

AN AUTOMATED APPROACH FOR SECURING
SENSITIVE DATA WITH ADVANCED DLD AND DLP

J.JESSIMA
1

, V.BALAMURUGAN
2

(Anna Univ Affiliated) Master of Engineering, Department of Computer Science and Engineering
1

,
(Anna Univ Affiliated) Associate Professor,Department of Computer Science and

Engineering
2

 Mohamed Sathak Engineering College,
Kilakarai, Ramanathapuram dist., TamilNadu

1
spjjessima@gmail.com

2
vbalram78@gmail.com

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Issue 4, April 2016

344

Abstract— Detection and prevention of data leakage is the major

issue since attacks plays an important key role during data

transmission. In existing paper they proposed and present a privacy

preserving data-leak detection (DLD) solution to solve the issue

where a special set of sensitive data digests is used in detection. An

existing system used only fuzzy fingerprint technique that enhances

data privacy during data-leak detection operations. When using

fuzzy fingerprint increases the computational complexity as well as

increases the memory to store the keys. So our proposed system is

going to introduce a new encryption technique which is SIMON-

SPECK encryption algorithm it will carry a small size of keys and

their parameters with very small in range. It reduces the

computational complexity and reduces the key size small. Since,

SIMO-SPECK only uses small key size at the same time provide

security provided of RSA encryption algorithm. Finally our

simulation result shows that our proposed system reduces the time

as well as improves system accuracy.

Index Terms— Data leak, network security, privacy, collection

intersection.

 I. INTRODUCTION

Network security consists of the policies adopted to

prevent and monitor authorized access, misuse, modification,

or denial of a computer network and network-accessible

resources. Network security involves the authorization of

access to data in a network, which is controlled by the network

administrator. Users choose or are assigned an ID and

password or other authenticating information that allows them

access to information and programs within their authority.

Network security covers a variety of computer networks, both

public and private, that are used in everyday jobs; conducting

transactions and communications among businesses,

government agencies and individuals. Networks can be

private, such as within a company, and others which might be

open to public access. Network security is involved in

organizations, enterprises, and other types of institutions. It

does as its title explains: It secures the network, as well as

protecting and overseeing operations being done.

The most common and simple way of protecting a

network resource is by assigning it a unique name and a

corresponding password. Network security starts with

authenticating, commonly with a username and a password.

Since this requires just one detail authenticating the user name

—i.e., the password— this is sometimes termed one-factor

authentication. With two-factor authentication, something the

user 'has' is also used (e.g., a security token or 'dongle', an

ATM card, or a mobile phone); and with three-factor

authentication, something the user 'is' also used (e.g., a

fingerprint or retinal scan). Once authenticated, a firewall

enforces access policies such as what services are allowed to

be accessed by the network users. Though effective to prevent

unauthorized access, this component may fail to check

potentially harmful content such as computer worms or

Trojans being transmitted over the network.

Anti-virus software or an intrusion prevention system

(IPS)[2] help detect and inhibit the action of such malware. An

anomaly-based intrusion detection system may also monitor

the network like wireshark traffic and may be logged for audit

purposes and for later high-level analysis. Communication

between two hosts using a network may be encrypted to

maintain privacy. Honeypots, essentially decoy network-

accessible resources, may be deployed in a network as

surveillance and early-warning tools, as the honeypots are not

normally accessed for legitimate purposes. Techniques used

by the attackers that attempt to compromise these decoy

resources are studied during and after an attack to keep an eye

on new exploitation techniques. Such analysis may be used to

further tighten security of the actual network being protected

by the honeypot. A honeypot can also direct an attacker's

attention away from legitimate servers. A honeypot

encourages attackers to spend their time and energy on the

decoy server while distracting their attention from the data on

the real server. Similar to a honeypot, a honeynet is a network

set up with intentional vulnerabilities.

 Its purpose is also to invite attacks so that the

attacker's methods can be studied and that information can be

used to increase network security. A honeynet typically

contains one or more honeypots. Security management for

networks is different for all kinds of situations. A home or

small office may only require basic security while large

businesses may require high-maintenance and advanced

software and hardware to prevent malicious attacks from

hacking and spamming. Networks are subject to attacks from

malicious sources. Attacks can be from two categories:

"Passive" when a network intruder intercepts data traveling

through the network, and "Active" in which an intruder

initiates commands to disrupt the network's normal operation.

Intrusion detection System

An intrusion detection system (IDS) is a device or

software application that monitors network or system activities

for malicious activities or policy violations and produces

reports to a management station. IDS come in a variety of

“flavors” and approach the goal of detecting suspicious traffic

in different ways. There are network based (NIDS) and host

based (HIDS) intrusion detection systems. NIDS is a network

security system focusing on the attacks that come from the

inside of the network (authorized users). When we classify the

designing of the NIDS according to the system interactivity

property, there are two types: on-line and off-line NIDS. On-

line NIDS deals with the network in real time and it analyses

the Ethernet packet and applies it on the some rules to decide

if it is an attack or not. Off-line NIDS deals with a stored data

and pass it on a some process to decide if it is an attack or not.

Some systems may attempt to stop an intrusion

attempt but this is neither required nor expected of a

monitoring system. Intrusion detection and prevention systems

(IDPS) are primarily focused on identifying possible incidents,

logging information about them, and reporting attempts. In

addition, organizations use IDPSes for other purposes, such as

identifying problems with security policies, documenting

existing threats and deterring individuals from violating

security policies. IDPSes have become a necessary addition to

the security infrastructure of nearly every organization.

IDPSes typically record information related to observed events

notify security administrators of important observed events

and produce reports. Many IDPSes can also respond to a

detected threat by attempting to prevent it from succeeding.

They use several response techniques, which involve

the IDPS stopping the attack itself, changing the security

environment (e.g. reconfiguring a firewall) or changing the

attack's content. A "network intrusion detection system

(NIDS)" monitors traffic on a network looking for suspicious

activity, which could be an attack or unauthorized activity. A

large NIDS server can be set up on a backbone network, to

monitor all traffic; or smaller systems can be set up to monitor

traffic for a particular server, switch, gateway, or router. In

addition to monitoring incoming and outgoing network traffic,

a NIDS server can also scan system files looking for

unauthorized activity and to maintain data and file integrity.

The NIDS server can also detect changes in the server core

components.

In addition to traffic monitoring, a NIDS server can

also scan server log files and look for suspicious traffic or

usage patterns that match a typical network compromise or a

remote hacking attempt. The NIDS server can also server a

proactive role instead of a protective or reactive function.

Possible uses include scanning local firewalls or network

servers for potential exploits, or for scanning live traffic to see

what is actually going on. Keep in mind that a NIDS server

does not replace primary security such as firewalls,

encryption, and other authentication methods. The NIDS

server is a backup network integrity device. Neither system

(primary or security and NIDS server) should replace common

precaution (building physical security, corporate security

policy, etc.).

An intrusion detection system (IDS) monitors

network traffic and monitors for suspicious activity and alerts

the system or network administrator. In some cases the IDS

may also respond to anomalous or malicious traffic by taking

action such as blocking the user or source IP address from

accessing the network. IDS come in a variety of “flavors” and

approach the goal of detecting suspicious traffic in different

ways.

IDS was originally developed this way because at the

time the depth of analysis required for intrusion detection

could not be performed at a speed that could keep pace with

components on the direct communications path of the network

infrastructure. As explained, the IDS are also a listen-only

device. The IDS monitors traffic and report its results to an

administrator, but cannot automatically take action to prevent

a detected exploit from taking over the system. Attackers are

capable of exploiting vulnerabilities very quickly once they

enter the network, rendering the IDS an inadequate

deployment for prevention device.

NIDS

Network Intrusion Detection Systems are placed at a

strategic point or points within the network to monitor traffic

to and from all devices on the network. Ideally you would

scan all inbound and outbound traffic; however doing so might

create a bottleneck that would impair the overall speed of the

network. An NIDS is strategically positioned at various points

on the network to monitor traffic going to and from network

devices. NIDS solutions offer sophisticated, real-time

intrusion detection capabilities often consisting of an assembly

of interoperating pieces: a standalone appliance, hardware

sensors, and software components are typical components that

make up an NIDS. These pieces working in concert allow for

a wider range of network intrusion detection capabilities than

HIDS solutions.

Data Leakage Detection

Sometimes a data distributor gives sensitive data to a

set of third parties. Sometime later, some of the data is found

in an unauthorized place (e.g., on the web or on a user's

laptop). The distributor must then investigate if data leaked

from one or more of the third parties, or if it was

independently gathered by other means. Network data-leak

detection (DLD) typically performs deep packet inspection

(DPI) and searches for any occurrences of sensitive data

patterns. DPI is a technique to analyze payloads of IP/TCP

packets for inspecting application layer data, e.g., HTTP

header/content.

The detection system can be deployed on a router or

integrated into existing network intrusion detection systems

(NIDS). Straightforward realizations of data-leak detection

require the plaintext sensitive data. However, this requirement

is undesirable, as it may threaten the confidentiality of the

sensitive information. If a detection system is compromised,

then it may expose the plaintext sensitive data (in memory). In

addition, the data owner may need to outsource the data-leak

detection to providers, but may be unwilling to reveal the

plaintext sensitive data to them. Therefore, one needs new

data-leak detection solutions that allow the providers to scan

content for leaks without learning the sensitive information.

II. MODEL AND OVERVIEW

We abstract the privacy-preserving data-leak detection

problem with a threat model, a security goal and a privacy

goal. First we describe the two most important players in our

abstract model: the organization (i.e., data owner) and the

data-leak detection (DLD) provider.

1) Organization owns the sensitive data and authorizes the

DLD provider to inspect the network traffic from the

organizational networks for anomalies, namely inadver-

tent data leak. However, the organization does not want

to directly reveal the sensitive data to the provider.

2) DLD provider inspects the network traffic for potential

data leaks. The inspection can be performed offline with-

out causing any real-time delay in routing the packets.

However, the DLD provider may attempt to gain knowl-

edge about the sensitive data.

We describe the security and privacy goals in Section II-A

and Section II-B.

A. Security Goal and Threat Model

We categorize three causes for sensitive data to appear on

the outbound traffic of an organization, including the

legitimate data use by the employees.

A Case I Inadvertent data leak: The sensitive data is

accidentally leaked in the outbound traffic by a legitimate

user. This paper focuses on detecting this type of

accidental data leaks over supervised network channels.

Inadvertent data leak may be due to human errors such as

forgetting to use encryption, carelessly for-warding an

internal email and attachments to outsiders, or due to

application flaws (such as described in [12]). A

supervised network channel could be an unencrypted

channel or an encrypted channel where the content in it

can be extracted and checked by an authority. Such a

channel is widely used for advanced NIDS where MITM

(man-in-the-middle) SSL sessions are established instead

of normal SSL sessions [13].

• Case II Malicious data leak: A rogue insider or a piece of

stealthy software may steal sensitive personal or organiza-

tional data from a host. Because the malicious adversary can

use strong private encryption, steganography or covert

channels to disable content-based traffic inspection, this type

of leaks is out of the scope of our network-based solution.

Host-based defenses (such as detecting the infection onset

[14]) need to be deployed instead.
• Case III Legitimate and intended data transfer: The

sensitive data is sent by a legitimate user intended for

legitimate purposes. In this paper, we assume that the

data owner is aware of legitimate data transfers and

permits such transfers. So the data owner can tell whether

a piece of sensitive data in the network traffic is a leak

using legitimate data transfer policies.

The security goal in this paper is to detect Case I leaks, that

is inadvertent data leaks over supervised network channels. In

other words, we aim to discover sensitive data appearance in

network traffic over supervised network channels. We assume

that: i) plaintext data in supervised network channels can be

extracted for inspection; ii) the data owner is aware of

legitimate data transfers (Case III); and iii) whenever sensitive

data is found in network traffic, the data owner can decide

whether or not it is a data leak. Network-based security

approaches are ineffective against data leaks caused by mal-

ware or rogue insiders as in Case II, because the intruder may

use strong encryption when transmitting the data, and both the

encryption algorithm and the key could be unknown to the

DLD provider.

B. Privacy Goal and Threat Model

To prevent the DLD provider from gaining knowledge of

sensitive data during the detection process, we need to set up a

privacy goal that is complementary to the security goal above. We

model the DLD provider as a semi-honest adversary, who follows

our protocol to carry out the operations, but may attempt to gain

knowledge about the sensitive data of the data owner. Our privacy

goal is defined as follows. The DLD provider is given digests of

sensitive data from the data owner and the content of network

traffic to be examined. The DLD provider should not find out the

exact value of a piece of
1

 , where K is
an integer representing the number of all possible sensitive-
data candidates that can be inferred by the DLD provider.
We present a privacy-preserving DLD model with a new fuzzy
fingerprint mechanism to improve the data protection against
semi-honest DLD provider. We generate digests of sensitive
data through a one-way function, and then hide the sensitive
values among other non-sensitive values via fuzzification. The
privacy guarantee of such an approach is much higher than

K
1

 when there is no leak in traffic,
because the adversary’s inference can only be gained through
brute-force guesses.

The traffic content is accessible by the DLD provider in

plaintext. Therefore, in the event of a data leak, the DLD

provider may learn sensitive information from the traffic,

Our solution confines the amount of maximal information

learned during the detection and provides quantitative

guarantee for data privacy.

Fig. 1. Our Privacy-preserving Data-Leak Detection Model

C. Overview of Privacy-Enhancing DLD

Our privacy-preserving data-leak detection method supports

practical data-leak detection as a service and minimizes the

knowledge that a DLD provider may gain during the process.

Fig. 1 lists the six operations executed by the data owner and

the DLD provider in our protocol. They include PREPROCESS

run by the data owner to prepare the digests of sensitive data,

RELEASE for the data owner to send the digests to the DLD

provider, MONITOR and DETECT for the DLD provider to

collect outgoing traffic of the organization, compute digests of

traffic content, and identify potential leaks, REPORT for the

DLD provider to return data-leak alerts to the data owner

where there may be false positives (i.e., false alarms), and

POSTPROCESS for the data owner to pinpoint true data-leak

instances. Details are presented in the next section.
The protocol is based on strategically computing data

similarity, specifically the quantitative similarity between the
sensitive information and the observed network traffic. High
similarity indicates potential data leak. For data-leak detection,
the ability to tolerate a certain degree of data transformation in
traffic is important. We refer to this property as noise
tolerance. Our key idea for fast and noise-tolerant comparison
is the design and use of a set of local features that

are representatives of local data patterns, e.g., when byte b2
appears in the sensitive data, it is usually surrounded by bytes

b1 and b 3 forming a local pattern b1, b 2, b3. Local features
preserve data patterns even when modifications (insertion,
deletion, and substitution) are made to parts of the data. For

example, if a byte b4 is inserted after b3, the local pattern b1,

b2, b3 is retained though the global pattern (e.g., a hash of the

entire document) is destroyed. To achieve the privacy goal, the
data owner generates a special type of digests, which we call
fuzzy fingerprints. Intuitively, the purpose of fuzzy fingerprints is
to hide the true sensitive data in a crowd. It prevents the DLD
provider from learning its exact value. We describe the technical
details next.

III. FUZZY FINGERPRINT METHOD AND PROTOCOL

We describe technical details of our fuzzy fingerprint mech-
anism in this section.

A. Shingles and Fingerprints

The DLD provider obtains digests of sensitive data from the

data owner. The data owner uses a sliding window and Rabin

fingerprint algorithm [15] to generate short and hard-to-

reverse (i.e., one-way) digests through the fast polynomial

modulus operation. The sliding window generates small frag-

ments of the processed data (sensitive data or network traffic),

which preserves the local features of the data and provides the

noise tolerance property. Rabin fingerprints are computed as

polynomial modulus operations, and can be implemented with

fast XOR, shift, and table look-up operations. The Rabin

fingerprint algorithm has a unique min-wise inde-pendence

property [16], which supports fast random finger-prints

selection (in uniform distribution) for partial fingerprints

disclosure.
The shingle-and-fingerprint process is defined as follows. A

sliding window is used to generate q-grams on an input binary

string first. The fingerprints of q-grams are then computed.

A shingle (q-gram) is a fixed-size sequence of contiguous

bytes. For example, the 3-gram shingle set of string abcdefgh

consists of six elements {abc, bcd, cde, def, efg, fgh}.

Local feature preservation is accomplished through the use of

shingles. Therefore, our approach can tolerate sensitive data

modification to some extent, e.g., inserted tags, small amount of

character substitution, and lightly reformatted data. The use of

shingles for finding duplicate web documents first appeared in

[17] and [18].
The use of shingles alone does not satisfy the one-wayness

requirement. Rabin fingerprint is utilized to satisfy such
requirement after shingling. In fingerprinting, each shingle is

treated as a polynomial q(x). Each coefficient of q(x), i.e., ci
(0 < i < k), is one bit in the shingle. q(x) is mod by a selected
irreducible polynomial p(x). The process shown

in (1) maps a k-bit shingle into a p f -bit fingerprint f where
the degree of p(x) is p f + 1.

f = c1x
k−1

 + c2 x
k−2

 + . . . + ck−1 x + ck mod p(x) (1)
From the detection perspective, a straightforward method is for

the DLD provider to raise an alert if any sensitive fingerprint
1

matches the fingerprints from the traffic. However, this
approach has a privacy issue. If there is a data leak, there is a
match between two fingerprints from sensitive data and network
traffic. Then, the DLD provider learns the corresponding shingle,
as it knows the content of the packet. Therefore, the central
challenge is to prevent the DLD provider
from learning the sensitive values even in data-leak
scenarios, while allowing the provider to carry out the

traffic inspection.
We propose an efficient technique to address this problem.

The main idea is to relax the comparison criteria by strategi-

cally introducing matching instances on the DLD provider’s
side without increasing false alarms for the data owner.

Specifically, i) the data owner perturbs the sensitive-data

fingerprints before disclosing them to the DLD provider,
and ii) the DLD provider detects leaking by a range-based

comparison instead of the exact match. The range used in

the comparison is pre-defined by the data owner and
correlates to the perturbation procedure. We define

the notions of fuzzy

length and fuzzy set next and then describe how they are
used in our detailed protocol in Section III-B.

Definition 1: Given a p f -bit-long fingerprint f , the fuzzy
length pd (pd < p f) is the number of bits in f that may be
perturbed by the data owner

Definition 2: Given a fuzzy length pd , and a collection of
fingerprints, the fuzzy set S f, pd of a fingerprint f is the set of
fingerprints in the collection whose values differ from f by at

most 2
p

d − 1.
In Definition 2, the size of the fuzzy set ¦S f, pd ¦ is upper
bounded by 2

d
 , but the actual size may be smaller due to the

is released to the DLD provider for use in the detection, along
with the public parameters

(q, p(x), pd , M). The data owner keeps S for use in the
subsequent POSTPROCESS operation.

3) MONITOR: This operation is run by the DLD provider.
The DLD provider monitors the network traffic T from
the data owner’s organization. Each packet in T is

collected and the payload of it is sent to the next
operation as the network traffic (binary) string T .

˜
The payload of each packet is not the only choice to

define T . A more sophisticated approach could identify

fingerprints and so the data owner can just select r smallest

elements in S
∗

 to perform partial disclosure. The r elements are

then sent∗ to the DLD provider in RELEASE operation instead of

S . We implement the partial disclosure policy, evaluate its

influence on detection rate, and verify the min-wise independence

property of Rabin fingerprint in Section V.

IV. ANALYSIS AND DISCUSSION

We analyze the security and privacy guarantees provided by

our data-leak detection system, as well as discuss the sources of

possible false negatives – data leak cases being overlooked and

false positives – legitimate traffic misclassified as data leak in the

detection. We point out the limitations associated with the

proposed network-based DLD approaches.

A. Privacy Analysis

Our privacy goal is to prevent the DLD provider from

inferring the exact knowledge of all sensitive data, both the

outsourced sensitive data and the matched digests in network

traffic. We quantify the probability for the DLD provider to
infer the sensitive shingles as follows.

p f − pd

A polynomial-time adversary has no greater than 2

n

probability of correctly inferring a sensitive shingle, where

p f is the length of a fingerprint in bits, pd is the fuzzy

˜
TCP flows and extract contents in a TCP session as T .

˜
length, and n ∈ [2

p

f

−

pd

 , 2
p

 f] is the size of the set of traffic
fingerprints, assuming that the fingerprints of shingles are

Contents of other protocols can also be retrieved
if required by the detection metrics.

C. Extensions

1) Fingerprint Filter: We develop this extension to use

Bloom filter in the DETECT operation for efficient set inter-

section test. Bloom filter [19] is a well-known space-saving

data structure for performing set-membership test. It applies

multiple hash functions to each of the set elements and stores

the resulting values in a bit vector; to test whether a value v

belongs to the set, the filter checks each corresponding bit

mapped with each hash function. Bloom filter in combination

with Rabin fingerprint is referred to by us as the fingerprint

filter. We use Rabin fingerprints with variety of modulus’s in

fingerprint filter as the hash functions, and we perform

extensive experimental evaluation on both fingerprint filter

and bloom filter with MD5/SHA in Section V.

2) Partial Disclosure: Using the min-wise independent

property of Rabin fingerprint, the data owner can quickly

disclose partial fuzzy fingerprints to the DLD provider. The

purpose of partial disclosure is two-fold: i) to increase the

scalability of the comparison in the DETECT operation, and
ii) to reduce the exposure of data to the DLD provider for

privacy. The method of partial release of sensitive data

fingerprints is similar to the suppression technique in database

anonymization [20], [21].
This extension requires a good uniform distribution random

selection to avoid disclosure bias. The min-wise indepen-

dence feature of Rabin fingerprint guarantees that the minimal

fingerprint is coming from a (uniformly distributed) random

shingle. The property is also valid for a minimum set of

uniformly distributed and are equally likely to be sensitive and

appear in the traffic.
We explain our quantification in two scenarios:

∗

i) There is a match between a sensitive fuzzy finger-print f

(derived from the sensitive fingerprint f) and fingerprints

from the network traffic. Because the sizepof

fuzzy set S f, pd is upper bounded by 2
d

 (Definition 2), there could be

pd

(sensitive or non-sensitive) fingerprints fuzzified into the

at most 2 ∗

identical f . Given a set (size n) of traffic fingerprints, the DLD

provider

find K fingerprints matched to f
∗

expects to

where K =
 n pd

.

 2
p

 f × 2

a) If f corresponds to a sensitive shingle leaked in
the traffic, i.e., f is within the K traffic fingerprints,
the likelihood of correctly pinpointing f from the
K fingerprints is 1 , or 2

p
 f

−

p
d . The likelihood is

 K n
fare because both sensitive data and network

traffic contain binary data. It is difficult to predict
the subspace of the sensitive data in the entire
binary space.

b) If the shingle form of f is not leaked in the traffic,
the DLD provider cannot∗ use the K traffic finger-prints,

which match f , to infer f . Alternatively,∗ the DLD

provider needs to brute force f to get f , which is

discussed as in the case of no match.
ii) There is no match between sensitive and traffic finger-

prints. The adversarial DLD provider needs to brute

force reverse the Rabin fingerprinting computation to

obtain the sensitive shingle. There are two difficulties in

reversing a fingerprint: i) Rabin fingerprint is a one-way

hash. ii) Multiple shingles can map to the same

fingerprint. It requires to searching the complete set of

possible shingles for a fingerprint and to identify the

sensitive one from the set. This brute-force attack is

difficult for a polynomial-time adversary, thus the

success probability is not included.

In summary, the DLD provider cannot decide whether the

alerts (traffic fingerprints matched f
∗

) contain any leak
not (case i.a or i.b). Even if it is known that there is a real
leak in the network traffic, the polynomial-time DLD provide a
sensitive shingle (case i.a).

B. Alert Rate

We quantify the rate of alerts expected in the traffic for a

sensitive data entry (the fuzzified fingerprints set of a piece of

sensitive data) given the following values: the total number of

fuzzified sensitive fingerprints τ , the expected traffic fin-

gerprints set size n, fingerprint length p f , fuzzy length p d ,

partial disclosure rate ps ∈ (0, 1], and the expected rate α,

which is the percentage of fingerprints in the sensitive data

entry that appear in the network traffic. The expected alert rate

R is presented in (4).

V. EXPERIMENTAL EVALUATION

We implement our fuzzy fingerprint framework in Python,

including packet collection, shingling, Rabin fingerprinting, as

well as partial disclosure and fingerprint filter extensions. Our

implementation of Rabin fingerprint is based on cyclic

redundancy code (CRC). We use the padding scheme men-

tioned in [22] to handle small inputs. In all experiments, the

shingles are in 8-byte, and the fingerprints are in 32-bit (33-bit

irreducible polynomials in Rabin fingerprint). We set up a

networking environment in VirtualBox, and make a scenario

where the sensitive data is leaked from a local network to the

Internet. Multiple users’ hosts (Windows 7) are put in the local
network, which connect to the Internet via a gateway (Fedora).

Multiple servers (HTTP, FTP, etc.) and an attacker-controlled

host are put on the Internet side. The gateway dumps the

network traffic and sends it to a DLD server/provider (Linux).

Using the sensitive-data finger-prints defined by the users in

the local network, the DLD server performs off-line data-leak

detection. The speed aspect of privacy-preserving data-leak

detection is another topic and we study it in [23].
In our prototype system, the DLD server detects the sensitive

data within each packet on basis of a stateless filtering system.

We define the sensitivity of a packet in (5), which is used by the

DLD provider in DETECTION. It indicates the
likelihood of a packet containing sensitive data.

 S∗ T
S

 pd ̈
p

d

 | _ ∩ _ | ∗

Spacket = | | (5) min(S , T) × S

 | ∗| | | | ¨ ∗|
packet. S

∗

T is the set of all fingerprints extracted in a

is the set of all sensitive fuzzy ∗fingerprints. For each piece of sensitive

data, the data owner computes S and reveals a

partial set S
∗

 (S
∗ S

∗
) to the DLD provider. The operator

t ¨ ¨

⊆ _

indicates right shifting every fingerprint in a set by t bits,
which is the implementation of a simple mask M in our
protocol (Section III-B)

|
S
∗
 / S

∗ estimates the leaking level

 | | | . When

¨
too few fuzzy fingerprints are revealed, e.g., 10%, the samples
may not sufficiently describe the leaking characteristic of the
traffic, and the estimation can be imprecise. For each packet,
the DLD server computes Spacket (Spacket ∈ [0, 1]). If it is higher than a

threshold Sthres ∈ (0, 1), T is reported back to the data owner, and the data

owner uses (6) to determine
whether it is a real leak in POSTPROCESS.

 |S ∩ T| (6)
Spacket = min(S , T)

| |

| |

The difference between (5) operated by the DLD provider
and (6) by the data owner is that the original fingerprints S are

¨
∗

used in (6) instead of the sampled and fuzzified set S in (5), so
the data owner can pinpoint the exact leaks.

The use of Spacket and Sthres for detection is important
because individual shingles or fingerprints are not accurate
features to represent an entire piece of sensitive data. Sensitive
data can share strings with non-sensitive data, e.g., formatting
strings, which results in occasionally reported

sensitive fingerprints. Spacket is an accumulated score and

Sthres filters out packets with occasionally
discovered sensitive fingerprints.

The evaluation goal is to answer the following questions:

1) Can our solution accurately detect sensitive data leak in
the traffic with low false positives (false alarms) and

high true positives (real leaks)?
2) Does using partial sensitive-data fingerprints reduce the

detection accuracy in our system?
3) What is the performance advantage of our fingerprint

filter over traditional Bloom filter with SHA-1?
4) How to choose a proper fuzzy length and make a balance

between the privacy need and the number of alerts?
In the following subsection, we experimentally addressed and

answered all the questions. For the first three questions, we

present results based on the Spacket value calculated in (6). The

first and second questions are answered in Section V-A. The third
question is discussed in Section V-B. The last question is
designed to understand the properties of fuzzification and partial
disclosure, and it is addressed in Section V-C.

A. Accuracy Evaluation

We evaluate the detection accuracy in simple and complex

leaking scenarios. First we test the detection rate and false pos-

itive rate in three simple experiments where the sensitive data is

leaked in its original form or not leaked. Then we present

accuracy evaluation on more complex leaking experiments to

reproduce various real-world leaking detection scenarios.
1) Simple Leaking Scenarios: We test our prototype without

partial disclosure in simple leaking scenarios, i.e., S
∗ S

∗
.

¨ =
We generate 20,000 personal financial records as the sensitive
data and store them in a text file. The data contains person
name, social security number, credit card number, credit card

expiration date, and credit card CVV.
To evaluate the accuracy of our strategy, we perform three

separate experiments using the same sensitive dataset:
Exp.1 True leak A user leaks the entire set of sensitive data

via FTP by uploading it to a remote FTP server.
Exp.2 No leak The non-related outbound HTTP traffic of 20

users is captured (30 minutes per user), and given to

the DLD server to analyze. No sensitive data (i.e.,

zero true positive) should be confirmed.
Exp.3 No leak The Enron dataset (2.6 GB data, 150 users’

517,424 emails) as a virtual network traffic is given

to the DLD server to analyze. Each virtual network

packet created is based on an email in the dataset. No

sensitive data (i.e., zero true positive) should be

confirmed by the data owner.

The detection results are shown in Table I. Among the three

experiments, the first one is designed to infer true positive rate.

We manually check each packet and the DLD server detects all

651 real sensitive packets (all of them have sensitivity values

greater than 0.9). The sensitivity value is less than one, because

the high-layer headers (e.g., HTTP) in a packet are not sensitive.

The next two experiments are designed to estimate the false

positive rate. We found that none of the packets has a sensitivity

value greater than 0.05. The results indicate that our design

performs as expected on plaintext.

2) Complex Leaking Scenarios: The data owner may reveal

a subset of sensitive data’s fingerprints to the DLD server for
detection, as opposed to the entire set. We are particularly
interested in measuring the percentage of revealed fingerprints
that can be detected in the traffic, assuming that fingerprints

are equally likely to be leaked.
2

 We reproduce four real-world
scenarios where data leaks are caused by human users or
software applications.

Exp.4 Web leak: a user posts sensitive data on wiki

(MediaWiki) and blog (WordPress) pages.
Exp.5 Backdoor leak: a program (Glacier) on the user’s

machine (Windows 7) leaks sensitive data.
Exp.6 Browser leak: a malicious Firefox extension

FFsniFF records the information in sensitive web
forms, and emails the data to the attacker. Exp.7

Keylogging leak: a keylogger EZRecKb exports

intercepted keystroke values on a user’s host.
3

 It
con-nects to a SMTP server on the Internet side
and sends its log of keystrokes periodically.

In these four experiments, the source file of TCP/IP page on

Wikipedia (24KB in text) is used as the sensitive data. The

detection is performed at various partial disclo-sure rate. The

subset of the sensitive fingerprints is selected randomly. The

sensitivity threshold is Sthres = 0.05.

The detection results are shown in Table I. Among the three

experiments, the first one is designed to infer true positive rate.

We manually check each packet and the DLD server detects all

651 real sensitive packets (all of them have sensitivity values

greater than 0.9). The sensitivity value is less than one, because

the high-layer headers (e.g., HTTP) in a packet are not sensitive.

The next two experiments are designed to estimate the false

positive rate. We found that none of the packets has a sensitivity

value greater than 0.05. The results indicate that our design

performs as expected on plaintext.

Fig. 2 shows the comparison of performance across various

size of fingerprints used in the detection, in terms of the

averaged sensitivity per packet in (a) and the number of

detected sensitive packets in (b). These accuracy values reflect

results of the POSTPROCESS operation.
The results show that the use of partial sensitive-data

fingerprints does not much degrade the detection rate

compared to the use of full sets of sensitive-data fingerprints.

However, extreme small sampling rates, e.g., 10%, may not
provide sufficient numbers of fingerprints to describe the
leaking characteristic of the traffic. The packet sensitivity esti-

| |/|
¨
 |

mation (S S in (6)) magnifies the signal (the real sensitivity
of a packet) as well as the noise produced by fingerprint
sampling. The precision could be affected and drops, e.g., 6

packets with 10% vs. 3 packets with 100% for Keylogger

in Fig. 2 (b).
In Fig. 2 (a), the sensitivities of experiments vary due to

different levels of modification by the leaking programs, which

makes it difficult to perform detection. WordPress substi-tutes

spaces with +’s when sending the HTTP POST request.

EZRecKb inserts function-key as labels into the original text.

Typing typos and corrections also bring in modification to the

original sensitive data. In Fig. 2 (b), [all] results contain both

outbound and inbound traffic and double the real number of

sensitive packets in Blog and Wiki scenarios due to HTML

fetching and displaying of the submitted data.

B. Runtime Comparison

Our fingerprint filter implementation is based on the Bloom

filter library in Python (Pybloom). We compare the runtime

of Bloom filter provided by standard Pybloom (with

dynamically selected hash function from MD5, SHA-1, SHA-

256, SHA-384 and SHA-512) and that of fingerprint filter

with Rabin fingerprint. For Bloom filters and fingerprint

filters, we test their performance with 2, 6, and 10 hash

functions. We inspect 100 packets with random content

against 10 pieces sensitive data at various lengths – there are a

total of 1,625,600 fingerprints generated from the traffic and

76,160 pieces of fingerprints from the sensitive data.

The partial disclosure scheme may result in false negatives,

i.e., the leaked data may evade the detection because it is not

covered by the released fingerprints. This issue illustrates the

tradeoff among detection accuracy, privacy guarantee and

detection efficiency. Fortunately, it is expensive for an

attacker to escape the detection with partial disclosure. On one

hand, Rabin fingerprint guarantees that every fingerprint has

the same probability to be selected and released through its

min-wise independence property. Deliberately choosing

unreleased segments from sensitive data is not easy.

2) Complex Leaking Scenarios: The data owner may reveal a
subset of sensitive data’s fingerprints to the DLD server for
detection, as opposed to the entire set. We are particularly
interested in measuring the percentage of revealed fingerprints
that can be detected in the traffic, assuming that fingerprints

are equally likely to be leaked.
2

 We reproduce four real-world
scenarios where data leaks are caused by human users or
software applications.

Exp.4 Web leak: a user posts sensitive data on wiki

(MediaWiki) and blog (WordPress) pages.
Exp.5 Backdoor leak: a program (Glacier) on the user’s

machine (Windows 7) leaks sensitive data.
Exp.6 Browser leak: a malicious Firefox extension

FFsniFF records the information in sensitive web
forms, and emails the data to the attacker. Exp.7

Keylogging leak: a keylogger EZRecKb exports

intercepted keystroke values on a user’s host.
3

 It
con-nects to a SMTP server on the Internet side
and sends its log of keystrokes periodically.

In these four experiments, the source file of TCP/IP page on

Wikipedia (24KB in text) is used as the sensitive data. The

detection is performed at various partial disclo-sure rate. The

subset of the sensitive fingerprints is selected randomly. The

sensitivity threshold is Sthres = 0.05.

Fig. 2 shows the comparison of performance across various

size of fingerprints used in the detection, in terms of the

averaged sensitivity per packet in (a) and the number of

detected sensitive packets in (b). These accuracy values reflect

results of the POSTPROCESS operation.
The results show that the use of partial sensitive-data

fingerprints does not much degrade the detection rate
compared to the use of full sets of sensitive-data fingerprints.

However, extreme small sampling rates, e.g., 10%, may not
provide sufficient numbers of fingerprints to describe the
leaking characteristic of the traffic. The packet sensitivity esti-

| |/|
¨
 |

mation (S S in (6)) magnifies the signal (the real sensitivity
of a packet) as well as the noise produced by fingerprint
sampling. The precision could be affected and drops, e.g., 6

packets with 10% vs. 3 packets with 100% for Keylogger

in Fig. 2 (b).
In Fig. 2 (a), the sensitivities of experiments vary due to

different levels of modification by the leaking programs, which

makes it difficult to perform detection. WordPress substi-tutes

spaces with +’s when sending the HTTP POST request.
EZRecKb inserts function-key as labels into the original text.

Typing typos and corrections also bring in modification to the

original sensitive data. In Fig. 2 (b), [all] results contain both

outbound and inbound traffic and double the real number of

sensitive packets in Blog and Wiki scenarios due to HTML

fetching and displaying of the submitted data.

B. Runtime Comparison

Our fingerprint filter implementation is based on the Bloom

filter library in Python (Pybloom). We compare the runtime

of Bloom filter provided by standard Pybloom (with

dynamically selected hash function from MD5, SHA-1, SHA-

256, SHA-384 and SHA-512) and that of fingerprint filter

with Rabin fingerprint. For Bloom filters and fingerprint

filters, we test their performance with 2, 6, and 10 hash

functions. We inspect 100 packets with random content

against 10 pieces sensitive data at various lengths – there are a

total of 1,625,600 fingerprints generated from the traffic and

76,160 pieces of fingerprints from the sensitive data.

We present the time for detection per packet in Fig. 3 (a). It

shows that fingerprint filters run faster than Bloom filters,

which is expected as Rabin fingerprint is easier to compute

than MD5/SHA. The gap is not significant due to the fact that

Python uses a virtualization architecture. We have the core

hash computations implemented in Python C/C++ extension,

but the remaining control flow and function call statements are

in pure Python. The performance difference between Rabin

fingerprint and MD5/SHA is largely masked by the runtime

overhead spent on non-hash related operations.
In Fig. 3 (a), the number of hash functions used in Bloom

filters does not significantly impact their runtime, because only

one hash function is operated in most cases for Bloom filters.

Pybloom automatically chooses SHA-256 for Bloom filter with

6 hash functions and SHA-384 for Bloom filter with 10 hash

functions. One hash is sufficient to distinguish 32-bits

fingerprints. MD5 is automatically chosen for the Bloom filter

with 2 hash functions, which gives more collisions and the second

hash could be involved. We speculate this is the reason why

Bloom filter with 2 hashes is slower than Bloom filters with 6 or

10 hashes. All of our fingerprint filters use 32-bit Rabin

fingerprint functions. The small output space requires more than

one hash for a membership test, so there is more significant

overhead when a fingerprint filter is equipped with more hashes

(6 vs. 2 and 10 vs. 6).
The filter construction time is shown in Fig. 3 (b). It shares

similar characteristics with the detection time. Filters with

more hash functions require more time to initialize, because

every hash function need to be computed. The construc-tion of

fingerprint filters, especially assigning the irreducible

polynomials p(x) for each Rabin fingerprint, is written in pure

Python, which is significantly slower than SHA-256 and SHA-

384 encapsulated using Python C/C++ extension.

C. Sizes of Fuzzy Sets vs. Fuzzy Length

The size of fuzzy set corresponds to the K value in our

definition of privacy goal. The higher K is, the more difficult it

is for a DLD provider to infer the original sensitive data using

our fuzzy fingerprinting mechanism – the fingerprint of the

sensitive data hides among its neighboring fingerprints.
We empirically evaluate the average size of the fuzzy set

associated with a given fuzzy length with both Brown Corpus
(text) and real-world network traffic (text & binary).

• Brown Corpus: The Brown University Standard Corpus

of Present-Day American English [24]. It contains 500

samples of English text across 15 genres, and there are

1,014,312 words in total.

• Network traffic: 500MB Internet traffic dump collected

by us on a single host. It includes a variety of network

traffic: multimedia Internet surfing (images, video, etc.),

binary downloading, software and system updates, user

profile synchronization, etc.

We aim to show the trend of how the fuzzy-set sizes changes

with the fuzzy length, which can be used to select the optimal

fuzzy length used in the algorithm. We compute 32-bit

fingerprints from the datasets, and then count the number of

neighbors for each fingerprint. Fig. 4 shows the estimated and

observed sizes of fuzzy sets for fuzzy lengths in the range of [14,

27] for 218,652 and 189,878 fingerprints generated from the

Brown Corpus dataset and the network traffic dataset.
The figure shows that the empirical results observed are very

close with the expected values of the fuzzy set sizes computed

based on our analysis in Section IV. This close fit also

indicates the uniform distribution of the fingerprints.
The fuzzy set is small when the fuzzy length is small, which

is due to the sparsity nature of Rabin fingerprints. Given an

estimated composition of traffic content, the data owner can

use the result of this experiment to determine the optimal

fuzzy length. In the datasets evaluated in the experiments, for

fuzzy length of 26 and 27 bits, the K values are above 1,500

and 3,000, respectively. Because the data owner can defuzzify

in POSTPROCESS very quickly, the false positives can be sifted

out by the data owner. We also find that for a fixed fuzzy

length the distribution of fuzzy-set sizes follows a Gaussian

distribution. Different datasets may have different K size

characteristics. We demonstrate the feasibility of estimating

the fuzzy set sizes, which illustrates how fuzzy fingerprintings

can be used to realize a privacy goal.
1) Summary: Our detection rates in terms of the number of

sensitive packets found do not decrease much with the

decreasing size of disclosed fingerprint sets in Fig. 2, even

when only 10% of the sensitive-data fingerprints are used for

detection. Our experiments evaluate several noisy conditions

such as noise insertion – MediaWiki-based leak scenario,

and data substitution – for the keylogger- and WordPress-

based leak scenarios. Our results indicate that our fingerprint

filter can tolerate these three types of noises in the traffic to

some degree. Our approach works well especially in the case

where consecutive data blocks are leaked (i.e., local data

features are preserved). When the noises spread across the

data and destroy the local features (e.g., replacing every space

with another character), the detection rate decreases as

expected. The use of shorter shingles mitigates the problem,

but it may increase false positives. How to improve the noise

tolerance property in those conditions remains an open

problem. Our fuzzy fingerprint mechanism supports the

detection of data-leak at various sizes and granularities. We

study the fuzzy set size and also verify the min-wise

independence property of Rabin fingerprint, which are the

building blocks of our fuzzy fingerprint method.

VII. RELATED WORKS

In existing paper designed, implemented, and

evaluated with fuzzy fingerprint technique that enhances data

privacy during data-leak detection operations. It is a

straightforward realization of data-leak detection requires the

plaintext sensitive data. In this paper Shingle with Rabin

fingerprint was used for encrypting and identifying similar

spam messages in a collaborative setting. It can also able to

identify spam and virus present in the message. Our proposed

fuzzy fingerprint method differs from these solutions and can

enable its adopter to provide data leak detection as a service.

So, the data provider or customer need is not to fully trust the

Data Leakage Detection provider using our proposed

approach.

Besides our fingerprint-based detection, other

approaches can also be applied to data-leak detection. If the

sensitive data size is small and the patterns of all sensitive data

are enumerable, string matching in network intrusion detection

system can be used to detect data leaks. Our proposed

approach can be used to detect data leaks. Another category of

approaches for data-leak detection is tracing and enforcing the

sensitive data flows. The provable privacy guarantees offered

by our approach comes at a cost in terms of computational

complexity and realization difficulty.

DISADVANTAGES

 It cost is very high

 It has high computational complexity

 It difficult in realization

There have been several advances in understanding the

privacy needs [25] or the privacy requirement of security

applications [26]. In this paper, we identify the privacy needs
in an outsourced data-leak detection service and provide
a systematic solution to enable privacy-preserving
DLD services.

Shingle with Rabin fingerprint [15] was used previously
for identifying similar spam messages in a collaborative
setting [27], as well as collaborative worm containment [28],

virus scan [29], and fragment detection [30].
In comparison, we tackle the unique data-leak detection

[42] provide string matching approaches in semi-honest

environments, but keywords usually do not cover enough

sensitive data segments for data-leak detection.
Anomaly detection in network traffic can be used to detect

data leaks. [5] detects any substantial increase in the amount

of new information in the traffic, and entropy analysis is used

in [43]. We present a signature-based model to detect data

leaks and focus on the design that can be outsourced, thus the

two approaches are different.
Another category of approaches for data-leak detection is

tracing and enforcing the sensitive data flows. The approaches

include data flow and taint analysis [6], legal flow mark-ing

[44], and file-descriptor sharing enforcement [8]. These

approaches are different from ours because they do not aim to

provide an remote service. However, pure network-based

solution cannot handle maliciously encrypted traffic [45], and

these methods are complementary to our approach in detecting

different forms (e.g., encrypted) of data leaks.
Besides our fuzzy fingerprint solution for data-leak detec-

tion, there are other privacy-preserving techniques invented

for specific processes, e.g., DNA matching [46], or for general

purpose use, e.g., secure multi-party computation (SMC).

Similar to string matching methods discussed above, [46] uses

anonymous automata to perform comparison. SMC [47] is a

cryptographic mechanism, which supports a wide range of
fundamental arithmetic, set, and string operations as
well as complex functions such as knapsack computa-
tion [48], automated trouble-shooting [49], network event

statistics [50], [51], private information retrieval [52] genomic

computation [53], private database query [54], private join

operations [55], and distributed data mining [56]. The provable

privacy guarantees offered by SMC comes at a cost in terms of

computational complexity and realization difficulty. The advantage

of our approach is its concision and efficiency

VII. CONCLUSIONS AND FUTURE WORK

Our data-leak detection method supports practical data-leak

detection as a service and minimizes the knowledge that a DLD

provider may gain during the process. In this paper we present

SIMON-SPECK encryption algorithm for data leakage detection and

identification model. By using with a special encryption algorithm,

the exposure of the sensitive data is kept to a minimum during the

detection. Since SIMON-SPECK algorithm uses the small key size

and offers most security against multiple attacks. In this paper we

listed the six operations executed by the data owner and the DLD

provider in our protocol. The protocol is based on strategically

computing data similarity, specifically the quantitative similarity

between the sensitive information and the observed network traffic.

.

REFERENCES

[1] X. Shu and D. Yao,”Privacy Preserving Detection of Sensitive Data

Exposure,” IEEE Transactions on Information Forensics and Security, VOL. 10, NO.
5, MAY 2015.

[2] Risk Based Security. (Feb. 2014). Data Breach Quick-
View: An Executive’s Guide to 2013 Data Breach Trends.
[Online]. Available: https://www.riskbasedsecurity.com/reports/2013-
DataBreachQuickView.pdf, accessed Oct. 2014.

[3] Ponemon Institute. (May 2013). 2013 Cost of Data Breach Study: Global

Analysis. [Online]. Available: https://www4.symantec.com/mktginfo/

whitepaper/053013_GL_NA_WP_Ponemon-2013-Cost-of-a-Data-Breach-

Report_daiNA_cta72382.pdf, accessed Oct. 2014.
[4] Identity Finder. Discover Sensitive Data Prevent Breaches DLP Data

 Loss Prevention. [Online]. Available: http://www.identityfinder.com/,
accessed Oct. 2014.
[5] K. Borders and A. Prakash, “Quantifying information leaks in outbound

web traffic,” in Proc. 30th IEEE Symp. Secur. Privacy, May 2009,
pp. 129–140.

[6] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing system-wide information flow for malware detection and
analysis,” in Proc. 14th ACM Conf. Comput. Commun. Secur., 2007,
pp. 116–127.

[7] K. Borders, E. V. Weele, B. Lau, and A. Prakash, “Protecting
confidential data on personal computers with storage capsules,” in Proc.
18th USENIX Secur. Symp., 2009, pp. 367–382.

[8] A. Nadkarni and W. Enck, “Preventing accidental data disclosure in
modern operating systems,” in Proc. 20th ACM Conf. Comput.
Commun. Secur., 2013, pp. 1029–1042.

[9] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna,

“Revolver: An automated approach to the detection of evasiveweb-based

malware,” in Proc. 22nd USENIX Secur. Symp., 2013, pp. 637–652.
[10] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection and monitor-ing

through VMM-based ‘out-of-the-box’ semantic view reconstruction,”

ACM Trans. Inf. Syst. Secur., vol. 13, no. 2, 2010, p. 12.
[11] G. Karjoth and M. Schunter, “A privacy policy model for enterprises,”

in Proc. 15th IEEE Comput. Secur. Found. Workshop, Jun. 2002,
pp. 271–281.

[12] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and T.
Kohno, “Privacy oracle: A system for finding application leaks with
black box differential testing,” in Proc. 15th ACM Conf. Comput.
Commun. Secur., 2008, pp. 279–288.

[13] Y. Jang, S. P. Chung, B. D. Payne, and W. Lee, “Gyrus: A framework
for user-intent monitoring of text-based networked applications,” in
Proc. 23rd USENIX Secur. Symp., 2014, pp. 79–93.

[14] K. Xu, D. Yao, Q. Ma, and A. Crowell, “Detecting infection onset with
behavior-based policies,” in Proc. 5th Int. Conf. Netw. Syst. Secur., Sep.
2011, pp. 57–64.

[15] M. O. Rabin, “Fingerprinting by random polynomials,” Dept. Math.,
Hebrew Univ. Jerusalem, Jerusalem, Israel, Tech. Rep. TR-15-81, 1981.

[16] A. Z. Broder, “Some applications of Rabin’s fingerprinting method,” in
Sequences II. New York, NY, USA: Springer-Verlag, 1993, pp. 143–152.

[17] A. Z. Broder, “Identifying and filtering near-duplicate documents,” in

Proc. 11th Annu. Symp. Combinat. Pattern Matching, 2000, pp. 1–10.
[18] A. Broder and M. Mitzenmacher, “Network applications of bloom

filters: A survey,” Internet Math., vol. 1, no. 4, pp. 485–509, 2004.
[19] G. Aggarwal et al., “Anonymizing tables,” in Proc. 10th Int. Conf.

Database Theory, 2005, pp. 246–258.
[20] R. Chen, B. C. M. Fung, N. Mohammed, B. C. Desai, and K. Wang,

“Privacy-preserving trajectory data publishing by local suppression,” Inf.
Sci., vol. 231, pp. 83–97, May 2013.

[21] M. O. Rabin, “Digitalized signatures and public-key functions as
intractable as factorization,” Massachusetts Inst. Technol., Cambridge,
MA, USA, Tech. Rep. MIT/LCS/TR-212, 1979.

[22] F. Liu, X. Shu, D. Yao, and A. R. Butt, “Privacy-preserving scanning of
big content for sensitive data exposure with MapReduce,” in Proc. ACM
CODASPY, 2015.

[23] W. N. Francis and H. Kucera, “Brown corpus manual,” 1979.
[24] J. Kleinberg, C. H. Papadimitriou, and P. Raghavan, “On the value of

private information,” in Proc. 8th Conf. Theoretical Aspects Rationality
Knowl., 2001, pp. 249–257.

[25] S. Xu, “Collaborative attack vs. collaborative defense,” in Collaborative
Computing: Networking, Applications and Worksharing (Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering), vol. 10. Berlin, Germany: Springer-Verlag,
2009, pp. 217–228.

[26] K. Li, Z. Zhong, and L. Ramaswamy, “Privacy-aware collaborative
spam filtering,” IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 5, pp.
725–739, May 2009.

[27] M. Cai, K. Hwang, Y.-K. Kwok, S. Song, and Y. Chen, “Collaborative
Internet worm containment,” IEEE Security Privacy, vol. 3, no. 3,
pp. 25–33, May 2005.

[28] F. Hao, M. Kodialam, T. V. Lakshman, and H. Zhang, “Fast payload-
based flow estimation for traffic monitoring and network security,” in
Proc. ACM Symp. Archit. Netw. Commun. Syst., Oct. 2005, pp. 211–220.

[29] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis, “Automatic
detection of fragments in dynamically generated web pages,” in Proc.
13th Int. Conf. World Wide Web, 2004, pp. 443–454.

[30] Symantec. Data Loss Prevention (DLP) Software. [Online]. Available:
http://www.symantec.com/data-loss-prevention/, accessed Oct. 2014.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Issue 4, April 2016

356

