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Abstract:  MapReduce is a processing technique 

and a program model for distributed computing 

based on java. This process contains two 

important tasks namely Map and Reduce. This 

framework is widely used for mining the big 

data. In the real world new data and their 

updates are constantly evolving, which cause 

the stale of data mining results. In order to 

overcome these challenges, we propose an 

Incremental Processing named i2Mapreduce an 

extension to MapReduce. Our i2Mapreduce  (i) 

performs key-value pair level incremental 

processing, (ii) supports not only one-step 

computation but also more sophisticated 

iterative computation, which is widely used in 

data mining applications, and (iii) incorporates 

a set of novel techniques to reduce I/O overhead 

for accessing preserved fine-grain computation 

states. Experimental results on Amazon EC2 

show significant performance improvements of 

i2MapReduce compared to both plain and 

iterative MapReduce performing 

re-computation.   

IndexTerms—Incremental processing, 

MapReduce, iterative computation, big data 

 

I  INTRODUCTION 

Today huge amount of digital data is being 

accumulated in many important areas, including 

e-commerce, social network, finance, health care, 

education, and environment. It has become 

increasingly popular to mine such big data in order 

to gain insights to help business decisions or to 

provide better personalized, higher quality 

services. In recent years, a large number of 

computing frameworks [1], [2], [3], [4], [5], [6], 

[7], [8], [9], [10] have been developed for big data 

analysis. Among these frameworks, MapReduce 

[1] (with its open-source implementations, such as 

Hadoop) is the most widely used in production 

because of its simplicity, generality, and maturity. 

We focus on improving MapReduce in this paper. 

Big data is constantly evolving. As new data and 

updates are being collected, the input data of a big 

data mining algorithm will gradually change, and 

the computed results will become stale and 

obsolete over time. In many situations, it is 

desirable to periodically refresh the mining 

computation in order to keep the mining results 

up-to-date. For example, the PageRank algorithm 

computes ranking scores of web pages based on the 

webgraph structure for supporting web search. 

However, the web graph structure is constantly 

evolving; Web pages and hyper-links are created, 

deleted, and updated. As the underlying web graph 

evolves, the PageRank ranking  

A number of previous studies (including 

Percolator , CBP , and Naiad ) have followed this 

principle and designed new programming models 

to support incremental processing. Unfortunately, 

the new programming models (BigTable observers 

in Percolator, stateful translate opera-tors in CBP, 

and timely dataflow paradigm in Naiad) are 

drastically different from MapReduce, requiring 

pro-grammers to completely re-implement their 

algorithms. 

 

On the other hand, Incoop extends MapReduce to 

support incremental processing. However, it has 

two main limitations. First, Incoop supports only 

task-level incremental processing. That is, it saves 

and reuses states at the granularity of individual 

Map and Reduce tasks. Each task typically 

processes a large number of key-value pairs 

(kv-pairs). If Incoop detects any data changes in the 

input of a task, it will rerun the entire task. While 

this approach easily leverages existing MapReduce 

features for state savings, it may incur a large 
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amount of redundant computation if only a small 

fraction of  kv-pairs have changed in a task. 

Second, Incoop supports only one-step 

computation, while important mining algorithms, 

such as PageRank, require iterative computation. 

Incoop would treat each iteration as a separate 

MapReduce job. However, a small number of input 

data changes may gradually propagate to affect a 

large portion of intermediate states after a number 

of iterations, resulting in expensive global 

re-computation afterwards. 

   I propose i
2
MapReduce, an extension to 

MapReduce that supports fine-grain incremental 

processing for both one-step and iterative 

computation. Compared to previous solutions, 

i
2
MapReduce incorporates the following three 

novel features: 

 Finegrain incremental processing using 

MRBGstore. 

 General purpose iterative computation. 

 Incremental processing for iterative 

computation 

 

II   MAPREDUCE BACKGROUND 

 

       A MapReduce program is composed of a Map 

function and a Reduce function [1], as shown in 

Fig. 1. Their APIs are as follows: 

 

mapðK1; V 1Þ ! ½hK2; V 2i& 

 

reduceðK2; fV 2gÞ ! ½hK3; V 3i&: 

 

The Map function takes a kv-pair hK1; V 1i as 

input and computes zero or more intermediate 

kv-pairs hK2; V 2is. Then all hK2; V 2 is are 

grouped by K2. The Reduce function takes a K2 

and a list of fV 2g as input and computes the final 

output kv-pairs hK3; V 3is. 

   A MapReduce system (e.g., Apache Hadoop) 

usually reads the input data of the MapReduce 

computation from and writes the final results to a 

distributed file sys-tem (e.g., HDFS), which 

divides a file into equal-sized (e.g., 64 MB) blocks 

and stores the blocks across a cluster of machines. 

For a MapReduce program, the MapReduce system 

runs a job progress, and a set of TaskTracker 

pro-cesses on worker nodes to perform the actual 

Map and Reduce tasks. 

   The JobTracker starts a Map task per data block, 

and typically assigns it to the TaskTracker on the 

machine that holds the corresponding data block in 

order to minimize communication overhead. Each 

Map task calls the Map function for every input 

hK1; V 1i, and stores the intermediate kv-pairs 

hK2; V 2is on local disks. Intermediate results are 

shuffled to Reduce tasks according to a partition 

function (e.g., a hash function) on K2. After a 

Reduce task obtains and merges intermediate 

results from all Map Tasks, it invokes the Reduce 

function on each hK2; fV 2gi to generate the final 

output kv-pairs hK3; V 3. 
 

III FINE GRAIN INCREMENTAL 

PROCESSING FOR ONE STEP 

COMPUTATION 

I begin by describing the basic idea of fine-grain 

incremental processing , i present the main design, 

including the MRBGraph abstraction. 

1 Basic Idea  

 

   Consider two MapReduce jobs A and A
0
 

performing the same computation on input data set 

D and D
0
, respectively. D

0
 ¼ D þ DD, where DD 

consists of the inserted and deleted input hK1; V 

1is
1
. An update can be represented as a dele-tion 

followed by an insertion. Our goal is to re-compute 

only the Map and Reduce function call instances 

that are affected by DD. 

   Incremental computation for Map is 

straightforward. We simply invoke the Map 

function for the inserted or deleted hK1; V 1is. 

Since the other input kv-pairs are not changed, their 

Map computation would remain the same. We now 

have computed the delta intermediate values, 

denoted DM, including inserted and deleted hK2; 

V 2is. 

   To perform incremental Reduce computation, we 

need to save the fine-grain states of job A, denoted 

M, which includes hK2; fV 2gis. We will 

re-compute the Reduce func-tion for each K2 in 

DM. The other K2 in M does not see any changed 

intermediate values and therefore would generate 

the same final result. For a K2 in DM, typically 

only  
of V 2 have changed. Here, we retrieve the saved hK2; fV 2gi 
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Fig No1:MRBGraph 

 

 

 

and apply the inserted and/or deleted values from 

DM to obtain an updated Reduce input. We then 

re-compute the Reduce function on this input to 

gener-ate the changed final results hK3; V 3. 

2 MRBGraph Abstraction  

 

   We use a MRBGraph (Map Reduce Bipartite 

Graph) abstrac-tion to model the data flow in 

MapReduce, as shown in Fig. 2a. Each vertex in 

the Map task represents an individual Map function 

call instance on a pair of hK1; V 1i. Each vertex in 

the Reduce task represents an individual Reduce 

function call instance on a group of hK2; fV 2gi. 

An edge from a Map instance to a Reduce instance 

means that the Map instance 

    1 assume that new data or new updates are 

captured via incre-mental data acquisition or 

incremental crawling [16], [17]. Incremental data 

acquisition can significantly save the resources for 

data collection; it does not re-capture the whole  

data set but only capture the revisions since the last 

time that data was captured.generates a hK2; V 2i 

that is shuffled to become part of the input to the 

Reduce instance. For example, the input of Reduce 

instance a comes from Map instance 0, 2, and 4. 

   MRBGraph edges are the fine-grain states M that 

we would like to preserve for incremental 

processing. An edge contains  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)initial run                            (b) incremental run 

Fig No 2:. Incremental processing for an 

application that computes the sum of in-edge 

weights for each vertex. 

 

three pieces of information: (i) the source Map 

instance, (ii) the destination Reduce instance (as 

identified by K2), and (iii) the edge value (i.e., V 

2). Since Map input key K1 may not be unique, 

i
2
MapReduce generates a globally unique Map key 

MK for each Map instance. There-fore, 

i
2
MapReduce will preserve (K2, MK, V 2) for each 

MRBGraph edge.  

3 Fine-Grain Incremental Processing Engine 

Fig.2 illustrates the fine-grain incremental 

processing engine with an example application, 

which computes the sum of in-edge weights for 

each vertex in a graph. As shown at the top of Fig. 

3, the input data, i.e., the graph structure, evolves 

over time. In the following, we describe how the 

engine performs incremental processing to refresh 

the analysis results. 

   Initial run and MRBGraph preserving. The initial 
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run per-forms a normal MapReduce job, as shown 

in Fig. 3a. The Map input is the adjacency matrix of 

the graph. Every record corresponds to a vertex in 

the graph. K1 is vertex id i, and V 1 contains 

“j1:wi;j1 ; j2:wi;j2 ; ...” where j is a destination vertex 

and wi;j is the weight of the out-edge ði; jÞ. Given 

such a record, the Map function outputs 

intermediate kv-pair hj; wi;ji for every j. The 

shuffling phase groups the edge weights by the 

destination vertex. Then the Reduce function 

computes for a vertex j the sum of all its in-edge 

weights as i wi;j. 

   For incremental processing, we preserve the 

fine-grain MRBGraph edge states. A question 

arises: shall the states be preserved at the Map side 

or at the Reduce side? We choose the latter because 

during incremental processing original 

intermediate values can be obtained at the Reduce 

side without any shuffling overhead. The engine 

transfers the globally unique MK along with hK2; 

V 2i during the shuffle phase. Then it saves the 

states (K2; MK; V 2) in a MRBGraph file at every 

Reduce task, as shown in Fig. 2b. 

   Delta input. i
2
MapReduce expects delta input 

data that contains the newly inserted, deleted, or 

modified kv-pairs as the input to incremental 

processing. Note that identifying the data changes 

is beyond the scope of this paper; Many 

incremental data acquisition or incremental 

crawling tech-niques have been developed to 

improve data collection per-formance [16], [17]. 

   Fig. 3b shows the delta input for the updated 

application graph. A ‘þ’ symbol indicates a newly 
inserted kv-pair, while a ‘_’ symbol indicates a 
deleted kv-pair. An update is represented as a 

deletion followed by an insertion. For example, the 

deletion of vertex 1 and its edge are reflected as h1; 

2:0:4;‘_’i. The insertion of vertex 3 and its edge 
leads to h3; 0:0:1;‘þ’i. The modification of the 
vertex 0’s edges are reflected by a deletion of the 

old record h0; 1:0:3;2:0:3;‘_’i and an insertion of a 
new record h0; 2:0:6;‘_’i. 

Incremental map computation to obtain the delta 

MRBGraph. The engine invokes the Map function 

for every record in the delta input. For an insertion 

with ‘þ’, its intermediate results hK2; MK; V 20
 is 

represent newly inserted edges in the MRBGraph. 

For a deletion with ‘_’, its intermediate results 

indicate that the corresponding edges have been 

removed from the MRBGraph. The engine replaces 

the V 2
0
s of the deleted MRBGraph edges with ‘_’. 

During the Map-Reduce shuffle phase, the 

intermediate hK2; MK; V 2
0is and hK2; MK;‘_’is 

with the same K2 will be grouped together. The 

delta MRBGraph will contain only the changes to 

the MRBGraph and sorted by the K2 order. 

   Incremental reduce computation. The engine 

merges the delta MRBGraph and the preserved 

MRBGraph to obtain the updated MRBGraph 

using the algorithm in Section 3.4. For each hK2; 

MK;‘_’i, the engine deletes the corresponding 
saved edge state. For each hK2; MK; V 2

0
i, the 

engine first checks duplicates, and inserts the new 

edge if no duplicate exists, or else updates the old 

edge if duplicate exists. (Note that (K2, MK) 

uniquely identifies a MRBGraph edge.) Since an 

update in the Map input is represented as a deletion 

and an insertion, any modification to the 

intermediate edge state (e.g., h2; 0; _i in the 

example) consists of a deletion (e.g., h2; 0;‘_’i) 
followed by an insertion (e.g., h2; 0; 0:6i). For each 

affected K2, the merged list of V 2 will be used as 

input to invoke the Reduce function to generate the 

updated final results. 

 

4 MRBG-Store  

 

   The MRBG-Store supports the preservation and 

retrieval of fine-grain MRBGraph states for 

incremental processing. We see two main 

requirements on the MRBG-Store. First, the 

MRBG-Store must incrementally store the 

evolving MRBGraph. Consider a sequence of jobs 

that incrementally refresh the results of a big data 

mining algorithm. As input data evolves, the 

intermediate states in the MRBGraph will also 

evolve. It would be wasteful to store the entire 

   MRBGraph of each subsequent job. Instead, we 

would like to obtain and store only the updated part 

of the MRBGraph. Second, the MRGB-Store must 

Reduce instances. For incremental Reduce 

computation, i
2
MapReduce re-computes the 

Reduce instance associated with each changed 

MRBGraph edge, as described in Section 3.3. For a 

changed edge, it queries the MRGB-Store to 

retrieve the preserved states of the in-edges of the 
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associated K2, and merge the preserved states with 

the newly computed edge changes. 

Fig. 4 depicts the structure of the MRBG-Store. We 

describe how the components of the MRBG-Store 

work together to achieve the above two 

requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig No 4: Structure of MRBG store 

   Fine-grain state retrieval and merging. A 

MRBGraph file stores fine-grain intermediate 

states for a Reduce task, as illustrated previously in 

Fig. 2b. In Fig. 4, we see that the hK2; MK; V 2is 

with the same K2 are stored contiguously as a 

chunk. Since a chunk corresponds to the input to a 

Reduce instance, our design treats chunk as the 

basic unit, and always reads, writes, and operates 

on entire chunks. 

   The contents of a delta MRBGraph file are shown 

on the bottom left of Fig. 4. Every record represents 

a change in the original (last preserved) 

MRBGraph. There are two kinds of records. An 

edge insertion record (in green color) contains a 

valid V 2 value; an edge deletion record (in red 

color) contains a null value (as marked by ‘_’)    
   The merging of the delta MRBGraph with the 

MRBGraph file in the MRBG-Store is essentially a 

join operation using K2 as the join key. Since the 

size of the delta MRBGraph is typically much 

smaller than the MRBGraph file, it is waste-ful to 

read the entire MRBGraph file. Therefore, we 

construct an index for selective access to the 

MRBGraph file: Given a K2, the index returns the 

chunk position in the MRBGraph file. As only 

point lookup is required, we employ a hash-based 

implementation for the index. The index is stored 

in an index file and is preloaded into memory 

before Reduce computation. We apply the index 

nested loop join for the merging operation. both the 

delta MRBGraph and the MRBGraph file are in the 

order generated by the shuffling phase. That is, the 

two files are sorted in K2 order. Therefore, we 

introduce a read cache and a dynamic read window 

technique for further optimization. Fig. 4 shows the 

idea. Given a sequence of K2s, there are two ways 

to read the corresponding chunks: (i) performing an 

individual I/O operation for each chunk; or (ii) 

per-forming a large I/O that covers all the required 

chunks. The former may lead to frequent disk 

seeks, while the latter may result in reading a lot of 

useless data. Fortunately, we know the list of sorted 

K2s to be queried. Using the index, we obtain their 

chunk positions. We can estimate the costs of using 

a large I/O versus a number of individual I/Os, and 

intelligently determine the read window size w 

based on the cost estimation. 

   Algorithm 1 shows the query algorithm to 

retrieve the the chunk k given a query key k and the 

list of queried keys L ¼ fL1; L2; . . .g. If the chunk k 

does not reside in the read cache (line 1), it will 

compute the read window size w by a heuristic, and 

read w bytes into the read cache. The loop (line 

4–8) probes the gap between two consecutive 

queried chunks (chunk Li and chunk Liþ1). The gap 

size indicates the wasted read effort. If the gap is 

less than a threshold T (T ¼ 100 KB by default), we 

consider that the benefit of large I/O can 

compensate for the wasted read effort, and enlarge 

the window to cover chunk Liþ1. In this way, the 

algorithm finds the read window size w by 

balancing the cost of a large I/O versus a number of 

individual I/Os. It also ensures that the read 

window size does not exceed the read cache. Then 

the algorithm read the next w bytes into the read 

cache (line 9) and retrieves the requested chunk k 

from the read cache (line 11). Incremental storage 

of MRBgraph changes. As shown in Fig. 4, the 

outputs of the merge operation, which are the 
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up-to-date MRBGraph states (chunks), are used to 

invoke the Reduce function. In addition, the 

outputs are also buffered in an append buffer in 

memory 

 

 

. When the append buffer is full, the MRBG-Store 

performs sequential I/Os to append the contents of 

the buffer to the end of the MRBGraph file. When 

the merge operation completes, the MRBG-Store 

flushes the append buffer, and updates the index to 

reflect the new file positions for the updated 

chunks. Note that obsolete chunks are NOT 

immediately updated in the file (or removed from 

the file) for I/O efficiency. The MRBGraph file is 

reconstructed off-line when the worker is idle. In 

this way, the MRBG-Store efficiently supports 

incre-mental storage of MRBGraph Changes. 
IV  GENERAL PURPOSE  SUPPORT FOR 

ITERATIVECOMPUTATION 

value Ri;j I first analyze several representative 

iterative algorithms in Section 4.1. Based on this 

analysis, we propose a general-purpose 

MapReduce model for iterative computation in 

Section 4.2, and describe how to efficiently support 

this model in Section 4.3. 

1 Analyzing Iterative Computation  
 

    PageRank. PageRank [11] is a well-known 

iterative graph algorithm for ranking web pages. It 

computes a ranking score for each vertex in a 

graph. After initializing all ranking scores, the 

computation performs a MapReduce job per 

iteration, as shown in Algorithm 2. i and j are 

vertex ids, Ni is the set of out-neighbor vertices of i, 

Ri is i’s ranking score that is updated iteratively. ‘j’ 
means concatenation. All Ri’s are initialized to 
one.

2
 The Map instance on vertex i sends ¼ Ri=jNi 

j to all its out-neighbors j, where jNi j is the number 

of i’s out-neighbors. The Reduce instance on 

vertex j updates Rj by summing the Ri;j received 

from all its in-neighbors i, and applying a damping 

factor d. 

 

Kmeans. Kmeans  is a commonly used 

clustering algo-rithm that partitions points into k 

clusters. We denote the ID of a point as pid, and its 

feature values pval. The computation starts with 

selecting k random points as cluster centroids set 

fcid; cvalg. As shown in Algorithm 3, in each 

iteration, the Map instance on a point pid assigns 

the point to the nearest centroid. The Reduce 

instance on a centroid cid updates the centroid by 

averaging the values of all assigned points fpvalg. 

 

GIM-V. Generalized Iterated Matrix-Vector 

multiplica-tion (GIM-V)  is an abstraction of many 

iterative graph mining operations (e.g., PageRank, 

spectral clustering, diameter estimation, connected 

components). These graph mining algorithms can 

be generally represented by operat-ing on an n _ n 

matrix M and a vector v of size n. Suppose both the 

matrix and the vector are divided into sub-blocks. 

Let mi;j denote the ði; jÞth block of M and vj denote 

the jth block of v. The computation steps are 



                                                                                                                                        ISSN (ONLINE): 2395-695X 
ISSN (PRINT): 2395-695X 

       International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST) 
       Vol. 2, Issue 4, April 2016 

 

                                                                  All Rights Reserved © 2016 IJARBEST   277 

 

 

similar to those of the matrix-vector multiplication 

and can be abstracted into three operations: (1) 

mvi;j = combine2(mi;j; vj); (2) v
0

i = 

combineAlli({mvi;j}); and (3) vi = assign(vi; v
0

i). 

We can compare combine2 to the multiplication 

between mi;j and vj, and compare combineAll to the 

sum of mvi;j for row i. Algorithm 4 shows the 

MapReduce implementation with two jobs for each 

iteration. The first job assigns vector block vj to 

multiple matrix blocks mi;j (8i) and performs 

com-bine2(mi;j; vj) to obtain mvi;j. The second job 

groups the mvi;j and vi on the same i, performs the 

combineAll ({mvi;j}) operation, and updates vi 

using assign(vi; v
0

i). 

 

 V  INCREMENTAL ITERATIVE 

PROCESSING 

 

In this section, we present incremental processing 

techni-ques for iterative computation. Note that it 

is not sufficient to simply combine the above 

solutions for incremental one-step processing (in 

Section 3) and iterative computation (in Section 4). 

In the following, we discuss three aspects that we 

address in order to achieve an effective design 

VI  EXPERIMENTS 

 

I implement a prototype of i
2
MapReduce by 

modifying Hadoop-1.0.3. In order to support 

incremental and iterative processing, a few 

MapReduce APIs are changed or added. We 

summarize these API changes in  for more details). 

In this section, we perform real-machine 

experiments to evaluate i
2
MapReduce. 

 

1  Experiment Setup 

 

Solutions to compare. Our experiments compare 

four solutions: (i) PlainMR recomp, 

re-computation on vanilla Hadoop; (ii) iterMR 

recomp, re-computation on Hadoop optimized for 

iterative computation (as described in Section 4); 

(iii) HaLoop recomp, re-computation on the 

iterative MapReduce framework HaLoop [8], 

which optimizes MapReduce by providing a 

structure data caching mechanism; (iv) 

i
2
MapReduce, our proposed solution. To the best 

of our knowledge, the task-level coarse-grain 

incremental processing system, Incoop , is not 

publicly available. Therefore, we cannot compare 

i
2
MapReduce with Incoop. Nevertheless, our 

statistics show that without careful data partition, 

almost all tasks see changes in the experiments, 

making task-level incremental processing less 

effective. 

Experimental environment. All experiments run on 

Amazon EC2. We use 32 m1.medium instances. 

Each m1. medium instance is equipped with 2 

ECUs, 3.7 GB memory, and 410 GB storage. 

 

Applications. We have implemented four iterative 

mining algorithms, including PageRank 

(one-to-one correlation), Single Source Shortest 

Path (SSSP, one-to-one correlation), Kmeans 

(all-to-one correlation), and GIM-V (many-to-one 

correlation). For GIM-V, we implement iterative 

matrix-vector multiplication as the concrete 

application using GIM-V model 

 

VII   CONCLUSION 

    Big Data is constantly evolving day to day, so 

that the data mining applications are stale and 

obsolete overtime, to overcome the challenges we 

propose an incremental processing method called 

i2MapReduce, an extension of MapReduce which 

is used for Mining Big Data. The i2MapReduce is a 

MapReduce based framework for incremental big 

data processing. This approach has three steps they 

are, a fine grained incremental engine, a 

general-purpose iterative model, and a set of 

effective techniques for incremental iterative 

computation called change propagation control. 

Our experimental results show significance 

performance on our dataset which has 

improvements of i2MapReduce compared to both 

plain and iterative MapReduce that performs 

re-computation. 

 

 

VIII  FUTURE WORK 

Our Future work describes the 

i2MapReduce which is an extension of 

MapReduce. This work used for the incremental 

big data processing, which uses fine-grained 

incremental engine, a general purpose iterative 

model that includes iteration algorithms such as 
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PageRank, Possibilistic fuzzy c-means, 

Generalized Iterated Matrix-Vector multiplication. 

Finally the performance and comparison result and 

resultant graph are displayed. 
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