

BIG DATA ACCESS CONTROL IN THE CLOUD USING

HIGHLY PROTECTED AND VALID POLICY UPDATE

R.Karthikeyan

 1
, G.Brindha Roselin

2

HOD, CSE Department, Mohamed Sathak Engineering College, Kilakkarai, India
 1

ME(Student), CSE Department, Mohamed Sathak Engineering College, Kilakkarai, India
 2

Abstract- Because of large volume and velocity of big data, it is a

proficient option to store big data in the cloud. A system’s
privacy and security controls are more likely to be compromised

due to the misconfiguration of access control failure of

cryptographic primitives or protocols. A trivial implementation is

to let the data owners to get the data and re-encrypt it using the

newly found access policy then store it back in the cloud. We also

have proposed a novel scheme to perform the encryption to

provide security and protection during access using the ABE with

ElGamal Algorithm using the latest encryption technique known

as Swiss army knife of cryptography. This method can avoid the

retransmissions and loss of the data and reduce the work of the

data owners in computation and communication. The crucial

point is that all the transformations should be done without

revealing the secret key until it reaches the correct recipient. A

user can also use the outsourced policy updating algorithms for

various types of access policies. Finally we propose an efficient

and a secure method for checking the ciphertexts that are

updated by the cloud server is correct. The analysis shows that

our policy updating scheme is secure and and competent.

Keywords— Policy updating, Outsourced, Access Control,

ABE, Big Data and Cloud(key words)

I. INTRODUCTION

The term big data refers to the massive amount of digital
information which many companies and Government collect
about various fields, persons and their surroundings. It can
also be referred to as high volume, high velocity and high
variety of information. Security and Privacy issues are
magnified by velocity, volume and variety of bigdata such as
large scale cloud infrastructures, diversity of data sources and
formats, streaming nature of data acquisition and high volume
inter-cloud migration. An efficient option is to store the big
data in the cloud as the cloud has capabilities of storing big
data and processing high volume of user requests in an
economic way. When hosting big data into the cloud, the data
security becomes a major issue as cloud servers cannot be
fully trusted by data owners.

 This paper uses the ElGamal algorithm[8] with Swiss
army knife of cryptography technique[23] to ensure data
security in the system similar to it is shown in the Fig.1. An
asymmetric key encryption algorithm that uses a pair of
different cryptographic keys to encrypt and decrypt is used. It
also allows the data owners to define access policies and
encrypt the data under each policy such that only the users
whose attributes that match with the corresponding policies
will get access to the data to decrypt it. When more and more

organizations and enterprises outsource data into the cloud, the
policy updating becomes an important concern as data access
policies may be changed dynamically and frequently by data
owners. Also, this issue has not been considered in any of the
existing attribute-based access control schemes [11]-[13][21].

 The previous papers using ABE systems for the policy
update suffers from various issues because once the data
owner outsourced the data into the cloud, it would not keep a
copy in local systems. When the data owner wants to change
the access policy it must again transfer the data to the old site
from cloud, re-encryption takes place then after that it moves
back to the cloud server. That has lead to a high
communication overhead and heavy computation burden on
the data owners. In order to overcome these problems we have
developed new method to outsource the job of policy updating
to the cloud server.

The challenge of outsourcing policy updating to the cloud
must provide the following

1) Correctness: Only those users who own the essential
attributes must be able to decrypt the data encrypted
under the new access policy by running the original
decryption algorithm.

2) Completeness: The system must be ready to update
and transform to any type of access policies.

3) Security: There should not be any damages to the
existing security of access control scheme or
introduce any new security problems.

The policy updating problem has been discussed in the key
policy structure [2] and ciphertext-policy structure [21].
However, these methods cannot satisfy the completeness
requirement and security requirement either. In this paper, we
come up with the approaches in providing security also
focusing on the policy updating problems in the ABE systems
and propose a highly protected and valid policy updating
outsourcing method. We ought a system that can scale to
handle a large number of data and process massive amount of
data. Local computers no longer have to take the entire burden
when it comes to running applications. Cloud is used to
minimize the usage cost of the computing resources.

We let the cloud server to update the policies of the
encrypted data directly, which means that cloud server does
not need to decrypt the data before / during the policy
updating. We also provide a secure policy checking method

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Issue 4, April 2016

180

that enables data owners to check whether the ciphertexts have
been updated by the cloud server correctly.

Fig.1.Example for Swiss Army Knife of Cryptography

 The contributions of this paper include:

1) It offers access control to the data owners using
ElGamal encryption algorithm and expand a new
method to outsource the policy updating to the server.

2) It deals with the designs of policy updating
algorithms for different types of access policies, e.g.,
Boolean Formulas, LSSS Structure.

3) Implementation of the Swiss army knife of
cryptography technique will ensure more secure and
valid access control schemes.

In this paper we do not require any help from the data
users and owners to check the correctness of the ciphertext
updating by their own secret keys and checking keys issued by
each authority. More over we discuss some of the key features
of the access control scheme based on identity and how it will
be suitable for big data access control in the cloud. In addition
we also add more performance evaluation on policy updating
algorithms and the policy checking methods with encryption
algorithms.

 An asymmetric key encryption algorithm that uses a
pair of different cryptographic keys to encrypt and decrypt is
used. ElGamal abridged the Diffie-Hellman key exchange
algorithm by introducing a random exponent of receiving
entity [7]. Due to this simplification the algorithm can be used
to encrypt in one direction without the necessity of the second
party to take actively part. The key innovation here is that the
use of Swiss army knife technique that combines the utilities
of various encryption methods such as ElGamal Digital
Signature, Tripartite signcryption, and Multipurpose Identity
based signcryption in one single method.

II. SYSTEM AND SECURITY MODEL

A. System Model

We consider a cloud storage system with multiple
authorities,as shown in Fig.2. The system model consists of
the followingentities: authorities (AA), cloud server (server),
data owners(owners) and data consumers (users).

Authority. The Authority delimits that, power is delegated
formally. It includes the right to command a situation, commit
resources and give orders. In previous works every authority is
dependent with each other and is responsible for managing
attributes of users in its own area. Here the secret key / public
key pair is generated for each attribute in its domain and
follows to generate the secret key for each user according to
their attributes.

Cloud server. The A cloud server is a logical server that is
built, compared and provided through a cloud computing
platform over the Internet. Cloud servers possess and show
similar capabilities and functionality to a typical server but are
accessed remotely from a cloud service provider. A cloud
server may also be called a virtual server or virtual private
server. The cloud server stores the data for data owners and
allows the data owners to access service to the users. The
server is also in charge for updating cipher texts from old
access policies to new access policies.

Fig. 2. System Model

Data owners. There are other concerns with regards to
storing data in the cloud such as backups, data security,
privacy and transfer of data. So despite the advantages of
cloud services an enterprise must answer the most crucial
question when going for any cloud hosted service, that is ‘who
owns the data’. The actual ownership of data in the cloud may
be reliant on the nature of data stored as well as where it was
created. The data owners define access policies and encrypt
data under these policies before hosting them in the cloud.

They also ask the server to update access policies of the
encrypted data stored in the cloud. After that, they will check
whether the server has updated the policies correctly.

Data Users. Each user is assigned with a global user
identity with set of their corresponding attributes and can
freely get the cipher texts from the server. The user can
decrypt the cipher text, only when its attributes satisfy the
access policy defined in the cipher text.

B Framework

To accomplish all the requirements of policy updating[1],
the framework of our access control scheme must be as
follows.

Definition 1 (Framework).Our dynamic policy access
control scheme is a collection of the following algorithms:
GlobalSetup, AuthoritySetup, SKeyGen, Encrypt, Decrypt,
UKeyGen and CTUpdate.

 GlobalSetup(λ)→GP.The global setup algorithm
takesno input other than the implicit security
parameter λ. It outputs the global parameter GP for
the system.

 AuthoritySetup(GP,AID)→(SK,PK). The authority
setup algorithm is run by each authority AID with
GP and the authority identity AID as inputs and its
secret/public key pair (SKAID,PKAID) as outputs.

 SKeyGen(GID,GP,SGID,AID,SKAID)→SKGID,AID.
Each authority AID runs the secret key generation
algorithm to generate a secret key SKGID, AID for
user GID. It takes as inputs the global identity GID,
the global parameter GP, a set of attributes SGID, AID

issued by this authority AID and the secret key
SKAID of this authority. It outputs a secret key
SKGID,AID for this user GID.

 Encrypt({PK},GP,m,A)→CT. The encryption
algorithm takes as inputs a set of public keys {PK}
of relevant authorities, the global parameter GP,
the message m and an access policy A. It outputs a
ciphertext CT.

 Decrypt(CT,GP,{SKGID,AID})→m. The decryption
algorithm takes as inputs the ciphertext, the global
parameter GP and a collection of secret keys from
relevant authorities for user GID. It outputs the
message m when the user’s attributes satisfy the
access policy associated with the ciphertext.
Otherwise, the decryption fails.

 UKeyGen({PK},EnInfo(m),A,A’)→UKm. The
updatekey generation algorithm is run by the data
owner. It takes as inputs the relevant public keys,
the encryption information EnInfo(m) of the
message m, the previous access policy A and the
new access policy A’. It outputs the update key
UKm of m used to update the ciphertext CT from
the previous access policy to the new one.

 CTUpdate(CT,UKm)→CT’.The ciphertext updating
algorithm is run by cloud server. It takes as inputs
the previous ciphertext CT and the update key
UKm. It outputs a new ciphertext CT’
corresponding to the new access policy A’.

C Security Model

The cloud server is curious about the stored data and
messages it received during the services. But it is assumed that
the cloud server will not collude with users, i.e., it will not
send the ciphertexts under previous policies to users, whose
attributes can satisfy previous access policies but fail to satisfy
new access policies. The users are assumed to be dishonest,
i.e., they may collude to access unauthorized data. The
authorities can be corrupted or compromised by the attackers.
We assume that the adversary can corrupt authorities only
statically, but key queries can be made adaptively.

We now describe the security model of our system by the
following game between a challenger and an adversary:

Setup. The global setup algorithm is run. The adversary
specifies a set S’ASA of corrupted authorities. The challenger
generates secret/public key pairs by running the authority
setup algorithm. For uncorrupted authorities in SAS’A, the
challenger sends only public keys to the adversary. For
corrupted authorities in S’A, the challenger sends both public
keys and secret keys to the adversary.

Phase 1. The adversary makes secret key queries by
submitting pairs (GID,SGID,AID) to the challenger, where GID
is an identity and SGID,AID is a set of attributes belonging to an
uncorrupted authority AID. The challenger gives the
corresponding secret keys SKGID,AID to the adversary.

Challenge. The adversary submits two equal length
messagesm0 and m1. In addition, the adversary gives a set of
challenge access structure which must satisfy the constraint
that the adversary cannot ask for a set of keys that allow
decryption, in combination with any keys that can be obtained
from corrupted authorities. The challenger then flips a random
coin b, and encrypts mb under all access structures. Then, the
ciphertext {CT*1,…,CT*q} are given to the adversary.

Phase 2.The adversary may query more secret keys, as
long as they do not violate the constraints on the challenge
access structures. The adversary can also makes update key
queries by submitting the pair the simulator returns the update
key UKmb to the adversary.

Definition 2.Our scheme is secure against static
corruption of authorities if all polynomial time adversaries
have at most a negligible advantage in the above security
game.

III. ATTRIBUTE BASED ACCESS CONTROL WITH DYNAMIC

POLICY UPDATING FOR BIG DATA USING ELGAMAL

The construction of our dynamic-policy access control
scheme is based on an adapted ElGamal method [22]. Our

scheme consists of five phases: Signature scheme, Signature
algorithm, Data encryption, Verification and Policy Updating.

A ElGamal Signature scheme

Assume that Alice has an El-Gamal key for which the
public part is (g, b, P),and the private part is the number a.
Recall:

• P is a prime number.

• 1 < g < P is a primitive root of P.

• b = ga mod P.

Typically there would also be a hash-function H involved
in digitally signing a message M with an El-Gamal signature.
One would first compute H(M),the hash of the message, and
then digitally sign the hash. For purposes of ex-position, we
may denote the quantity (whether it is the hash or just the raw
message) which will be signed also by M. The M we sign
must be less than P. We describe here how a message M
would be signed, assuming that M < P.

B Signature algorithm

• Select randomly a number r < P − 1 such that gcd(r, P −
1) = 1.

• Compute y = gr mod P.

• Compute s = (M − ay)(r−1) mod (P − 1).

Alice’s El-Gamal signature on M is (y, s).

C Data Encryption

The owner first encrypts the data m by running the

encryption algorithm Encrypt. The algorithm takes as inputs a

set of public keys {P,K} for relevant authorities, the global

parameters, the data m and an n×l access matrix M with ρ
mapping its rows to attributes. There is Swiss army knife of

cryptography technique [23] which uses any of the encryption

process that is random method. It chooses a random

encryption exponents Zp and a random vector = (s, y2,…,yl)

Zp
l
, wherey2,…,yl are used to share the encryption exponent s.

For i = 1to n, it computes λi = Mi· where Mi is the vector

corresponding to the i-th row of M. It also chooses a random

vector Z
l
p with 0 as its first entry and computes wi =Mi· .For

each row i of M, it chooses a random ri Zp and computes the

ciphertext as The encryption information EnInfo(m) of the

data m contains all the random numbers ri, i.e., EnInfo(m) =

{r1,…,rn}.

D Verification algorithm

The verifier knows the following things: Alice’s public
key (g, b, P), the message M and presented signature (y, s).
The verifier does NOT know Alice’s private key A and the
random number r chosen by Alice.

The verifier now computes:

• V1 = ys · by P.

• V2 = gM mod P.

If V1 = V2, and if y, s < P, then the signature (y, s) is
accepted as Alice’s; otherwise, the signature is not accepted.

E Policy Updating

To update the access policy of the encrypted data in the
cloud, we delegate the ciphertext update from the data owner
to the cloud server, such that the heavy communication
overhead of the data retrieval can be eliminated and the
computation cost on data owners can also be reduced.

When the data owner wants to update the ciphertext from
the previous access policy A to the new access policy A’, it
first generates an update key UKm by running the updatekey
generation algorithm UKGen, and then sends the updatekey
UKm to the cloud server. Upon receiving the update key from
the data owner, the cloud server will run the
ciphertextupdating algorithm CTUpdate to update the
ciphertext from the previous access policy A to the new one
A’.

However, the update key generation algorithm UKGen and
the ciphertextupdating algorithm CTUpdate are related to the
structure relationship between the previous access policy A
and the new access policy A’. For different types of updating
operation, we have different design of UKGen and CTUpdate,
which will be described in detail in the next section.

F Features of Attribute-based Access Control

In big data era, the volume of data is high and it is
increasing in a high velocity. The proposed attribute-based
access control(ABAC) method [2] is quite suitable for
controlling big data than traditional access control methods
due to the following features:

1) Policy Checking Entity Free: In ABAC, access policies
are defined by data owners but do not require any entity (e.g.,
the server) to check these policies. Instead, access policies in
ABAC are enforced implicitly by the cryptography. Due to
this key feature, ABAC is widely applied to control big data in
cloud environments, where cloud servers are not trusted to
enforce access policies.

2) Storage Efficiency: In traditional Public Key
Cryptography, for each data, multiple copies of ciphertexts are
produced whose number is proportional to the number of
users. Considering the high volume of big data, it incurs a
huge storage overhead even when only doubling the volume of
big data. Fortunately, in ABAC, only one copy of ciphertext is
generated for each data, which can reduce the storage
overhead significantly.

3) Dynamic Policies but Same Keys: Data owners can use
the same public key to encrypt data under different access
policies, and users do not need to change their secret keys
either. What’s more, data owners can change access policies
of existing ciphertexts by simply sending a request to the
cloud server, and let the server do the policy change without
leaking out any sensitive information of the data as well as the
keys.

IV. DYNAMIC POLICY UPDATING

Every access policy can be demonstrated by either LSSS
structure or Access Tree Structure. In this section, we only
consider monotonic structures, and non-monotonic structures
can be similarly achieved betaking NOT operation as another
attribute. Specifically, we first design the policy updating
algorithms for monotonic Boolean formulas. Then, we present
the algorithms to update LSSS structures. Finally, we consider
general threshold access tree structures by designing
algorithms of updating a threshold gate.

A Updating a Boolean Formula

Access policies with monotonic Boolean formulas can be
represented as the simplest threshold access trees, where then
on-leaf nodes are AND and OR gates, and the leaf nodes
correspond to attributes. The monotonic boolean formulas can
be easily converted to LSSS structure, because the number of
leaf nodes in the access tree is the same as the number of rows
in the corresponding LSSS matrix. As shown in Fig. 3, there
are four basic operations: Attr2OR, Attr2AND, AttrRmOR
and AttrRmAND.

Fig.3. Operations of Boolean Formula

B Updating a LSSS Structure

Access policies can also be expressed in LSSS structure as

in our access control scheme. To convert a LSSS structure

(M,ρ)to a new LSSS structure (M’,ρ’), it is too costly to
choose anew encryption secret s’ and re-encrypt the data under

the new access policy. In order to save the communication

cost and the computation cost on data owners, in our method,

we do not change the encryption secret s, such that we can

make full use of the previous ciphertext encrypted under the

old policy(M,ρ). To enable the data owner to re-randomize the

encryption secret s, the encryption information EnInfo(m) of

the data m should also contain two random vectors and, and

the public key of each attribute x is known to the data owner

as(g
αx

,g
βx

). The data owner will run the update key generation

algorithm to construct the update keys and send them to the

cloud server. Upon receiving update keys, the cloud server

will run the ciphertext update algorithm to update ciphertext

from the previous access policy to the new policy.

C Updating a Threshold Gate

The problem of updating a threshold gate from (t,n)-gate

to(t’n’)-gate has been discussed in key-policy structure [2] and

ciphertext-policy structure [21]. However, the existing

methods would introduce a security problem in the new

threshold gate.

For example, when increasing the threshold value from t

tot +1, existing methods will set the t +1 share λt+1 of the

secret s to be 0, such that the secret s can be reconstructed by

using t +1 shares as s+0 = s. In this case, any t shares are still

be able to reconstruct the secrets, which should not be allowed

in a (t +1, n)-gate.

To solve the security problem, instead of setting the value

of the new share to be 0, our method is to re-randomize the

secret s under the new policy (t’,n’)-gate, as shown in Fig. 4.

The data owner first transforms the threshold gate into LSSS

structure by running the policy converting

algorithmThreshold2LSSS, i.e., transforming (t,n)-gate and

(t’,n’)-gate to (M,ρ) and (M’,ρ’) respectively. Then, we can
apply the DNF2LSSS,SSS2MSP[12] and DNF2SSS

algorithms to update the LSSS structure (M,ρ) to the new one

(M’,ρ’).To convert a threshold gate to LSSS structure, the
algorithmThreshold2LSSS first converts the threshold gate

into DNF boolean formulas, and then converts the DNF

boolean formulas into LSSS structure by calling the algorithm

DNF2LSSS[13].For example, a (2,3)-gate on attributes A, B,

C can be simply represented as (A^B)_(B^C)_(A^C).

The algorithm DNF2LSSS used to change DNF boolean

formulas to LSSS structures[1] is a combination of two

algorithms:

 DNF2SSS

 SSS2MSP

V. CHECKING ON POLICY UPDATING

After sending the policy updating request to the cloud

server, the data owner waits for the cloud server to finish the

updating of all the relevant ciphertexts in the cloud. Then, the

data owner will check whether the cloud server has done the

updating operation correctly by a challenge-proof policy

checking protocol. Specifically, the data owner sends a

Checking Challenge to the cloud server. Then, the cloud

server sends back a Checking Proof P to the data owner. Upon

receiving the proof P, the data owner verifies the correctness

of the proof from the cloud server. If the proof is correct, it

means the cloud server has updated the ciphertext correctly.

To enable the data owner to check the updating[1], we assume

that each owner also has a global identity GID0. During the

system initialization, each owner GID0 can receive a secret

key SKO,AID and a checking key CKO,AID from the

corresponding authority AID[1].Challenge The data owner

generates a checking challenge δ as

δ = (H(GID0),S’)
And send it to the cloud server.

Proof The cloud server then generates a proof P according to

the challenge as

P= {pi=C1,i •e(H(GID0),C3,i)}I ϵ Is’

and sends back to the data owner. Finally upon receiving the

proof P the data owner checks whether S’ can satisfy the new

access policy.

VI. ANALYSIS OF OUR SCHEME

 In this section, we give the performance analysis of our
scheme.

A Performance Analysis

In our method, the data owner only needs to send the
update keys to the cloud server, instead of the whole encrypted
big data. Therefore, our method can significantly reduce the
communication cost during the policy updating. Suppose |p| is
the element size in the G,GT,Zp. Table 1 shows the size of
update keys in our scheme.

We can see that Type1 operation incurs the smallest size of
update keys. When updating an access policy to a new one, the
most common operation is Type 1 operation such that our
scheme incurs a small communication cost.

Operation Size(UK)

Attr2OR 4|p|

Attr2AND 5|p|

Type1 2|p|

Type2 3|p|

Type3 3|p|
Table 1.Sizes of Update keys

Compared with SSW’s scheme [21], our scheme makes
full use of the previous ciphertexts encrypted under the old
access structure. That is if an attribute in the new access policy
has ever appeared in the previous access policy, the new
ciphertext component of this attribute can be derived from the
previous ciphertext component with the update key.

The data owner only needs to compute ciphertext
components for new attributes. Moreover, in our scheme, we
also delegate all the pairing operations to the server, such that
the workload of the data owner can be further reduced.

To evaluate the computation time, we conduct the
simulation on a Linux system with an Intel Core 2 Duo CPU
at 3.16GHzand 4.00GB RAM. The code uses the Pairing-
Based Cryptography library version 0.5.12 to simulate the
access control schemes. We use a symmetric elliptic curve a-
curve, where the base field size is 512-bit and the embedding
degree is 2.The a-curve has a 160-bit group order, which
means p is a160-bit length prime.

VII. RELATED WORKS

The attribute-based encryption (ABE) technique [2]–[4],
[6]is regarded as one of the most suitable technologies for data
access control in cloud storage systems. There are two
complementary forms of ABE, Key-Policy ABE (KP-ABE)[2]
and Ciphertext-Policy ABE (CP-ABE) [3], [4]. In KPABE

,attributes are used to describe the encrypted data and access
policies over these attributes are built into user’s secret keys;
while in CP-ABE, attributes are used to describe the user’s
attributes and the access policies over these attributes are
attached to the encrypted data.

 A variety of issues associated with the big data in
the cloud is studied inorder to bring out methods to overcome
the issues are provided [19]. A complex access control scheme
used is CP-ABE is untrusted storage server and secure against
collision attacks and the methods used are closer to traditional
access control methods and also provided a system
implementation [20]. The data access control is an efficient
way to ensure the data security in the cloud [11].To deal with
the security problems various schemes based on the ABE have
been proposed recently as in [18].

 However all the above works cannot satisfy any of
the few requirements such as completeness or correctness
since they can only delegate key, ciphertext with a new access
policy which must be restrictive. Furthermore they cannot
satisfy the security requirements either they proposed that
ciphertext can be re-encrypted by any valid users by
decrypting it first.

VIII. CONCLUSION

 In this paper we have investigated the policy
updating problems in the big data access control system and
proposed some of the challenging requirements of the
problem. A new outsourced policy updating method using
ElGamal encryption algorithm with use of a latest encryption
technique called Swiss army knife of cryptography[23] is
introduced.

 This method avoids the transmission of encrypted
data and minimizes the computational work for the data
owners with the use of the old access policies for proposing
the policy updating algorithms to the different access policies.

 Here they design a CP-ABE technique for the policy
updation process. Finally this scheme proposes an efficient
and secure method for the data owners to check the updation
of cipher texts in the cloud.

 In our Future work, we use pure homomorphic
algorithm for the policy updation process. This is a highly
secure process and also outsources the policy updating to the
server and we design the policy updation process with in the
algorithm. This covers the authorities, cloud server, data
owners and data consumers in the cloud storage system

REFERENCE

[1] Kan Yang, XiaohuaJia ,KuiRen“Secure and Verifiable Policy Update

Outsourcingfor Big Data Access Control in the Cloud,”in1045-9219 (c)
2013 IEEETransactions on Parallel and Distributed Systems.

[2] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryptionfor fine-grained access control of encrypted data,” in
CCS’06.ACM, 2006, pp. 89–98.

[3] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute
based encryption,” in S&P’07. IEEE, 2007, pp. 321–334.

[4] B. Waters, “Ciphertext-policy attribute-based encryption: An

expressive,efficient, and provably secure realization,” in PKC’11.
Springer, 2011,pp. 53–70.

[5] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B.
Waters,“Fully secure functional encryption: Attribute-based encryption
and(hierarchical) inner product encryption,” in EUROCRYPT’10.
Springer,2010, pp. 62–91.

[6] A. B. Lewko and B. Waters, “Decentralizingattribute-based
encryption,”in EUROCRYPT’11. Springer, 2011, pp. 568–588.

[7] Andreas, V. Meier, “The ElGamal Cryptosystem,” June 8, 2005

[8] Whit_eldDi_e and Martin E. Hellman. New directions in cryptography.
IEEETransactions on Information Theory, IT-22(6):644-654, 1976.

[9] K. Yang, X. Jia, and K. Ren, “Attribute-based fine-grained access
controlwith efficient revocation in cloud storage systems,” in
AsiaCCS’13.ACM, 2013, pp. 523–528.

[10] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie, “DAC-MACS:
EffectiveData Access Control for Multiauthority Cloud Storage
Systems,” IEEETrans. Info. Forensics Security, vol. 8, no. 11, pp. 1790–
1801, 2013.

[11] K. Yang and X. Jia, “Expressive, efficient, and revocable data
accesscontrol for multi-authority cloud storage,” IEEE Trans. Parallel
Distrib.Syst., vol. 25, no. 7, pp. 1735–1744, July 2014.

[12] A. Beimel, “Secure schemes for secret sharing and key
distribution,”DSc dissertation, 1996.

[13] J. C. Benaloh and J. Leichter, “Generalized secret sharing and
monotonefunctions,” in CRYPTO’88, 1988, pp. 27–35.

[14] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity
basedencryption with constant size ciphertext,” in EUROCRYPT’05,
2005,pp. 440–456.

[15] M. Bellare and P. Rogaway, “Random oracles are practical: A
paradigmfor designing efficient protocols,” in CCS’93, 1993, pp. 62–73.

[16] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
andfine-grained data access control in cloud computing,” in
INFOCOM’10.IEEE, 2010, pp. 534–542.

[17] K. Yang and X. Jia, “Attributed-based access control for multi-
authoritysystems in cloud storage,” in ICDCS’12. IEEE, 2012, pp. 1–10.

[18] T. Jung, X.-Y.Li, Z. Wan, and M. Wan, “Privacy preserving cloud
dataaccess with multi-authorities,” in INFOCOM’13.IEEE, 2013, pp.
2625–2633.

[19] VenkataInukollu, Arsi, Ravuri, “Security issues associated with big data
in the cloud computing” in IJNSA, vol.6, No.3, May 2014.

[20] John, Sahai, B.Waters, “Ciphertext-Policy Attribute based encryption,”
in S&P ’07, IEEE, 2007, pp.321-334.

[21] A. Sahai, H. Seyalioglu, and B. Waters, “Dynamic credentials
andciphertext delegation for attribute-based encryption,” in
CRYPTO’12.Springer, 2012, pp. 199–217.

[22] Daniel Bleichenbacher,” Generating ElGamal Signature without
knowing the secret key,” in Institute for theoretical computer
science,CH-8092 Zurich, Switzerland on April 16,1996

[23] Xavier Boyen,”Multipurpose Identity-Based SigncryptionA Swiss Army
Knife for Identity-Based Cryptography”,Proc. 23rd Int'l.Conf. Advances
in Cryptology (CRYPTO '03), LNCS series,Springer Verlag, 2003.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Issue 4, April 2016

186

	I. Introduction
	ISSN 2395-695X (Print)
	ISSN 2395-695X (Online)
	International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
	II. SYSTEM AND SECURITY MODEL
	A. System Model

	III. Attribute Based Access Control with Dynamic Policy Updating for Big Data using Elgamal
	IV. Dynamic Policy Updating
	Fig.3. Operations of Boolean Formula

	V. Checking on Policy Updating
	VI. Analysis of Our Scheme
	VII. Related Works
	VIII. Conclusion
	Reference
	ISSN 2395-695X (Print)
	ISSN 2395-695X (Online)
	International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

