
 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 4, April 2016

 All Rights Reserved © 2016 IJARBEST 271

 I2
MAPREDUCE: INCREMENTAL MAPREDUCE

USING FUZZY C-MEANS CLUSTERING FOR MINING

EVOLVING BIG DATA
 Mr.T.Kumaragurubaranm M.Tech,(Ph.D)., , Ms.M.Santha lakshmi M.E(CSE).,

 Assistant Professor , CSE, Mohamed Sathak Engineering College,kilakarai,India

 Final year Student, CSE, Mohamed Sathak Engineering College,kilakarai,India

Abstract: MapReduce is a processing technique

and a program model for distributed computing

based on java. This process contains two

important tasks namely Map and Reduce. This

framework is widely used for mining the big

data. In the real world new data and their

updates are constantly evolving, which cause

the stale of data mining results. In order to

overcome these challenges, we propose an

Incremental Processing named i2Mapreduce an

extension to MapReduce. Our i2Mapreduce (i)

performs key-value pair level incremental

processing, (ii) supports not only one-step

computation but also more sophisticated

iterative computation, which is widely used in

data mining applications, and (iii) incorporates

a set of novel techniques to reduce I/O overhead

for accessing preserved fine-grain computation

states. Experimental results on Amazon EC2

show significant performance improvements of

i2MapReduce compared to both plain and

iterative MapReduce performing

re-computation.

IndexTerms—Incremental processing,

MapReduce, iterative computation, big data

I INTRODUCTION

Today huge amount of digital data is being

accumulated in many important areas, including

e-commerce, social network, finance, health care,

education, and environment. It has become

increasingly popular to mine such big data in order

to gain insights to help business decisions or to

provide better personalized, higher quality

services. In recent years, a large number of

computing frameworks [1], [2], [3], [4], [5], [6],

[7], [8], [9], [10] have been developed for big data

analysis. Among these frameworks, MapReduce

[1] (with its open-source implementations, such as

Hadoop) is the most widely used in production

because of its simplicity, generality, and maturity.

We focus on improving MapReduce in this paper.

Big data is constantly evolving. As new data and

updates are being collected, the input data of a big

data mining algorithm will gradually change, and

the computed results will become stale and

obsolete over time. In many situations, it is

desirable to periodically refresh the mining

computation in order to keep the mining results

up-to-date. For example, the PageRank algorithm

computes ranking scores of web pages based on the

webgraph structure for supporting web search.

However, the web graph structure is constantly

evolving; Web pages and hyper-links are created,

deleted, and updated. As the underlying web graph

evolves, the PageRank ranking

A number of previous studies (including

Percolator , CBP , and Naiad) have followed this

principle and designed new programming models

to support incremental processing. Unfortunately,

the new programming models (BigTable observers

in Percolator, stateful translate opera-tors in CBP,

and timely dataflow paradigm in Naiad) are

drastically different from MapReduce, requiring

pro-grammers to completely re-implement their

algorithms.

On the other hand, Incoop extends MapReduce to

support incremental processing. However, it has

two main limitations. First, Incoop supports only

task-level incremental processing. That is, it saves

and reuses states at the granularity of individual

Map and Reduce tasks. Each task typically

processes a large number of key-value pairs

(kv-pairs). If Incoop detects any data changes in the

input of a task, it will rerun the entire task. While

this approach easily leverages existing MapReduce

features for state savings, it may incur a large

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 4, April 2016

 All Rights Reserved © 2016 IJARBEST 272

amount of redundant computation if only a small

fraction of kv-pairs have changed in a task.

Second, Incoop supports only one-step

computation, while important mining algorithms,

such as PageRank, require iterative computation.

Incoop would treat each iteration as a separate

MapReduce job. However, a small number of input

data changes may gradually propagate to affect a

large portion of intermediate states after a number

of iterations, resulting in expensive global

re-computation afterwards.

 I propose i
2
MapReduce, an extension to

MapReduce that supports fine-grain incremental

processing for both one-step and iterative

computation. Compared to previous solutions,

i
2
MapReduce incorporates the following three

novel features:

 Finegrain incremental processing using

MRBGstore.

 General purpose iterative computation.

 Incremental processing for iterative

computation

II MAPREDUCE BACKGROUND

 A MapReduce program is composed of a Map

function and a Reduce function [1], as shown in

Fig. 1. Their APIs are as follows:

mapðK1; V 1Þ ! ½hK2; V 2i&

reduceðK2; fV 2gÞ ! ½hK3; V 3i&:

The Map function takes a kv-pair hK1; V 1i as

input and computes zero or more intermediate

kv-pairs hK2; V 2is. Then all hK2; V 2 is are

grouped by K2. The Reduce function takes a K2

and a list of fV 2g as input and computes the final

output kv-pairs hK3; V 3is.

 A MapReduce system (e.g., Apache Hadoop)

usually reads the input data of the MapReduce

computation from and writes the final results to a

distributed file sys-tem (e.g., HDFS), which

divides a file into equal-sized (e.g., 64 MB) blocks

and stores the blocks across a cluster of machines.

For a MapReduce program, the MapReduce system

runs a job progress, and a set of TaskTracker

pro-cesses on worker nodes to perform the actual

Map and Reduce tasks.

 The JobTracker starts a Map task per data block,

and typically assigns it to the TaskTracker on the

machine that holds the corresponding data block in

order to minimize communication overhead. Each

Map task calls the Map function for every input

hK1; V 1i, and stores the intermediate kv-pairs

hK2; V 2is on local disks. Intermediate results are

shuffled to Reduce tasks according to a partition

function (e.g., a hash function) on K2. After a

Reduce task obtains and merges intermediate

results from all Map Tasks, it invokes the Reduce

function on each hK2; fV 2gi to generate the final

output kv-pairs hK3; V 3.

III FINE GRAIN INCREMENTAL

PROCESSING FOR ONE STEP

COMPUTATION

I begin by describing the basic idea of fine-grain

incremental processing , i present the main design,

including the MRBGraph abstraction.

1 Basic Idea

 Consider two MapReduce jobs A and A
0

performing the same computation on input data set

D and D
0
, respectively. D

0
 ¼ D þ DD, where DD

consists of the inserted and deleted input hK1; V

1is
1
. An update can be represented as a dele-tion

followed by an insertion. Our goal is to re-compute

only the Map and Reduce function call instances

that are affected by DD.

 Incremental computation for Map is

straightforward. We simply invoke the Map

function for the inserted or deleted hK1; V 1is.

Since the other input kv-pairs are not changed, their

Map computation would remain the same. We now

have computed the delta intermediate values,

denoted DM, including inserted and deleted hK2;

V 2is.

 To perform incremental Reduce computation, we

need to save the fine-grain states of job A, denoted

M, which includes hK2; fV 2gis. We will

re-compute the Reduce func-tion for each K2 in

DM. The other K2 in M does not see any changed

intermediate values and therefore would generate

the same final result. For a K2 in DM, typically

only
of V 2 have changed. Here, we retrieve the saved hK2; fV 2gi

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 4, April 2016

 All Rights Reserved © 2016 IJARBEST 273

from M,

Fig No1:MRBGraph

and apply the inserted and/or deleted values from

DM to obtain an updated Reduce input. We then

re-compute the Reduce function on this input to

gener-ate the changed final results hK3; V 3.

2 MRBGraph Abstraction

 We use a MRBGraph (Map Reduce Bipartite

Graph) abstrac-tion to model the data flow in

MapReduce, as shown in Fig. 2a. Each vertex in

the Map task represents an individual Map function

call instance on a pair of hK1; V 1i. Each vertex in

the Reduce task represents an individual Reduce

function call instance on a group of hK2; fV 2gi.

An edge from a Map instance to a Reduce instance

means that the Map instance

 1 assume that new data or new updates are

captured via incre-mental data acquisition or

incremental crawling [16], [17]. Incremental data

acquisition can significantly save the resources for

data collection; it does not re-capture the whole

data set but only capture the revisions since the last

time that data was captured.generates a hK2; V 2i

that is shuffled to become part of the input to the

Reduce instance. For example, the input of Reduce

instance a comes from Map instance 0, 2, and 4.

 MRBGraph edges are the fine-grain states M that

we would like to preserve for incremental

processing. An edge contains

(a)initial run (b) incremental run

Fig No 2:. Incremental processing for an

application that computes the sum of in-edge

weights for each vertex.

three pieces of information: (i) the source Map

instance, (ii) the destination Reduce instance (as

identified by K2), and (iii) the edge value (i.e., V

2). Since Map input key K1 may not be unique,

i
2
MapReduce generates a globally unique Map key

MK for each Map instance. There-fore,

i
2
MapReduce will preserve (K2, MK, V 2) for each

MRBGraph edge.

3 Fine-Grain Incremental Processing Engine

Fig.2 illustrates the fine-grain incremental

processing engine with an example application,

which computes the sum of in-edge weights for

each vertex in a graph. As shown at the top of Fig.

3, the input data, i.e., the graph structure, evolves

over time. In the following, we describe how the

engine performs incremental processing to refresh

the analysis results.

 Initial run and MRBGraph preserving. The initial

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 4, April 2016

 All Rights Reserved © 2016 IJARBEST 274

run per-forms a normal MapReduce job, as shown

in Fig. 3a. The Map input is the adjacency matrix of

the graph. Every record corresponds to a vertex in

the graph. K1 is vertex id i, and V 1 contains

“j1:wi;j1 ; j2:wi;j2 ; ...” where j is a destination vertex

and wi;j is the weight of the out-edge ði; jÞ. Given

such a record, the Map function outputs

intermediate kv-pair hj; wi;ji for every j. The

shuffling phase groups the edge weights by the

destination vertex. Then the Reduce function

computes for a vertex j the sum of all its in-edge

weights as i wi;j.

 For incremental processing, we preserve the

fine-grain MRBGraph edge states. A question

arises: shall the states be preserved at the Map side

or at the Reduce side? We choose the latter because

during incremental processing original

intermediate values can be obtained at the Reduce

side without any shuffling overhead. The engine

transfers the globally unique MK along with hK2;

V 2i during the shuffle phase. Then it saves the

states (K2; MK; V 2) in a MRBGraph file at every

Reduce task, as shown in Fig. 2b.

 Delta input. i
2
MapReduce expects delta input

data that contains the newly inserted, deleted, or

modified kv-pairs as the input to incremental

processing. Note that identifying the data changes

is beyond the scope of this paper; Many

incremental data acquisition or incremental

crawling tech-niques have been developed to

improve data collection per-formance [16], [17].

 Fig. 3b shows the delta input for the updated

application graph. A ‘þ’ symbol indicates a newly
inserted kv-pair, while a ‘_’ symbol indicates a
deleted kv-pair. An update is represented as a

deletion followed by an insertion. For example, the

deletion of vertex 1 and its edge are reflected as h1;

2:0:4;‘_’i. The insertion of vertex 3 and its edge
leads to h3; 0:0:1;‘þ’i. The modification of the
vertex 0’s edges are reflected by a deletion of the

old record h0; 1:0:3;2:0:3;‘_’i and an insertion of a
new record h0; 2:0:6;‘_’i.

Incremental map computation to obtain the delta

MRBGraph. The engine invokes the Map function

for every record in the delta input. For an insertion

with ‘þ’, its intermediate results hK2; MK; V 20
 is

represent newly inserted edges in the MRBGraph.

For a deletion with ‘_’, its intermediate results

indicate that the corresponding edges have been

removed from the MRBGraph. The engine replaces

the V 2
0
s of the deleted MRBGraph edges with ‘_’.

During the Map-Reduce shuffle phase, the

intermediate hK2; MK; V 2
0is and hK2; MK;‘_’is

with the same K2 will be grouped together. The

delta MRBGraph will contain only the changes to

the MRBGraph and sorted by the K2 order.

 Incremental reduce computation. The engine

merges the delta MRBGraph and the preserved

MRBGraph to obtain the updated MRBGraph

using the algorithm in Section 3.4. For each hK2;

MK;‘_’i, the engine deletes the corresponding
saved edge state. For each hK2; MK; V 2

0
i, the

engine first checks duplicates, and inserts the new

edge if no duplicate exists, or else updates the old

edge if duplicate exists. (Note that (K2, MK)

uniquely identifies a MRBGraph edge.) Since an

update in the Map input is represented as a deletion

and an insertion, any modification to the

intermediate edge state (e.g., h2; 0; _i in the

example) consists of a deletion (e.g., h2; 0;‘_’i)
followed by an insertion (e.g., h2; 0; 0:6i). For each

affected K2, the merged list of V 2 will be used as

input to invoke the Reduce function to generate the

updated final results.

4 MRBG-Store

 The MRBG-Store supports the preservation and

retrieval of fine-grain MRBGraph states for

incremental processing. We see two main

requirements on the MRBG-Store. First, the

MRBG-Store must incrementally store the

evolving MRBGraph. Consider a sequence of jobs

that incrementally refresh the results of a big data

mining algorithm. As input data evolves, the

intermediate states in the MRBGraph will also

evolve. It would be wasteful to store the entire

 MRBGraph of each subsequent job. Instead, we

would like to obtain and store only the updated part

of the MRBGraph. Second, the MRGB-Store must

Reduce instances. For incremental Reduce

computation, i
2
MapReduce re-computes the

Reduce instance associated with each changed

MRBGraph edge, as described in Section 3.3. For a

changed edge, it queries the MRGB-Store to

retrieve the preserved states of the in-edges of the

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 4, April 2016

 All Rights Reserved © 2016 IJARBEST 275

associated K2, and merge the preserved states with

the newly computed edge changes.

Fig. 4 depicts the structure of the MRBG-Store. We

describe how the components of the MRBG-Store

work together to achieve the above two

requirements.

Fig No 4: Structure of MRBG store

 Fine-grain state retrieval and merging. A

MRBGraph file stores fine-grain intermediate

states for a Reduce task, as illustrated previously in

Fig. 2b. In Fig. 4, we see that the hK2; MK; V 2is

with the same K2 are stored contiguously as a

chunk. Since a chunk corresponds to the input to a

Reduce instance, our design treats chunk as the

basic unit, and always reads, writes, and operates

on entire chunks.

 The contents of a delta MRBGraph file are shown

on the bottom left of Fig. 4. Every record represents

a change in the original (last preserved)

MRBGraph. There are two kinds of records. An

edge insertion record (in green color) contains a

valid V 2 value; an edge deletion record (in red

color) contains a null value (as marked by ‘_’)
 The merging of the delta MRBGraph with the

MRBGraph file in the MRBG-Store is essentially a

join operation using K2 as the join key. Since the

size of the delta MRBGraph is typically much

smaller than the MRBGraph file, it is waste-ful to

read the entire MRBGraph file. Therefore, we

construct an index for selective access to the

MRBGraph file: Given a K2, the index returns the

chunk position in the MRBGraph file. As only

point lookup is required, we employ a hash-based

implementation for the index. The index is stored

in an index file and is preloaded into memory

before Reduce computation. We apply the index

nested loop join for the merging operation. both the

delta MRBGraph and the MRBGraph file are in the

order generated by the shuffling phase. That is, the

two files are sorted in K2 order. Therefore, we

introduce a read cache and a dynamic read window

technique for further optimization. Fig. 4 shows the

idea. Given a sequence of K2s, there are two ways

to read the corresponding chunks: (i) performing an

individual I/O operation for each chunk; or (ii)

per-forming a large I/O that covers all the required

chunks. The former may lead to frequent disk

seeks, while the latter may result in reading a lot of

useless data. Fortunately, we know the list of sorted

K2s to be queried. Using the index, we obtain their

chunk positions. We can estimate the costs of using

a large I/O versus a number of individual I/Os, and

intelligently determine the read window size w

based on the cost estimation.

 Algorithm 1 shows the query algorithm to

retrieve the the chunk k given a query key k and the

list of queried keys L ¼ fL1; L2; . . .g. If the chunk k

does not reside in the read cache (line 1), it will

compute the read window size w by a heuristic, and

read w bytes into the read cache. The loop (line

4–8) probes the gap between two consecutive

queried chunks (chunk Li and chunk Liþ1). The gap

size indicates the wasted read effort. If the gap is

less than a threshold T (T ¼ 100 KB by default), we

consider that the benefit of large I/O can

compensate for the wasted read effort, and enlarge

the window to cover chunk Liþ1. In this way, the

algorithm finds the read window size w by

balancing the cost of a large I/O versus a number of

individual I/Os. It also ensures that the read

window size does not exceed the read cache. Then

the algorithm read the next w bytes into the read

cache (line 9) and retrieves the requested chunk k

from the read cache (line 11). Incremental storage

of MRBgraph changes. As shown in Fig. 4, the

outputs of the merge operation, which are the

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 4, April 2016

 All Rights Reserved © 2016 IJARBEST 276

up-to-date MRBGraph states (chunks), are used to

invoke the Reduce function. In addition, the

outputs are also buffered in an append buffer in

memory

. When the append buffer is full, the MRBG-Store

performs sequential I/Os to append the contents of

the buffer to the end of the MRBGraph file. When

the merge operation completes, the MRBG-Store

flushes the append buffer, and updates the index to

reflect the new file positions for the updated

chunks. Note that obsolete chunks are NOT

immediately updated in the file (or removed from

the file) for I/O efficiency. The MRBGraph file is

reconstructed off-line when the worker is idle. In

this way, the MRBG-Store efficiently supports

incre-mental storage of MRBGraph Changes.
IV GENERAL PURPOSE SUPPORT FOR

ITERATIVECOMPUTATION

value Ri;j I first analyze several representative

iterative algorithms in Section 4.1. Based on this

analysis, we propose a general-purpose

MapReduce model for iterative computation in

Section 4.2, and describe how to efficiently support

this model in Section 4.3.

1 Analyzing Iterative Computation

 PageRank. PageRank [11] is a well-known

iterative graph algorithm for ranking web pages. It

computes a ranking score for each vertex in a

graph. After initializing all ranking scores, the

computation performs a MapReduce job per

iteration, as shown in Algorithm 2. i and j are

vertex ids, Ni is the set of out-neighbor vertices of i,

Ri is i’s ranking score that is updated iteratively. ‘j’
means concatenation. All Ri’s are initialized to
one.

2
 The Map instance on vertex i sends ¼ Ri=jNi

j to all its out-neighbors j, where jNi j is the number

of i’s out-neighbors. The Reduce instance on

vertex j updates Rj by summing the Ri;j received

from all its in-neighbors i, and applying a damping

factor d.

Kmeans. Kmeans is a commonly used

clustering algo-rithm that partitions points into k

clusters. We denote the ID of a point as pid, and its

feature values pval. The computation starts with

selecting k random points as cluster centroids set

fcid; cvalg. As shown in Algorithm 3, in each

iteration, the Map instance on a point pid assigns

the point to the nearest centroid. The Reduce

instance on a centroid cid updates the centroid by

averaging the values of all assigned points fpvalg.

GIM-V. Generalized Iterated Matrix-Vector

multiplica-tion (GIM-V) is an abstraction of many

iterative graph mining operations (e.g., PageRank,

spectral clustering, diameter estimation, connected

components). These graph mining algorithms can

be generally represented by operat-ing on an n _ n

matrix M and a vector v of size n. Suppose both the

matrix and the vector are divided into sub-blocks.

Let mi;j denote the ði; jÞth block of M and vj denote

the jth block of v. The computation steps are

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 4, April 2016

 All Rights Reserved © 2016 IJARBEST 277

similar to those of the matrix-vector multiplication

and can be abstracted into three operations: (1)

mvi;j = combine2(mi;j; vj); (2) v
0

i =

combineAlli({mvi;j}); and (3) vi = assign(vi; v
0

i).

We can compare combine2 to the multiplication

between mi;j and vj, and compare combineAll to the

sum of mvi;j for row i. Algorithm 4 shows the

MapReduce implementation with two jobs for each

iteration. The first job assigns vector block vj to

multiple matrix blocks mi;j (8i) and performs

com-bine2(mi;j; vj) to obtain mvi;j. The second job

groups the mvi;j and vi on the same i, performs the

combineAll ({mvi;j}) operation, and updates vi

using assign(vi; v
0

i).

 V INCREMENTAL ITERATIVE

PROCESSING

In this section, we present incremental processing

techni-ques for iterative computation. Note that it

is not sufficient to simply combine the above

solutions for incremental one-step processing (in

Section 3) and iterative computation (in Section 4).

In the following, we discuss three aspects that we

address in order to achieve an effective design

VI EXPERIMENTS

I implement a prototype of i
2
MapReduce by

modifying Hadoop-1.0.3. In order to support

incremental and iterative processing, a few

MapReduce APIs are changed or added. We

summarize these API changes in for more details).

In this section, we perform real-machine

experiments to evaluate i
2
MapReduce.

1 Experiment Setup

Solutions to compare. Our experiments compare

four solutions: (i) PlainMR recomp,

re-computation on vanilla Hadoop; (ii) iterMR

recomp, re-computation on Hadoop optimized for

iterative computation (as described in Section 4);

(iii) HaLoop recomp, re-computation on the

iterative MapReduce framework HaLoop [8],

which optimizes MapReduce by providing a

structure data caching mechanism; (iv)

i
2
MapReduce, our proposed solution. To the best

of our knowledge, the task-level coarse-grain

incremental processing system, Incoop , is not

publicly available. Therefore, we cannot compare

i
2
MapReduce with Incoop. Nevertheless, our

statistics show that without careful data partition,

almost all tasks see changes in the experiments,

making task-level incremental processing less

effective.

Experimental environment. All experiments run on

Amazon EC2. We use 32 m1.medium instances.

Each m1. medium instance is equipped with 2

ECUs, 3.7 GB memory, and 410 GB storage.

Applications. We have implemented four iterative

mining algorithms, including PageRank

(one-to-one correlation), Single Source Shortest

Path (SSSP, one-to-one correlation), Kmeans

(all-to-one correlation), and GIM-V (many-to-one

correlation). For GIM-V, we implement iterative

matrix-vector multiplication as the concrete

application using GIM-V model

VII CONCLUSION

 Big Data is constantly evolving day to day, so

that the data mining applications are stale and

obsolete overtime, to overcome the challenges we

propose an incremental processing method called

i2MapReduce, an extension of MapReduce which

is used for Mining Big Data. The i2MapReduce is a

MapReduce based framework for incremental big

data processing. This approach has three steps they

are, a fine grained incremental engine, a

general-purpose iterative model, and a set of

effective techniques for incremental iterative

computation called change propagation control.

Our experimental results show significance

performance on our dataset which has

improvements of i2MapReduce compared to both

plain and iterative MapReduce that performs

re-computation.

VIII FUTURE WORK

Our Future work describes the

i2MapReduce which is an extension of

MapReduce. This work used for the incremental

big data processing, which uses fine-grained

incremental engine, a general purpose iterative

model that includes iteration algorithms such as

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 4, April 2016

 All Rights Reserved © 2016 IJARBEST 278

PageRank, Possibilistic fuzzy c-means,

Generalized Iterated Matrix-Vector multiplication.

Finally the performance and comparison result and

resultant graph are displayed.

 IX REFERENCES

1. S. Brin, and L. Page, “The anatomy of a

large-scale hypertextual web search

engine,” Comput. Netw. ISDN Syst., vol.

30, no. 1–7, pp. 107–117, Apr. 1998.

2. D. Peng and F. Dabek, “Large-scale

incremental processing using distributed

transactions and notifications,” in Proc. 9th

USENIX Conf. Oper. Syst. Des.

Implementation, 2010, pp. 1–15.

3. D. Logothetis, C. Olston, B. Reed, K. C.

Webb, and K. Yocum, “Stateful bulk

processing for incremental analytics,” in

Proc. 1st ACM Symp. Cloud Comput.,

2010, pp. 51–62.

4. D. G. Murray, F. McSherry, R. Isaacs, M.

Isard, P. Barham, and M. Abadi, “Naiad:

A timely dataflow system,” in Proc. 24th

ACM Symp. Oper. Syst. Principles, 2013,

pp. 439–455.

5. P. Bhatotia, A. Wieder, R. Rodrigues, U. A.

Acar, and R. Pasquin, “Incoop:

Mapreduce for incremental computations,”

in Proc. 2nd ACM Symp. Cloud Comput.,

2011, pp. 7:1–7:14.

6. J. Cho and H. Garcia-Molina, “The

evolution of the web and implications for

an incremental crawler,” in Proc. 26th Int.

Conf. Very Large Data Bases, 2000, pp.

200–209.

7. C. Olston and M. Najork, “Web crawling,”

Found. Trends Inform. Retrieval, vol. 4,

no. 3, pp. 175–246, 2010.

8. S. Lloyd, “Least squares quantization in

PCM,” IEEE Trans. Inform. Theory., vol.

28, no. 2, pp. 129–137, Mar. 1982.

9. U. Kang, C. Tsourakakis, and C. Faloutsos,

“Pegasus: A peta-scale graph mining

system implementation and observations,”

in Proc. IEEE Int. Conf. Data Mining,

2009, pp. 229–238.

10. Y. Zhang, S. Chen, Q. Wang, and G. Yu,

“i2mapreduce: Incremental mapreduce for

mining evolving big data,” CoRR, vol. abs/

1501.04854, 2015.

