able to further optimize the signal sampling and 
data transfer, to facilitate further optimization of 

resource management. In reality, the number of 
hops between sensor and sink node is often less 
than the number of samples of compression 
sensing. This leads to that data transmission 
frequency based on compressed sensing was 
significantly greater than that of the traditional 
way. Therefore, the combination of lightweight 
encoding and compression sensing is used to 
simultaneously reduce the number of hops in the 
compressed data transmission. 

The resource-aware scheduling, the 
combination of light weight coding and 
compressed sensing is used to improve the real-
time performance of acquisition of system 
resource and reliability of resource management 
in this paper. Compressed sensing scheme based 
on the adaptive frame format definition of 
lightweight coding is able to set up the 
parameters such as sample signal, signal and 
hops. The nonlinear relationship matrixes 
between resource information of sensors or 
system and quality of services are built to 
manage the global or local network resource 
scheduling. The parameters of compressed 
sensing, such as number of sample signals and 
measurement matrix, are selected based on 
resource information defined in the frame 
format.  

 

4.7 Image In-painting 
Inpainting images with corruption is a 

challenging task. Most existing algorithms are 
pixel based, which construct a statistical model 
from image features. However, in these 
algorithms, the frequency component is not 
sufficiently addressed. Compressed sensing 
(CS) in frequency domain can be used to 
reconstruct corrupted images. In order to 
reconstruct image, image can be decomposed 
into two functions with different basic 
characteristics — structure component and 
textual component. A sparse representation for 
the function and DCT coefficients of this 
representation can be used to generate an over-
complete dictionary. In painting can also be 
done using the sparsity in transform domain. 
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Fig.8 Image In-painting 

 
5. CONCLUSION 

The remarkable benefit of CS is to exhibit 
recovery methods that are computationally 
feasible, numerically stable, and robust against 
noise and packet loss over communication 
channels. The mathematical theory underlying 
CS, however, is deep and beautiful, and draws 
from diverse fields including harmonic analysis, 
convex optimization, random matrix theory, 
statistics, approximation theory, and theoretical 
computer science. Compressive sensing has 
been in use for acquisition, sampling, encoding 
and analysis of multimedia data and to optimize 
the efficiencies of these systems. There has been 
a great demand recently to apply CS to 
communications and networks domain. In this 
paper, we have provided a survey of the novel 
compressive sensing paradigm and its 
applications. We have traced origins of this 
technology and presented mathematical and 
theoretical foundations of the key concepts and 
have presented few applications of CS in VSN. 
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