

A FAST RAQ: A FAST APPROACH TO RANGE-AGGREGATE

 QUERIESE IN HETEROGENOUS ENVIRONMENT

P.SATHIYA1 , S.RAMA MOORTHY2

(Anna Univ Affiliated) Master of Engineering, Department of Computer Science and Engineering1,

(Anna Univ Affiliated) Associate Professor, Department of Computer Science and Engineering2

Mohamed Sathak Engineering College, Kilakarai, Ramanathapuram dist., TamilNadu..

1sivasathya0794@gmail.com

2ramamoorthis@gmail.com

Abstract-Big data is a broad term for data sets so large or complex that traditional data processing applications which are
inadequate. There are several challenges include analysis, capture data curation, search, sharing, storage, transfer,
visualization, and information privacy. Range aggregate queries are defined as that to apply a certain aggregate functions
on all tuples within given query ranges. It is a challenging problem to quickly obtain range-aggregate query in the Big
Data environments. To overcome these challenges, we develop an approach called FASTRAQ which divides the big data
into independent partitions with balanced partitioning algorithms and generate a local estimation sketch for each partition.
When a query request arrives, FASTRAQ obtains the result directly by the use of local estimation in all partitions.
FASTRAQ has O (m) time complexity for data updates and O (N/ (P*B)) time complexity for range aggregate queries.
The experimental results demonstrate the FASTRAQ provides range-aggregate query results within a time period two
orders of magnitude lower than that of Hive, while the relative error is less than 3 percent within the given confidence
interval.

Index Terms—Balanced partition, big data, multidimensional histogram, range-aggregate query

1 INTRODUCTION

 Big data is a broad term for data sets so large or

complex that traditional data processing applications are

inadequate. Challenges include analysis, capture, data

curation, search, sharing, storage, transfer, visualization,

and information privacy. The term often refers simply to the

use of predictive analytics or other certain advanced methods

to extract value from data, and seldom to a particular size of

data set. Accuracy in big data may lead to more confident

decision making. And better decisions can mean greater

operational efficiency, cost reduction and reduced risk.

Analysis of data sets can find new correlations, to

"spot business trends, prevent diseases, and combat crime and

so on”. Scientists, business executives, practitioners of media

and advertising and governments alike regularly meet

difficulties with large data sets in areas including Internet

search, finance and business informatics. Scientists encounter

limitations in e-Science work,

including meteorology, genomics,

connectomics, complex

physics simulations,

and biological and environmental

research.

Data sets grow in size in part because they are

increasingly being gathered by cheap and numerous

information-sensing mobile devices, aerial (remote sensing),

software logs, cameras, microphones, radio-frequency

identification (RFID) readers, and wireless sensor

networks. The world's technological per-capita capacity to

store information has roughly doubled every 40 months since

the 1980s; as of 2012, every day 2.5 exabytes (2.5×10
18

) of

data were created;

The challenge for large enterprises is

determining who should own big data initiatives that straddle

the entire organization.

Big data usually includes data sets with sizes beyond

the ability of commonly used software tools to capture, curate,

manage, and process data within a tolerable elapsed time.

Big

data "size" is a constantly moving target, as of 2012 ranging

from a few dozen terabytes to many petabytes of data. Big

data is a set of techniques and technologies that require new

forms of integration to uncover large hidden values from large

datasets that are diverse, complex, and of a massive scale.

Analysis of data is a process of inspecting, cleaning,

transforming, and modeling data with the goal of discovering

useful information, suggesting conclusions, and supporting

decision-making. Data analysis has multiple facets and

approaches, encompassing diverse techniques under a variety

of names, in different business, science, and social science

domains.

The partition problem is the task of deciding whether

a given multiset S of positive integers can be partitioned into

two subsets S1 and S2 such that the sum of the numbers

in S1 equals the sum of the numbers in S2. Although the

partition problem is NP-complete, there is a pseudo-

polynomial time dynamic programming solution, and there

are heuristics that solve the problem in many instances, either

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Issue 4, April 2016

286

optimally or approximately. For this reason, it has been called

"The Easiest Hard Problem". There is an optimization

version of the partition problem, which is to partition the

multiset S into two subsets S1, S2 such that the difference

between the sum of elements in S1 and the sum of elements

in S2 is minimized. The optimization version is NP-hard.

Histograms are a concise and flexible way to

construct summary structures for large data sets. They have

attracted a lot of attention in database research due to their

utility in many areas, including query optimization, and

approximate query answering. They are also a basic tool for

data visualization and analysis.

A histogram is a display of statistical information

that uses rectangles to show the frequency of data items in

successive numerical intervals of equal size. In the most

common form of histogram, the independent variable is

plotted along the horizontal axis and the dependent variable is

plotted along the vertical axis. The data appears as colored or

shaded rectangles of variable area.

Range searching and its variants have been studied

extensively in the computational geometry and database

communities because of their many important applications.

Range-aggregate queries, such as range-COUNT, SUM and

MAX, are some of the most commonly used versions of range

searching in database applications. Since many such

applications involve massive amounts of data stored in

external memory, it is important to consider external memory

(or I/O-efficient) structures for fundamental range-searching

problems. In this paper, we develop an external memory data

structure for answering orthogonal range-COUNT, SUM and

MAX queries. Note that from these we automatically get

some other aggregates like AVE and MIN.

Good histograms partition data sets into \smooth"

buckets with close-to-uniform internal tuples density. In other

words, the frequency variance of the tuples enclosed by such

buckets is minimized, leading to accurate selectivity

estimations for range queries. Unfortunately, current

multidimensional histogram techniques do not always manage

to produce close-to-uniform partitions of the data sets, as we

discuss next. Later it reports a thorough experimental

evaluation of these techniques that complements the

discussion in this section.

A partition of a multidimensional data domain results

in a set of disjoint rectangular buckets that cover all the points

in the domain and assigns to each bucket some aggregated

information, usually the number of tuples enclosed. The

choice of rectangular buckets is justified by two main reasons:

First, rectangular buckets make it easy and efficient to

intersect each bucket and a given range query to estimate

selectivity. Second, rectangular buckets can be represented

concisely, which allows a large number of buckets to be

stored using the given budget constraints

 In this paper, we present an approach called

FASTRAQ, a fast approach to the range aggregate queries in

the big data environments. This approach first divides big data

into independent partitions based on the balanced partition

algorithm, and also generates a local estimation for those

partitions. When an range aggregate query arrives FASTRAQ

obtains the results directly by summarizing local estimates.

A histogram is a display of statistical information

that uses rectangles to show the frequency of data items in

successive numerical intervals of equal size. In the most

common form of histogram, the independent variable is

plotted along the horizontal axis and the dependent variable is

plotted along the vertical axis. The data appears as colored or

shaded rectangles of variable area.

Range searching and its variants have been studied

extensively in the computational geometry and database

communities because of their many important applications.

Range-aggregate queries, such as range-COUNT, SUM and

MAX, are some of the most commonly used versions of range

searching in database applications. Since many such

applications involve massive amounts of data stored in

external memory, it is important to consider external memory

(or I/O-efficient) structures for fundamental range-searching

problems. In this paper, we develop an external memory data

structure for answering orthogonal range-COUNT, SUM and

MAX queries. Note that from these we automatically get

some other aggregates like AVE and MIN.

Good histograms partition data sets into \smooth"

buckets with close-to-uniform internal tuples density. In other

words, the frequency variance of the tuples enclosed by such

buckets is minimized, leading to accurate selectivity

estimations for range queries. Unfortunately, current

multidimensional histogram techniques do not always manage

to produce close-to-uniform partitions of the data sets, as we

discuss next. Later it reports a thorough experimental

evaluation of these techniques that complements the

discussion in this section.

A partition of a multidimensional data domain results in a set
of disjoint rectangular buckets that cover all the points in the
domain and assigns to each bucket some aggregated
information, usually the number of tuples enclosed. The
choice of rectangular buckets is justified by two main reasons:
First, rectangular buckets make it easy and efficient

Fig. 1. An example of the column-family schema.

FastRAQ first divides big data into independent partitions with a
balanced partitioning algorithm, and then generates a local
estimation sketch for each partition. When a range-aggregate
query request arrives, FastRAQ obtains the result directly by
summarizing local estimates from all partitions.

The balanced partitioning algorithm works with a strati-fied

sampling model. It divides all data into different groups with

regard to their attribute values of interest, and further separates

each group into multiple partitions according to the current data

distributions and the number of available servers. The algorithm

can bound the sample errors in each partition, and can balance the
number of records adaptively among servers when the data

distribution and/or the num-ber of servers changes.

The estimation sketch is a new type of multi-dimensional

histogram that is built according to learned data distribu-tions.
Our multi-dimensional histogram can measure the quality of

tuples distributions more accurately and can sup-port accurate
multi-dimensional cardinality queries. It can maintain nearly

equivalent frequencies for different values within each histogram
bucket, even if the frequency distri-butions in different

dimensions vary significantly.
FastRAQN has Oð1Þ time complexity for data updates and

OðP _BÞ time complexity for ad-hoc range-aggregate queries,

where N is the number of distinct tuples in all dimensions, P is

the number of partitions, and B is the number of buck-ets in a

histogram. Furthermore, it produces negligible vol-ume of index

data in big data environments.

We implement the FastRAQ approach on the Linux plat-form,
and evaluate its performance with about 10 billions data records.
Experimental results demonstrate that Fas-tRAQ provides range-
aggregate query results within a time period two orders of
magnitude lower than that of Hive, while the relative error is less
than 3 percent within the given confidence interval.

2 OVERVIEW OF THE FASTRAQ APPROACH
2.1 Problem Statement

We consider the range-aggregate problem in big data envi-
ronments, where data sets are stored in distributed servers. An
aggregate function operates on selected ranges, which are
contiguous on multiple domains of the attribute values. In
FastRAQ, the attribute values can be numeric or alpha-betic. One
example of the range-aggregate problem is shown as follows:

Select exp(AggColumn), other ColName
where li1 < ColNamei < li2 opr
lj1 < ColNamej < lj2 opr

. . . ;

In the above query, exp is an aggregate function such as SUM
or COUNT; AggColumn is the dimension of the aggre-gate

operation; li1 < ColNamei < li2 and lj1 < ColNamej < lj2 are the
dimensions of ranges queries; opr is a logical oper-ator including
AND and OR logical operations. In the fol-lowing discussion,
AggColumn is called Aggregation-Column,
ColNamei and ColNamej are called Index-Columns.

The cost of distributed range-aggregate queries primarily

includes two parts. i.e., the cost of network communication and

the cost of local files scanning. The first cost is produced by data

transmission and synchronization for aggregate operations when

the selected files are stored in different servers. The second cost

is produced by scanning local files to search the selected tuples.

When the size of a data set increases continuously, the two types

of cost will also increase dramatically. Only when the two types

of cost are minimized, can we obtain faster final range-aggregate

queries results in big data environments.

2.2 Key Idea

To generate a local request result, we design a balanced par-tition
algorithm which works with stratified sampling model. In each
partition, we maintain a sample for values of the aggregation-
column and a multi-dimensional histogram for values of the
index-columns. When a range-aggregate query request arrives,
the local result is the product of the sample and an estimated
cardinality from the histogram. This reduces the two types of cost
simultaneously. It is for-
mulated as

PM
 Count

i
 _ Sample

i
, where M is the

number i¼1
of partitions, Counti is the estimated cardinality of the que-ried
ranges, and Samplei is the sample for values of aggre-gation-
column in each partition.

Column-family schema for FastRAQ, which includes three

types of column-families related to range-aggregate queries. They

are aggregation column-family, index column-fam-ily, and

default column-family. The aggregation column-family includes

an aggregation-column, the index column-family includes

multiple index-columns, and the default column-family includes

other columns for further extensions. A SQL-like DDL and DML

can be defined easily from the schema. An example of column-

family schema and SQL-like range-aggregate query statement is

shown in Fig. 1.

In FastRAQ, we divide numerical value space of an
aggregation-column into different groups, and maintain an

estimation sketch in each group to limit relative estimated errors

of range-aggregate paradigm. When a new record is coming, it is

first sent onto a partition in the light of current data distributions

and the number of available servers. In each partition, the sample

and the histogram are updated respectively by the attribute values

of the incoming record.

When a query request arrives, it is delivered into each
partition. We first build cardinality estimator (CE) for the queried

range from the histogram in each partition. Then we calculate the
estimate value in each partition, which is the product of the

sample and the estimated cardinality from the estimator. The final
return for the request is the sum of all the local estimates. A brief

FastRAQ framework

Fig. 2. The FastRAQ framework.

independently and more efficiently. Stratified sampling is a

method of sampling from independent groups of a popula-tion,

and selecting sample in each group to improve the rep-

resentativeness of the sample by reducing sampling error. We

build our partitioning algorithm based on the idea of stratified

sampling to make the maximum relative error under a threshold

in each partition. At the same time, the sum of the local result

from each partition can also achieve satisfied accuracy for any

ad-hoc range-aggregate queries. We first divide the value of

numerical space into different groups and subdivide each group

into different partitions according to the number of available

servers. The partition algorithm can be expressed as follows for

data sets R:

PartitioningðRÞ ¼ ðg; pÞ ¼ ðVe; random½1; Vr&Þ; (1)

is shown in Fig. 2, and a multi-dimensional range-
aggregate query process is presented in Algorithm 1.

Algorithm 1. FastRAQuering(Q)

Input: Q;

Q: select sum(AggColumn) otherColname where
li1<ColNamei<li2 opr lj1<ColNamej<lj2.
Output: S;

S: range-aggregate query result.

1: Deliver the request Q to all partitions;
2: for each partitioni in partitions do
3: Compute the cardinality estimator of range li1 <

ColNamei < li2 from the local histogram, and let CEi be
the estimator of the ith dimensions;

4: Compute the cardinality estimator of range lj1 <
ColNamej < lj2 from the local histogram, and let CEj be
the estimator of the jth dimensions;

5: Merge the estimators CEi and CEj by the logical operator

Opr, and compute the merged cardinality
estimator CEmerged;

6: Counti _hðCEmergedÞ;
==_h is a function of cardinality estimation.

7: Compute the sample for AggColumn, and let Samplei be

the sample;
8: SUMi Counti _ Samplei;

==SUMi is a local range-aggregate query result;
9: end for

10: Set the approximate answering of FastRAQ as S. Let
P
 M

S i¼1 SUMi, where M is the number of
partitions;

11: return S.

3 DISTRIBUTED PARTITIONING ALGORITHM

Partitioning is a process of assigning each record in a large table

to a smaller table based on the value of a particular field in a
record. It has been used in data center networks to improve

manageability and availability of big data [13]. The partitioning
step has become a key determinant in data analysis to boost the

query processing performance [14]. All of these works enable
each partition to be processed

where the number of a partition p in a group g, is a random

number in ½1; Vr&, and Ve is a group identifier (GID) for the
group g.

The stratified sampling is a method to subdivide the numerical
value space into independent intervals with a batch of logarithm
functions, and each interval stands for a group. When the number
of logarithm functions is fixed, an arbitrary natural integer N can

be mapped into a unique group g. The grouping model of
stratified sampling is shown in Algorithm 2.

Algorithm 2. Grouping(N)

Input: N;

N: an arbitrary numerical value (N
> 0). Output: Ve;

Ve: the group Identifier

(GID). 1: k logN;
2: if ðk ¼¼ 0Þ then

V
3: e < 0; 0; 0 > ;
4: Set the interval length of group Ve as [0,1];
5: return Ve;
6: else

7: if ðN _ 2
k

 ¼¼ 0Þ then
8: Ve < k; 0; 0>;

9: Set the interval length of group Ve as ½2
k

; 2
k

 þ 1&;

10: return Ve;
11: else

12: l log N _ 2
k

;

13: if ðl ¼¼ 0 k N _ 2
k

 _ 2
l
 ¼¼ 0Þ then

14: Ve < k; l; 0>;
15: Set the interval length of group Ve as

 ½2
k

 þ 2
l
; 2

k
 þ 2

l
þ 1&;

16: return Ve;

17: elsek l
18: m log N _ 2 _ 2 ;
19: Setmthe intervalk lengthl of group Ve as ½2

k
 þ 2

l

þ2 ; 2 þ 2
mþ1

 _ 1&;þ2

20: return Ve.

21: end if
22: end if
23: end if

TABLE 1
The Maximum Number of Groups in Different Value Spaces

 numeric value space 10 20 30
 ½1; 2 _ 1& ½1; 2 _ 1& ½1; 2 _ 1&

 interval number 145 1775 8190

Algorithm 2 also presents the calculations for lengths of the
grouping model. For example, when GID equals to < 0; 0; 0 >
the length of the group is [0,1]. When GID equals to < k; l; m > ,

k ¼6 0, l ¼6 0, m ¼6 0, the length of the group is ½2
k

 þ 2
l
 þ 2

m
; 2

k
 þ

2
l
 þ 2

mþ1
 _ 1&. Other processes of cal-culations are

shown in Steps 5 and 15 of Algorithm 2. In Algorithm 2, it uses

triple logarithmic functions to divide numerical space into

independent groups. This can achieve better tradeoff between

sampling errors (see Section 5) and the number of groups. The

instances for the number of groups in different value spaces are

listed in Table 1. For instance, 30itwill produce 8;190 groups at

most in the value space ½1; 2 _ 1&, and it is acceptable in many

applications. Of course, one can increase the number of logarithm

func-tions to reduce the sample error in each group, but it will

pro-duce a greater number of groups.

To make data balanced on each server, the partition algorithm
subdivides each group into a number of parti-tions according to
the current data distributions and sends each partition onto one

server. Let Vr represent the maxi-mum number of partitions in

each group. The value of Vr is related to the current data
distributions and the number of available servers at the same

time. We design Algo-rithm 3 to compute the value of Vr for the
current system. The key idea of Algorithm 3 is to calculate an

average ratio of records b0 for all groups, and then set the value

of Vr according to b0 and the current number of records in each
group.

Algorithm 3. Numbering(G, dr)

Input: G;

G ¼ f < GIDi; nri >; 1 _ i _ M};

dr: the maximum number of partitions for a
group; GIDi: the group identifier of group gi;

nri: the number of records in gi;
M: the number of groups.

Output: VP ;

VP : the partition vectors set, and

VP fVpjj1 _ j _ Mg.

1: Compute an average ratio of record for all groups,

i.e., b0 i ¼1 nri=M;
V number of servers dr V

2:rMax P _, and rMin 1;

3: for all ðgi 2 GÞ do
4: if ðgi:nri < b0Þ then
5: Vpi < gi:GID; VrMin >;

6: else

Vpi < gi:GID; MINf
nri

7: b0 ; VrMaxg > ;

8: end if
9: VP VP þ Vpi;

10: end for
11: return VP .

The number of partitions should be kept under some

threshold in an applicable system. Some groups may hold

the majority of input records, and it will make
nri

be a very

b0
large number. We use the factor dr to bound the maximum
number of partitions in each group. As shown in step 7 of

Algorithm 3, the Vr locates in the interval [VrMin, VrMax], where

the VrMax and VrMin are the maximum and minimum number of
partitions for each group.

In big data environments, a partition is a unit for load

balancing and local range-aggregate queries. FastRAQ uses the

vectors set VP ¼ fVpi : < Ve; Vr > j1 _ i _ Mg to build partitions

for all the incoming records, where M indicates the number of

groups. In each partition, a dynamic sample is calculated from the

current loaded records. Currently, FastRAQ uses a mean value of

aggregation-column as the sample, which is Sample ¼

SUM=Counter, where SUM is sum of values from aggregation-

column, and Counter is the number of records in the current

partition. A detailed balanced partition algorithm is shown in

Algorithm 4.

Algorithm 4. Partitioning(R,VP)

Input: (R,VP);

R: an input record;

VP : the partition vector set.

Output: PID;

PID: a partition identifier for partition p.

1: Parse the input record R into different column-fami-lies by
the defined schema;

2: Compute the GID with its value from aggregation-column
by algorithm 2;

3: Get the partition vector Vpi from VP with the GID, and let
Vpi ¼ < GID; Vr >;

4: Set target partition identifier,

PID < GID; random½1; Vpi:Vr& >; 5: Build the
sample in partition PID, such as:

counterPID þ 1;
is the number of record;

sumPID þ N;

//N is value of aggregation attribute from
R;

SamplePID sumk;l;m;r=counterPID;

6: RID HashðPID; counterPIDÞ;

//RID is the unique record identifier for R;
7: Send R to partition PID;
8: return PID.

The input record R is sent to a partition represented by PID.
The PID is generated from its value of aggregation-column.
When the data distribution or the number of avail-able severs

changes, it just needs to modify the Vr in corre-sponding partition

vector Vp, and the newly incoming records will be adaptively

mapped into a partition in [1,Vr] randomly.

4 RANGE CARDINALITY ESTIMATION

4.1 Clustering Based Histogram

We measure the data distributions by clustering values of all

==counterPID

sumPID

counterPID

our histogram. A feature vector of clustering is expressed as ftag;
vectorg, where tag is the attribute value, and vector is the

frequency for the tag occurring in each dimension. For example,
the feature {tag=ad, vector=<10,2>} indicates that the value of
ad occurs in the first index column 10 times and the second index
column 2 times. After extracting the fea-ture vectors from learned

data set, it will produce vectors set. Let it be f < tagi; vectori > j0

< i < Ng. We use the common K-Means clustering method to
analyze the vectors set and produce K clusters. A unique

ClusterID is assigned to each cluster. We construct a list of key-

value pairs from the result of K clusters. The key-value pairs are

in the format of < tag; ClusterID >. We sort the key-value pairs

by tag in alphabetical order. The buckets in the histogram are

built from the sorted pairs. The key idea is to merge the pairs

with the same ClusterIDs into the same bucket. If some tag

occurring frequency is significantly different from others, its

ClassID is different after the K-Means clus-tering, and it will be
put into an independent bucket in the histogram.

Algorithm 5. Building(F)

Input: F ;

F : learning data set.
Output: P ;

P : a bucket boundary list.

1: Scan the learning data source F , and generate the fre-

quency features set f< tagi; vectori > j0 < i < Ng, where
tag is the attributes value, vector is the fre-quency
occurring on each dimension;

2: Cluster the features set

f< tagi ; vectori > j0 < i <N g by K-Means
clustering method and produce K clusters
fClusterij1 _ i _ Kg;

3: Assign a unique ClusterID to each cluster, and scan
the K clusters to generate key-value pairs list

f < tagq ; ClusterID > j1 _ ClusterID _ K g;

4: Sort the key-value pairs list by tag in alphabetical order,

and the sorted sequence is S ¼ fSi : < tagi; clusterID >
j1 _ i _ Ng;

5: for all Si in S do
6: if ðCureent ClusterID ¼¼ Si:ClusterIDÞ then

7: i þ þ; continue;
8: else
9: Add Si:tagi into P ;

10: CureentClusterID Si:clusterID;
11: i þ þ;
12: end if
13: end for
14: Add MIN VALUE, MAX VALUE into P ;
15: return P .

Algorithm 5 produces buckets boundary P for the histo-gram, and

P ¼ fpij0 _ i _ ng, where pi is the value of tag from the feature

vector. The values spreads for buckets in the histogram are ½p0;

p1Þ; ½p1; p2Þ; . . . ; ½pn_1; pnÞ respectively, and p0
¼ _1, pn ¼ þ1. In Algorithm 5, we let MIN VALUE be _1, and
MAX VALUE be þ1.

Fig. 3. A typical RC-Tree structure.

4.2 Range Cardinality Queries

FastRAQ supports multi-dimensional ranges queries, each of

which may include multiple buckets of the histogram. FastRAQ

uses a unique RecordID (RID, as step 6 in Algo-rithm 4) to

predict whether the cardinalities obtained from different buckets

belonging to the same record. We adopt the HyperLogLogPlus

algorithm to estimate the cardinality in the queried range [15].

We serialize the hash bits to bytes array in each bucket as a

cardinality estimator. HyperLogLog-Plus uses 64 bits hash

function instead of 32 bits in Hyper-LogLog to improve the data-

scale and estimated accuracy in big data environments. Readers

can further refer to the references [15], [16] to learn about

cardinality estimation mechanism. We establish a hierarchical

tree structure to implement the histogram. A typical index

structure is shown in Fig. 3. We term it range cardinality tree

(RC-Tree).

RC-Tree includes three types of nodes, which are root node,
internal nodes, and leaf nodes. The root node or an internal node
points to its children nodes and keeps their values of spreads,

such as ½pi; pjÞ. A leaf node is for one bucket in the histogram.
The parameters in a leaf node are values of spreads for each

bucket, for example ½pi; piþ1Þ, the estimator CE of each bucket,
and the bucket data file pointer. The leaf node only keeps these
statistical informa-tion, and tuples values are stored in bucket
data files. Because the buckets are independent of each other, the
RC-Tree structure and its construction process are similar to the
B+ Tree. We do not discuss the details further in this paper.

In order to improve throughput of RC-Tree, a hash table for

newly incoming data is introduced for incremental updating

process. The hash table consists of multiple nodes which are

identical to the RC-Tree‘s leaves nodes. If a new record is
coming, it first writes into the hash table, creates node if it does

not exist, and then appends the tuples values into a temporary

data file. When the number of nodes in the hash table reaches a

threshold, the hash table flushes nodes into the RC-Tree, and

appends the temporary files to the for-mal bucket data files. The

incremental updating process will greatly improve the throughput

of RC-Tree in big data envi-ronments. Algorithm 6 discusses the

incremental updating process in RC-Tree.

The RC-Tree supports to search a leaf node randomly and

sequentially. For example, when we query range ðli1; li2Þ

cardinality, we first locate the first leaf node using random

searching method. Let the first node be Nodei, such that li1 _

Nodei:pi, where ½pi; piþ1Þ 2 Nodei. Then we find other nodes

sequentially from Nodei, until the last node is found. Let the last

node be Nodej, and li2 _ Nodej:pjþ1, where ½pj; pjþ1Þ 2 Nodej.

All the CEs from Nodei to Nodej

are merged into a single CE with binary format, and the

cardinality of range ½pi; pjþ1Þ is obtained from the merged CE.

If the two edge nodes Nodei, Nodej do not fully cover the

queried range (li1, li2), that is to say, li1 < pi and/or li2 > pjþ1.

There are two methods to compute the remainder edge range

cardinality. The first is to scan the bucket data file to build the

remainder edge cardinality estimator. The second is to use the

estimators from edge nodes, which are Nodei_1 and/or Nodejþ1,

to directly obtain the remainder range cardinality. The second

method is simpler and does not need to scan the bucket data files,

but it will bring extra errors into the estimate. It is believed that if

the edge bucket accounts for smaller cardinality ratio in the final

queried results, the second method can quickly produce satisfied

estimation.

Algorithm 6. Updating(R, P)

Input: (R, P);

R: an input record;
P : bucket boundary key set.

Output: T ;
T : the RC-Tree.

1: for all columns in R do

2: Parse value of index-columns into key-value pairs, in

format of < IndexValue; RID >;
3: Search in the buckets spreads P , and get the target bucket

½pi; pjÞ, such that IndexValue 2 ½pi; pjÞ

4: Search in hash table and get the target node NodeH , which include bucket

range ½pi; pjÞ;

5: NodeH :RCNodeH :RC þ 1;
6: Set RID into

NodeH :CE;
7: Write IndexValue into a temporary bucket data file;

8: if ðhash table node number > thresholdÞ then
9: for all nodes in hash table do

10: Flush the nodes of hash table into T ;

11: Append the temporary data files into the for-mal bucket

data files.
12: end for
13: end if
14: end for
15: return T .

To query cached data in hash table, the process is the same as

Algorithm 7 to obtain cardinality estimator of the cached data,

and then we merge the estimator into CEmerge to compute the
final cardinality estimation. If the request includes multiple
ranges, the queried ranges are connected by AND or OR logical
operators. The logical OR operation is simple. We obtain
estimators for each queried ranges respectively, and then merge

 the estimators into a single estimator to produce the final
ðb_aÞ

2 estimate. The logical AND operation is relatively complex.
12 Currently, FastRAQ uses

 T S
exclusive-inclusive principle for the logical AND operation, which is jAj jBj ¼ jAj þ jBj _ jAj jBj.

When the size of

 T
jjAj jBjj=MINjAj; jBj is large enough, the exclusive-inclu-sive
principle can produce a satisfied accuracy estimate. There are

also some discussions about howTto get a better cardinality
estimation when the size of jjAj jBjj=MINjAj; jBj is small [17].

Algorithm 7. Range cardinality query algorithm

Input: (Q, T , h0);

Q : select distinct count(*) where li1 < ColName <
li2; T : the RC-Tree;
h0: the edge range cardinality ratio.

Output: R;
R: the range cardinality queried result.

1: According to the queried range ðli1; li2Þ, locate the first

node by ColName in RC-Tree T randomly, and let the

searched node be Nodei, where li1 < pi and
½pi; piþ1Þ 2

Nodei; 2: m i;
3: while ðli2 > pmþ1Þ do
4: Merge Nodem. CE into cardinality estimator

 CE ;
 merge

5: m++;
6: end while

7: if ð
_hðNode :CEÞ

i_1 _ h0Þ then

h_ðCEmergeÞ

8: Merge Nodei_1.CE into cardinality estimator

CE ;
merge

9: else

10: Scan bucket data file of Nodei_1 to compute the exact

cardinality CEi_1;
11: Merge CEi_1 into cardinality estimator CEmerge; 12:
end if
13: if ð

_hðNodejþ1:CEÞ

_
 h0Þ then

h_ðCEmergeÞ

14: Merge Nodejþ1. CE into cardinality estimator

CE ;
merge

15: else

16: Scan bucket data file of Nodejþ1 to compute the exact

cardinality CEjþ1;
17: Merge CEjþ1 into cardinality estimator CEmerge;
18: end if
19: R _hðCEmergeÞ;
20: return R.

5 ANALYSIS OF RELATIVE ERRORS

FastRAQ uses approximate answering approaches, such as
sampling, histogram, and cardinality estimation etc., to improve

the performance of range-aggregate queries. We use relative error
as a statistical tool for accuracy analysis. Relative error is widely

used in an approximate answering system. Also, it is easy to
compute the relative errors of combined estimate variables in a

distributed environment for FastRAQ.

In this section, we analyze the estimated relative error and the

confidence interval of final range-aggregate query result.

In our work, the relative error is defined as follows:

 jvariabletrue _

 variableestj ; (2)

 variabletrue

where variabletrue is the true value of a variable, and
variableest is an estimate of the variable variabletrue. Equa-tion
(3) is usually used as an acceptable substitute for the analysis of

 ,

jvariabletrue _ variableestj : (3)

variableest

D is used as a notation to represent relative error of a
given variable. Let Y be the exact range-aggregate result,

b

and Y be estimated variable of Y . Their relative errors are

DY and DY
b
 respectively. Let S be the local range-aggregate

tition. We present Theorem 1 to discuss DS in each partition.
Theorem 1. D

b
 is an unbiased estimation of D in big data

S S environments.

Proof: According to Algorithm 3, the range-aggregate query
S

b

_ (4) ¼
S Count Sample;

where Count is estimated range cardinality obtained
from the histogram, Sample is a sample of values of aggregation-
column in the queried partition. The exact

P where X is a selected tuple in the queried

partition. If the n¼1 j

range-aggregate result S is expressed as S ¼ X ,

j

estimators of two edge-buckets are produced by scan-ning
bucket data files, they do not lead to extra errors of

b ¼ 1
P
n

S
X

S n Avg Avgn j¼1 j
Suppose the selected tuples randomly distribute in the queried
partition, and Avg approaches to Sample when the number of
selected tuples is large enough. According

 DS expressed next:
 b

to Eq. (4), the expectation of can be Count __: (5)
 _ _

 b b _ _

 _ _

 Suppose the buckets of histogram are independent of
each other, then Count is an unbiased estimation of n in big

data environments [16], that is to say,
Count

n ¼ 1, thus
EðDSÞ=0. ut

b

expressed as follows:

We

b

and it is s 2 ðDSampleÞ þ s 2 ðDCountÞ; (6)

where s ð b Þ is variance of relative error of sample
for values of aggregation-column in a partition, and

s
2

ðDCount Þ is variance of relative error for cardinality esti-
mation in a histogram. We suppose that DSample obeys a
uniform distribution, and it can be expressed as Uða; bÞ, where
a and b are the minimum and maximum values of the
distribution. The variance of uniform distribution is

. We omit the minus relative error in the succeeding

discussions. According to Algorithm 2, a and b can be com-puted
in each group within stratified sampling model, and

b

the standard variances (sðD Þ) in different numeric value

S
spaces are listed in Table 2.

The variance of estimated cardinality has been discussed in

the work of [16], and the sðDCountÞ asymptotically

TABLE 2

The Standard Variance in Different Numeric Space

numeric value space ½1; 2
10 20 30

 _ 1& ½1; 2 _ 1& ½1; 2 _ 1&

maximum relative error(b) 0.07 0.07 0.07
 b

the standard variance(ð Þ) 0.02 0.02 0.02

equals to
1:04

ffiffiffi, where m is the number of register bit array. If
p

 m

we set ¼ 2
12 b

 , sðD Þ ¼ 0 026. m S :
Next, we discuss the relative error and confidence inter-val for

final range-aggregate query result.
We use Theorem 2 to discuss relationship between DS and

DY .

Theorem 2. DS is an unbiased estimation of DY , that is

EðDY Þ ¼ EðDSÞ.

Proof According to Eq. (2), DY can be expressed as follows:

M
 i ¼1 DSi _

DY Si; (7)

¼ P
M S

i

i 1

P ¼
where DSi is relative error of local range-aggregate query

result in the ith partition. According to Algorithm 2, the
partitions are independent from each other, and fDSij1 _ i _
Mg are independent and identically distributed
(i.i.d.) variables. The fDSig can be considered as a list of

observations for variable DS. Let
PM

 S
i
 be a constant C,

 i¼1

and the expectation of DY can be written as follows:
!

(8) EðDY Þ ¼ E M DSi _ S i
¼ EðDSÞ:

 P

Thus EðDSÞ is an unbiased estimation of EðDY Þ. ut
We further discuss the variance of variable Y , which is

expressed as follows:

M n

Y ¼ Xij; (9)

X X

where M is the number of partitions, Xij is the value of
aggregation-column in the queried ranges of the ith parti-tion. Let
Si be the local range-aggregate query result in the ith partition,
thus Y is

M
Y ¼ Si: (10)

X
In Eq. (10), Y is the sum of i.i.d. variables fDSig. Accord-ing to Central

Limit Theorem, if M2 is large enough,2 Y obeys a normal distribution, that

is Y _ Nðm; s Þ, where m and s is the

expectation and variance of Si.

We can obtain the corresponding formulas to compute
confidence interval of variable Y . Let Y locate in an interval with
probability p, which is expressed as:

Fig. 6. Performance comparisons for count queries with eight days log

files.
Fig. 4. System configuration used in experiments.

Then Y locates in z m; z m with probability p, where

p

½

_

þ & z s

z ¼ ffiffin, and zp is p-quantile in the standard normal distribu-
tion. The final 100p percent confidence interval of range-

aggregate query result is ½z _ m; z þ m&.

6 EXPERIMENTAL EVALUATION

In this section, we present a prototype of FastRAQ, and evaluate
its performance in terms of query cost, estimated relative errors,
and storage overhead. We compare FastRAQ with Hive through
range-aggregate query examples with real-world page traffic files
from Wikipedia.

Hive is a typical data analysis tool with OðNÞ time

complexity for any ad-hoc range-aggregate queries. Hive can

compile the task of an ad-hoc range-aggregate query into

optimized mapreduce jobs and execute them on top of Hadoop. It

is widely used to process extremely large data sets on commodity

hardware in Facebook [18]. We compare against Hive in our

experiment to illustrate per-formance improvement between

FastRAQ and the OðNÞ time complexity methods. We run our

software on an eleven node cluster connected by 1 Gbit Ethernet

switch. Each server has 6 _ 2:0 GHz processors, 64 GB of RAM,

and 6 SATA disks. We use Cloudera CDH4 in our experi-ments,

which includes the packagings of Hadoop-2.0.0 and Hive-0.10.0.

Hive runs with one master node and 10 slaves.

6.1 Evaluation Methodology

The framework of FastRAQ includes four types of servers:
learning server, load server, query server, and storage serv-ers.
The learning server fetches a certain amount of data set

Fig. 5. The relative errors in different queried ranges.

to learn data distributions, builds histogram and partition vectors

for all partitions, and then dispatches them to other servers. The

load servers receive online data sets, and deliver them to

specified storage servers. The query server receives user‘s query
request, and sends it to all storage servers. The storage servers

keep RC-Tree for each partition, and respond the request

independently. A typical frame-work of FastRAQ is shown in

Fig. 4.

In the experiments, we analyze the pagecount traffic sta-tistics
files of Wikipedia [19]. We construct a table contain-ing four
columns. We set projectcode and pagename columns as index
columns, bytes field as aggregation-col-umn. The FastRAQ
stores four months of the traffic files which includes 960 GB of
uncompressed data.

We first analyze the relative error in different queried
examples. We use the traffic log files from Wikipedia in eight
days. We set random variables in the queried examples and
calculate the relative errors of different examples. The query
example is ―select sumðbytesÞ from pagecounts where

projectcode 2 ð
0

aa
0

;
0 0

Þ ‖, where ‗*‘ is a random variable
string changed from ‗aa‘ to ‗zz‘. The relative errors in different
que-ried examples are shown in Fig. 5. We just present the values
of ‗*‘ on the X axis. When the ‗*‘ equals to ‗aa‘ and ‗ab‘, the
rel-ative errors are equal to zero. The results are calculated by
scanning the log files of the two edge-buckets. When the ‗*‘
grows larger, the relative error increases slightly. The rela-tive
errors are nearly constant when the ‗*‘ equals to ‗cu‘, ‗dd‘ and

‗ex‘. In our experiment, we use ð
0

aa
0

;
0

 dd
0

Þ as our
queried examples in following evaluations.

The examples of range-aggregate queries include count and
sum queries, and aggregate functions on union queries. The
queried examples are shown below:

Count query: Select countð Þ from pagecounts where

projectcode 2 ð
0

aa
0

;
0

 dd
0

Þ;
Sum query: Select sumðbytesÞ from pagecounts

where projectcode 2 ð
0

aa
0

;
0

 dd
0

Þ.
Count on union query: Select countð Þ from pagecounts

where projectcode 2 ð
0

aa
0

;
0

 dd
0

Þ or pagename 2 ð
0

aa
0

;
0

dd
0

Þ;
Sum on union query: Select sumðbytesÞ from pagecounts

where projectcode 2 ð
0

aa
0

;
0

 dd
0

Þ or pagename 2

ð
0

aa
0

;
0

 dd
0

Þ;
During processing of the preceding queries, Hive returns the

exact queries results, and FastRAQ returns estimated results with
relative errors.

Fig. 7. Performance comparisons for sum queries with eight
days log files.

Fig. 8. Performance comparisons for count queries with eight weeks
log files.

Fig. 10. Performance comparisons for count on union
queries with eight days log files.

Fig. 11. Performance comparisons for sum on union queries with
eight days log files.

Fig. 9. Performance comparisons for sum queries with eight weeks log
files.

6.2 Performance Evaluation

We analyze log files containing eight days of hourly log files (1.4
billion records, 61.6 GB uncompressed files), and eight weeks of
hourly log files (9.8 billion records, 432 GB uncom-pressed files)
respectively. We examine the query perfor-mance and
corresponding relative errors in the two systems.

6.2.1 Performance of Range Query

Figs. 6 and 7 illustrate query time comparisons with count and

sum query examples. In the testings of eight days of log files,

Hive costs 114.6 s for count queries, but FastRAQ only costs 4.3

s for the same request. FastRAQ achieves 26 times of

performance improvement on count queries than Hive. Figs. 8

and 9 further illustrate the phenomenon of queries performance

comparisons with eight weeks log files. In the testings of eight

weeks of log files, Hive costs 520 s for sum query, while

FastRAQ costs 6.2 s for the same request. In other words,

FastRAQ achieves 84 times of performance improvement on sum

request. It is believe that, when the size of data sets increases,

FastRAQ can achieve better performance improvement on range-

aggregate queries than Hive.

In our experiment, we generate about 2;000 partitions and

1,000 buckets in each partition. That is to say, the amount of each
data-log file accounts for less than one mil-lionth of the input
data on average. So the query time changes slightly for FastRAQ
in our daily or weekly step-ping tests.

6.2.2 Performance of Union of Set Query

Due to the fact that it needs to scan and merge massive duplicated
tuples in union of set queries, we primarily focus our testings in
union of set range-aggregate queries. The performance
comparisons of union query in the two sys-tems are presented in
Figs. 10, 11, 12, and 13 using the pre-ceding union queries
examples.

Hive predicts if the values of the two index-columns sat-isfy

the union statement in memory. It occupies most of time to fetch

tuples from disk files to memory, thus the query time does not

change much from single index-column statement to union of two

index-columns statements. In Fas-tRAQ, different index-columns

of queried ranges can be searched in parallel in the RC-Tree. The

overhead of union statements is to merge estimators from

different index-col-umns. The merging overhead is negligible.

Thus the query times of the two approaches are nearly the same

as shown in Section 6.2.1.

6.3 Relative Errors

Hive obtains exact query result, and its relative error of que-ried

result is 0. As discussed in Algorithm 7, it does not lead to extra
errors into the estimate when we merge estimators of different

queried dimensions. Thus the estimated relative errors of the

union queries in multiple index-columns are the same as the
errors in single index-column queries. We discuss the detailed

relative errors of the range-aggregate

Fig. 12. Performance comparisons for count on union
queries with eight weeks log files.

Fig. 13. Performance comparisons for sum on union queries with
eight weeks log files.

Fig. 14. Relative errors of count queries with eight days log files.

queries in Section 6.2. Figs. 14, 15, 16, and 17 present the esti-

mated relative errors in the corresponding queries examples.

Because when the volume of data sets is small, the estimator can

achieve better cardinality estimation in each buckets [16]. Thus

FastRAQ achieves more accurate cardinality esti-mation in small

amount of data set environments. When the size of data increases,

the relative error of estimator obeys standard normal distribution,

and its standard variance (s)
1:04 ffiffiffi [16]. In our experiment, we set m ¼ 2

12

equa ls to , and the

p m

standard variance of relative error is 0.026, that is to say, the
relative error falls into [_0:026; þ0:026] with given confi-dence
interval. The experimental results are consistent with the
conclusions in Section 5.

Another important factor is the edge-bucket cardinality ratio

(h0), which affects the estimated relative errors. When h0 is
greater than a threshold, the estimators are obtained directly from
leaves nodes of a RC-Tree, and it will add more errors into the

final estimate. We further analyze the impact of h0 affections on
the estimated relative errors. We design different query examples
to make the values of h0

Fig. 15. Relative errors of sum queries with eight days log files.

Fig. 16. Relative errors of count queries with eight weeks log files.

changing from 0.0001 to 2 percent, and examine the relative
errors caused by estimators of the edge-buckets. Figs. 18 and 19

illustrate the impact of h0 on the estimated relative errors. It

comes to the conclusion that when h0 grows smaller, the errors
caused by the estimators of edge-buckets becomes smaller

correspondingly. It is clearly that when h0 approaches to 0.02
percent the errors caused by estimators of edge-buckets are
negligible. Thus for those queries whose edge-buckets
cardinalities are smaller than a threshold, we can directly use all
the estimators from RC-Tree to generate the final approximate
answering results.

6.4 Pros and Cons

In this section, we analyze the theoretical overheads of Fas-tRAQ
in terms of update cost, query cost, and data volume of the
histogram. We first define some parameters for analy-ses, and the
notations are listed in Table 3.

First, we examine the query cost of FastRAQ. According to

Algorithm 4, the records can be loaded to the servers with

balanced load distribution. The queries operations can be carried

out between partitions parallelly. The cost of transmitting a local

result of a partition is negligible. It pre-dominates the query cost

of FastRAQ to search in the histo-gram. According to Algorithm

7, it costs Oðlog BÞ time to search a random node in RC-Tree. If

the number of buckets B is almost fixed in the histogram, it takes

nearly constant time to search a random node in the histogram.

Let the constant be C. When the estimators of the edge-buckets

are produced by Nscanning data files, the query cost can be

expressed as OðP _BÞ þ C. Thus both approaches reduce the

volume of data needed to scanned greatly. Of course, when the

edge cardinality ratio (h0) is small enough, we can get the

estimators from RC-Tree directly, and the query cost approaches

a constant even in big data environments.

Second, we analyze the update cost of FastRAQ, which is

represented by UpdateFastRAQ. The updating process

Fig. 17. Relative errors of sum queries with eight weeks log files.

Fig. 18. Relative errors of different edge-bucket cardinality ratio (h0)
with one week log files.

 TABLE 3

 The Notations for the Analysis of Complexity

 parameters contents

 n the number of records
 d the number of index-columns

 N the number of index tuples, and N ¼ n _ d

 P the number of partitions

 B the number of bucket for histogram

 size of data files increases, the ratio

 TABLE 4
 Storage Overhead of RC-Tree Index with 1-4 Weeks Log Files

 log files of 1-4 weeks 1 W 2 W 3 W 4 W

 RC-Trees data volume (GB) 5.9 6.5 6.8 7.1
 the volume ratio 0.11 0.06 0.04 0.03

becomes significantly small. It is believed that if the volume of data
files is large enough, the storage overhead produced by RC-Tree is
negligible.

Fig. 19. Relative errors of different edge-bucket cardinality ratio (h0)
with one month log files.

includes delivering a record to a specified partition, and updates

the parameters of the histogram in a partition. The delivering

process can be done in constant time as discussed in Algorithm 4.

When the number of nodes is almost fixed in the RC-Tree, the

updating cost of RC-Tree approaches a constant. The update

process can be parallelized among partitions, and the distributed

throughput of FastRAQ can be expressed as UpdateFastRAQ ¼ P

_ AvgRC _Tree, where AvgRC_Tree is the average update cost in

each RC-Tree. We have designed a cached hash table for

incremental updating process, and it will improve the

performance of throughput significantly.

Third, we discuss the storage overhead of FastRAQ. The RC-

Tree is built on top of the values of index-columns. The leaf node
contains estimator and values of spreads for each bucket. The
tuples values of index-columns are stored in the bucket data file.
The size of RC-Tree volume is expressed as

StorageFastRAQ ¼ P _ B _ NodeRC_Tree,

where NodeRC_Tree is

the size of leaf node in RC-Tree. We further examine the size of
RC-Tree in TB-scale uncompressed data files. The testing results
are shown in Tables 4 and 5. Meanwhile we present the volume
ratio of RC-Tree and the uncompressed source data. When the

7 RELATED WORK

In the Existing System, An Approach called FASTRAQ,

which is a new approximate answering approach in big data

environments for accurate estimations quickly for range-

aggregate queries. The approach first divides big data into

independent partitions with a balanced partitioning algorithm,

and then generates a local estimation for those partitions.

When a query acquires, the FASTRAQ obtains result directly

by summarizing local estimates from all partitions. Here the

balanced partitions algorithm is used which works with a

straight sampling model and divides all data into different

groups with regard to their attribute the value of interest, and

further separates each group into multiple partitions according

to the current data distributions and number of available

servers. The local estimation is a new type of multi-dimension

histogram that is build for learned data distributions. Our

experimental results demonstrate the FASTRAQ provides

range-aggregate query results within a time period two orders

of magnitude lower than that of Hive, while the relative error

is less than 3 percent within the given confidence interval.

DISADVANTAGES:

 As more data is processed, the estimate is

progressively refined and the confidence interval is

narrowed until the satisfied accuracy is obtained.

 Only works on the homogeneous Environment.

The range-aggregate query problem has been studied by

Sharathkumar and Gupta [20] and Malensek [21] in compu-tational

geometry and geographic information systems (GIS). Our work is

primary focused on the approximated range-aggregate query for real-

time data analysis in OLAP. Ho et al. was the first to present Prefix-

Sum Cube approach to solving the numeric data cube aggregation [4]

problems in OLAP. The essential idea of PC is to pre-compute prefix

sums of cells in the data cube, which then can be used to answer

range-aggregate queries at run-time. However, the updates to the

prefix sums are proportional to the size of the data cube. Liang et al.

[6] proposed a dynamic data cube for range-aggregate queries to

improve the update cost, and

d

it still costs OðN
3
Þ time for each update, where d is the number of

dimensions of the data cube and n is the number of distinct tuples at
each dimension. The prefix sum approaches are suitable for the data
which is static or rarely updated. For big data environments, new
data sets arrive continuously, and the up-to-date information is what
the analysts need. The PC and other heuristic pre -computing
approaches are not applicable in such applications.

An important approximate answering approach called Online

Aggregation was proposed to speed range-aggregate queries on

larger data sets [7]. OLA has been widely studied in relational

databases [8] and the current cloud and stream-ing systems [9], [10].

Some studies about OLA have also been conducted on Hadoop and

MapReduce [10], [11], [12]. The OLA is a class of methods to

provide early returns with estimated confidence intervals

continuously. As more data is processed, the estimate is

progressively refined and the confidence interval is narrowed until

the satisfied accuracy is obtained. But OLA can not respond with

acceptable accu-racy within desired time period, which is

significantly important on the analysis of trend for ad-hoc queries.

Our work is related to two approximate answering meth-ods:

sampling and histogram. Sampling is an important

TABLE
Storage OverLoad With RC Tree
 log files of 1-4 months 1 M 2 M 3 M 4 M

 RC-Trees data volume (GB) 7.2 8.1 8.6 8.9

 the volume ratio 0.031 0.017 0.012 0.009

technique for processing of aggregate queries at run

time. The sampling for massive data sets includes

two types: row-level sampling and block-level

sampling [22]. The work in [22] analyzed the

impact of block-level sampling on statistic esti-

mation for histogram, and proposed the

corresponding esti-mators with block-level

samplings. Haas and K€onig€ [23] proposed a new
sampling scheme, which combines the row-level

and page-level samplings in the field of relational

DBMS. Data sampling is also well used in the field

of distrib-uted and streaming environments [24],

[25]. Histogram is another important technique for

selectivity estimation. A series of alterative

techniques were presented in other articles to

provide better selectivity estimation than the

original equi-width method. The multi-dimensional

histograms were also widely studied by researchers.

The problem is more challeng-ing since it was

shown that optimal splitting even in two

dimensions is NP-hard [26]. The hTree [27] and

mHist [28] are the typical works to support multi-

dimensional selectivity estimation. While the

current works are shown that it is quite expensive

to generate a multi-dimensional histogram. Fas-

tRAQ combines sampling, histogram and data

partition approaches together to generate satisfied

estimations in big data environments. All of the

above techniques are designed for distributed

range-aggregate queries paradigm, and it achieves

better performance on both query and update proc-

essing in big data environments.

8 CONCLUSIONS AND FUTURE WORK

 In this paper, An Approach called

FASTRAQ, which is a new approximate answering

approach in big data environments for accurate

estimations quickly for range-aggregate queries.

The approach first divides big data into

independent partitions with a balanced partitioning

algorithm, and then generates a local estimation for

those partitions. When a query acquires, the

FASTRAQ obtains result directly by summarizing

local estimates from all partitions. Here the

balanced partitions algorithm is used which works

with a straight sampling model and divides all data

into different groups with regard to their attribute

the value of interest, and further separates each

group into multiple partitions according to the

current data distributions and number of available

servers. The local estimation is a new type of multi-

dimension histogram that is build for learned data

distributions. Our experimental results demonstrate

the FASTRAQ provides range-aggregate query

results within a time period two orders of

magnitude lower than that of Hive, while the

relative error is less than 3 percent within the given

confidence interval.

In our Future work, we propose a new

approach called FASTRAQ which works on the

heterogeneous big data environment. That follows

the answering approach in big data environments

for accurate estimations quickly for range-

aggregate queries. This proposed work, divides big

data into independent partitions with a balanced

partitioning algorithm, and then generates a local

estimation for those partitions. Our experimental

can be implemented in the real time environment

for the effective results

REFERENCES
[1] P. Mika and G. Tummarello, ―Web semantics
in the clouds,‖ IEEE Intell. Syst., vol. 23, no. 5, pp.
82–87, Sep./Oct. 2008.

[2] T. Preis, H. S. Moat, and E. H. Stanley,
―Quantifying trading behavior in financial markets
using Google trends,‖ Sci. Rep., vol. 3, p. 1684,

2013.
[3] H. Choi and H. Varian, ―Predicting the

present with Google trends,‖ Econ. Rec., vol. 88,
no. s1, pp. 2–9, 2012.
[4] C.-T. Ho, R. Agrawal, N. Megiddo, and R.

Srikant,, ―Range queries in OLAP data cubes,‖
ACM SIGMOD Rec., vol. 26, no. 2, pp. 73–88,
1997.
[5] G. Mishne, J. Dalton, Z. Li, A. Sharma, and J.

Lin, ―Fast data in the era of big data: Twitter‘s
real-time related query suggestion architecture,‖ in
Proc. ACM SIGMOD Int. Conf. Manage. Data,
2013, pp. 1147–1158.
[6] W. Liang, H. Wang, and M. E. Orlowska,
―Range queries in dynamic OLAP data cubes,‖
Data Knowl. Eng., vol. 34, no. 1, pp. 21–38, Jul.
2000.
[7] J. M. Hellerstein, P. J. Haas, and H. J. Wang,

―Online aggregation,‖ ACM SIGMOD Rec., vol.
26, no. 2, 1997, pp. 171–182.
[8] P. J. Haas and J. M. Hellerstein, ―Ripple joins
for online aggregation,‖ in ACM SIGMOD Rec.,
vol. 28, no. 2, pp. 287–298, 1999.
[9] E. Zeitler and T. Risch, ―Massive scale-out of

expensive continuous queries,‖ Proc. VLDB
Endowment, vol. 4, no. 11, pp. 1181–1188, 2011.
[10] N. Pansare, V. Borkar, C. Jermaine, and T.
Condie, ―Online aggregation for large
MapReduce jobs,‖ Proc. VLDB Endowment, vol. 4,
no. 11, pp. 1135–1145, 2011.
[11] T. Condie, N. Conway, P. Alvaro, J. M.

Hellerstein, J. Gerth, J. Talbot, K. Elmeleegy, and
R. Sears, ―Online aggregation and continuous
query support in MapReduce,‖ in Proc. ACM

SIGMOD Int. Conf. Manage. Data, 2010, pp.
1115–1118.
[12] Y. Shi, X. Meng, F. Wang, and Y. Gan, ―You

can stop early with cola: Online processing of

aggregate queries in the cloud,‖ in Proc. 21st ACM

Int. Conf. Inf. Know. Manage., 2012, pp. 1223–
1232.
[13] K. Bilal, M. Manzano, S. Khan, E. Calle, K.

Li, and A. Zomaya, ―On the characterization of
the structural robustness of data center networks,‖
IEEE Trans. Cloud Comput., vol. 1, no. 1, pp. 64–

77, Jan.–Jun. 2013.
[14] S. De Capitani di Vimercati, S. Foresti, S.

Jajodia, S. Paraboschi, and P. Samarati, ―Integrity
for join queries in the cloud,‖ IEEE Trans. Cloud
Comput., vol. 1, no. 2, pp. 187–200, Jul.–Dec.
2013.
[15] S. Heule, M. Nunkesser, and A. Hall,

―Hyperloglog in practice: algorithmic engineering
of a state of the art cardinality estimation
algorithm,‖ in Proc. 16th Int. Conf. Extending
Database Technol., 2013, pp. 683–692.
[16] P. Flajolet, E. Fusy, O. Gandouet, and F.
Meunier, ―Hyperloglog: The analysis of a near-
optimal cardinality estimation algorithm,‖ in Proc.
Int. Conf. Anal. Algorithms, 2008, pp. 127–146.
[17][Online].Available:http://research.neustar.biz/2
012/12/17/hllintersections-2/,2012.
[18] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P.
Chakka, N. Zhang, S. Antony, H. Liu, and R.
Murthy, ―Hive—a petabyte scale data warehouse
using Hadoop,‖ in Proc. IEEE 26th Int. Conf. Data
Eng., 2010, pp. 996–1005.
[19] D. Mituzas. Page view statistics for

wikimedia projects. (2013). [Online]. Available:

http://dumps.wikimedia.org/other/pagecounts-raw/
[20] R. Sharathkumar and P. Gupta, ―Range-
aggregate proximity queries,‖ IIIT Hyderabad,
Telangana 500032, India, Tech. Rep. IIIT/
TR/2007/80, 2007.
[21] M. Malensek, S. Pallickara, and S. Pallickara,

―Polygon-based query evaluation over geospatial

data using distributed hash tables,‖ in Proc.
IEEE/ACM 6th Int. Conf. Utility Cloud Comput.,

2013, pp. 219–226. TABLE 5 Storage Overhead of

RC-Tree Index with 1-4 Months Log Files log files

of 1-4 months 1M 2M 3M 4M RC-Trees data

volume (GB) 7.2 8.1 8.6 8.9 the volume ratio 0.031

0.017 0.012 0.009 YUN ET AL.: FASTRAQ: A
FAST APPROACH TO RANGE-AGGREGATE
QUERIES IN BIG DATA ENVIRONMENTS 217
[22] S. Chaudhuri, G. Das, and U. Srivastava,
―Effective use of blocklevel sampling in statistics
estimation,‖ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2004, pp. 287–298.
[23] P. J. Haas and C. Konig, ―A bi-level bernoulli

scheme for database € sampling,‖ in Proc. ACM
SIGMOD Int. Conf. Manage. Data, ACM, 2004,
pp. 275–286.
[24] S. Wu, S. Jiang, B. C. Ooi, and K.-L. Tan,

―Distributedonline aggregations,‖ Proc. VLDB

Endowment, vol. 2, no. 1, pp. 443–454, Aug. 2009.
[25] E. Cohen, G. Cormode, and N. Duffield,

―Structure-aware sampling: Flexible and accurate

summarization,‖ Proc. VLDB Endowment, vol. 4,
no. 11, pp. 819–830, 2011.
[26] S. Muthukrishnan, V. Poosala, and T. Suel,

―On rectangular partitionings in two dimensions:
Algorithms, complexity and applications,‖ in Proc.
7th Int. Conf. Database Theory, 1999, pp. 236–256.
[27] M. Muralikrishna and D. J. DeWitt, ―Equi-
depth multidimensional histograms,‖ ACM
SIGMOD Rec., vol. 17, no. 3, 1988, pp. 28–36.
[28] V. Poosala and Y. E. Ioannidis, ―Selectivity
estimation without the attribute value independence

assumption,‖ in Proc. 23rd Int. Conf. Very Large

Data Bases, 1997, vol. 97, pp. 486–495.

301

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Issue 4, April 2016

	ISSN 2395-695X (Print)
	ISSN 2395-695X (Online)
	International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
	ISSN 2395-695X (Print)
	ISSN 2395-695X (Online)
	International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

