
 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 1, January 2016

19

 A Systematic Big Data Study Using HDFS and Map Reduce
S.Lavanya1, N.R.Vikram2, M.Revathi3

Assistant Professor, CSE, Paavai Engineering College, Namakkal, India

Abstract— In modern beings, big data plays a vital role in

processing/analyzing a large set of datasets. Similar to data

mining, big data analytics provide an insight to uncover hidden

patterns and useful information, in order to make better

decisions. There are various techniques available to perform big

data analytics. This paper provides a vision on big data, Hadoop,

components of HDFS and working of MapReduce framework. It

also offers creation and execution of MapReduce program in

Java.

Index Terms— Big data, Map reduce, Hadoop

1. INTRODUCTION

What is Big Data?

Big Data is a data that exceeds the processing

capacity of conventional database systems. The data is too

big, moves too fast, or doesn’t fit the structures of your

database architectures.

Big Data is a common buzzword in the world of IT

nowadays and it describes the realization of greater business

intelligence by storing, processing and analyzing data that

was previously ignored due to the limitations of traditional

data management technologies.

Big Data applies to information that can’t be

processed or analyzed using traditional processes or tools.

Increasingly, organizations today are facing more and more

Big Data challenges. They have access to a wealth of

information, but they don’t know how to get value out of it

because it is sitting in its most raw form or in a semi structured

or unstructured format; and as a result, they don’t even know

whether it’s worth keeping (or even able to keep it for that

matter).

Big Data era is in full force today because the world

is changing.

1.1 Characteristics of Big Data

The characteristics of big data are often defined as the

three Vs:

1. Volume

2. Variety

3. Velocity

1.2 The Volume of Data

The sheer volume of data being stored today is

exploding. In the year 2000, 800,000 petabytes (PB) of data

were stored in the world. Of course, a lot of the data that’s

being created today isn’t analyzed at all and that’s another

problem we’re trying to address with Big Insights. We expect

this number to reach 35 zettabytes (ZB) by 2020. Twitter

alone generates more than 7 terabytes (TB) of data every day,

Facebook 10 TB, and some enterprises generate terabytes

(and even Exabyte’s) of data every hour of every day of the

year.

Fig 1 Volume of Big Data

1.3 The Velocity of Data

A conventional understanding of velocity typically

considers how quickly the data is arriving and stored, and its

associated rates of retrieval i.e. the speed at which the data is

flowing. Big Data includes all types of data:

1. Structured: The data has a schema, or a schema can be

easily assigned to it.

2. Semi-structured: Has some structure, but typically columns

are often missing or rows have their own unique columns.

3. Unstructured: Data includes various structures like images,

audio, video, etc.

Why is Big Data important?

Big Data is well suited for solving information challenges

and they become even more vital when used in conjunction

with Big Data platform.

Conventional database technologies are an important, and

relevant, part of an overall analytic solution. In fact,

 Big Data solutions are ideal for analyzing not only raw

structured data, but semistructured and unstructured data

from a wide variety of sources.

 Big Data solutions are ideal when all, or most, of the data

needs to be analyzed versus a sample of the data; or a

sampling of data isn’t nearly as effective as a larger set of data

from which to derive analysis.

 Big Data solutions are ideal for iterative and exploratory

analysis when business measures on data are not

predetermined.

2. ABOUT HADOOP

Hadoop is a top-level Apache project in the Apache

http://www.ijarbest.com/

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 1, January 2016

20

HADOOP

HDFS MapReduce

Software Foundation that’s written in Java. Hadoop is an open

source framework for distributed storage and processing of

large sets of data on commodity (cheap) hardware. Hadoop

enables businesses to quickly gain insight from massive

amounts of structured and unstructured data.

 Hadoop was first found by Google’s work on its Google

(distributed) File Sys-tem (GFS) and the MapReduce

programming paradigm, in which work is broken down into

mapper and reducer tasks to manipulate data that is stored

across a cluster of servers for massive parallelism. The

implementation of MapReduce remained as white paper.

Later, Doug Cutting and Mike Cafarella who was working

at Yahoo renamed GFS into HDFS i.e. Hadoop Distributed

File System and Cutting implemented MapReduce program.

 Hadoop is designed to scan through large data sets to

produce its results through a highly scalable, distributed batch

processing system. Hadoop comprises of two parts: a file

system (the Hadoop Distributed File System) and a

programming paradigm (MapReduce).

Fig2. Classification of Hadoop

2.1 Hadoop Distributed File System

 Data in Hadoop is stored on a file system referred to

as HDFS or the Hadoop Distributed File System. With HDFS,

data is broken into chunks and distributed across a cluster of

machines.

2.1.1 HDFS has the following characteristics:

Primary storage system for Hadoop: it stores large files as

small blocks.

Reliability: Data is replicated so that disk failover is not only

acceptable but expected and handled seamlessly.

A data file in HDFS is divided into blocks, and the

default size of these blocks for Apache Hadoop is 64 MB. For

example, typical file systems have an on-disk block size of

512 bytes, whereas relational databases typically store data

blocks in sizes ranging from 4 KB to 32 KB. Remember that

Hadoop was designed to scan through very large data sets, so

it makes sense for it to use a very large block size so that each

server can work on a larger chunk of data at the same time.

Fig. 3 Structure of file with data blocks

Figure 3 represents a file that is made up of three data

blocks, where a data block (denoted as block_n) is replicated

on two additional servers (denoted by block_n' and block_n'').

The second and third replicas are stored on a separate

physical rack, on separate nodes for additional protection.

2.2 Components of HDFS

A Hadoop instance of a cluster of HDFS machines often

referred to as the Hadoop cluster or the HDFS cluster. There

are two main components of an HDFS cluster:

1. NameNode: The “master: node of HDFS that manages

the data(without actually storing it) by determining and

maintaining how the chunks of data are distributed across the

data nodes.

2. DataNode: the slaves which are deployed on each

machine and provide the actual storage. They are responsible

for serving read and write requests for the clients.

3. Secondary Name Node: It is responsible for performing

periodic checkpoints. In the event of Name Node failure, you

can restart the Name Node using the checkpoint.

Fig. 4 Components of HDFS

2.3 Block Storage

Loading a file into HDFS involves the following steps:

 A client application sends a request to the

NameNode that specifies where they want to put the file in the

filesystem

The Namenode determines how the data is broken

down into blocks and which DataNodes will be used to store

those blocks. This information is given to the client

application.

 The client application communicates directly with

each DataNodes, writing the blocks onto the DataNodes.

http://www.ijarbest.com/
https://en.wikipedia.org/wiki/Doug_Cutting
https://en.wikipedia.org/wiki/Mike_Cafarella
https://en.wikipedia.org/wiki/Yahoo!

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 1, January 2016

21

 The DataNodes replicate the newly created blocks

based on instructions from the NameNode.

Fig. 5 Understand of Block Storage

2.4 Inputting Data into HDFS

Options for Data Input

The first task in using a Hadoop cluster is getting our big data

into HDFS. There are several options to bring big data into

HDFS.

Fig. 6 Connecting big data and HDFS

The put command is used to read input file of nearly petabyte

into HDFS.

Hadoop fs –put – myinput.txt

3. MAP REDUCE FRAMEWORK

Overview of MapReduce

MapReduce is the heart of Hadoop. It is this programming

paradigm that allows for massive scalability across hundreds

or thousands of servers in a Hadoop cluster.

The term MapReduce actually refers to two separate and

distinct tasks that Hadoop programs perform.

1. Map Job: Data is input into the mapper, where it is

transformed into another set of data. Individual elements

are broken down into tuples (key/value pairs) and are

prepared for the reducer.

2. The reduce job takes the output from a map as input and

combines those data tuples into a smaller set of tuples. As

the sequence of the name MapReduce implies, the reduce

job is always performed after the map job.

3.1 Understanding MapReduce

In MapReduce, data are defined as (key, value) pairs. Mapper

takes one pair of data with a type in one data domain, and

returns a list of pairs in a different domain:

 Map (k1, v1) --> list of (k2, v2)

After that, the MapReduce framework collects all pairs with

the same key (k2) from all lists and groups them together,

creating one group for each key (k2). Reducer is then applied

in parallel to each group, which in turn produces a collection

of values in the same domain:

 Reduce (k2, list of v2) --> list of (v3)

Thus, the MapReduce framework transforms a list of (k,v)

pairs into a list of values.

A 5-step parallel and distributed computation:

1. Prepare the input for Mapper: the MapReduce framework

designates Map processors, assigns the input key (k1) value

each Mapper would work on, and provides that Mapper with

all input data associated with that key value.

2. Run the user-provided Mapper code: Map() is run exactly

once for each key (k1) value, generating output organized by

key (k2) values.

3. Shuffle the Mapper output to Reducers: the MapReduce

framework designates Reduce processors, assigns the key

(k2) value each Reducer would work on, and provides that

Reducer with all the Mapper-generated data associated with

that key value.

4. Run the user-provided Reducer code: Reduce() is run

exactly once for each key (k2) value, generating the output

value (v3).

5. Produce the final output: the MapReduce framework

collects all the Reducer output, and sorts it by key (k2) value

to produce the final outcome.

Fig. 7 Pipeline of MapReduce

The major steps are: map -> shuffle (or group) -> reduce (see

figure below). Just like Prof. Harvey said in his class, it should

be called "MapGroupReduce".

http://www.ijarbest.com/

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 1, January 2016

22

Fig. 8 Steps in MapReduce

3.2 Map Phase

The map phase involves running map tasks on Node

Managers. The main purpose of the map phase is to read all of

the input data. The goal (in order to gain the best

performance) is to achieve data locality, where a map task

runs on a Data Node where its Input split is stored. A block of

data rarely maps exactly to an input split, but it is often close,

especially when processing text data. Records that spill over

to a subsequent block have to be pulled over the network so

the map task can process the entire record, but this is normally

an acceptable overhead.

The number of map tasks in a MapReduce job is based on the

number of Input Splits. If no node manager is available where

a specific block resides, then data will be lost locally and the

block has to be pulled across the network.

Fig. 9 Tasks in MapReduce

Map tasks output <key, value> pairs, which are written to a

temporary file on the local File system. When a map task

finishes, its output becomes immediately available to the

reduce tasks. Each reducer asks each mapper for the <key,

value> pairs designated for that reducer. This designating of

records is called partitioning. As a reducer reads-in its <key,

value> pairs, the values are aggregated into a collection and

the entire input to the reducer is sorted by keys. This is

referred to as the shuffle/sort phase.

Fig. 10 Process of Mapping

The main purpose of the reduce phase is typically business

logic i.e. going through the data output by the mappers and

answering a question or solving a problem. The <key, value>

pairs coming into the reducer are combined by key, meaning

each key is presented once to the reducer along with all of the

values that belong to that key. Reducers also output <key,

value> pairs.

Fig. 11 Output after Mapping and Shuffling

3.3 Reduce Phase

The reducer fetches the records from the mapper and uses

them to generate and output another set of <key, value> pairs

that are output to HDFS.The reduce phase can actually be

broken down in three phases:

Shuffle: Also referred to as the fetch phase, this is when

reducers retrieve the output of the Mappers. All records with

the same key are combined and sent to the same reducer.

Sort: This phase happens simultaneously with the shuffle

phase. As the records are fetched and merged, they are sorted

by key.

Reduce: The reduce method is invoked for each key, with the

records combined into an iterable collection.

Fig. 12 Reduce phase of MapReduce

http://www.ijarbest.com/

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 1, January 2016

23

3.4 Creation of Map Reduce Program

To perform Map Reduce function, three Java classes has to be

created and executed. They are

1. Driver Class

2. Mapper Class

3. Reducer Class

a. Driver Class

Public class WordCount extends Configured implements

Tool

{

 Public int run(string args[])

 {

 If(args.length < 2)

 {

 System.Out.Println(“ Specify the input and output

directory count”);

 Return -1;

 }

 Jobconf conf = new Jobconf(WordCount.Class);

FileInputFormat.SetInputPath(WordMapper.Class);

FileOutputFormat.SetInputPath(WordReducer.Class);

Conf.SetMapInputKeyClass(longwriteable.class);

 Conf.SetMapInputValueClass(Text.class);

 Conf.SetOutputKeyClass(Text.class);

 Conf.SetOutputValuesClass(IntWriteable.class);

 Jobclient.runJob(conf);

 }

}

Main Method

Public static void main(string args[])

{

 int exitcode = ToolRunner.run(new WordCount(),args);

 system.exit(exitcode);

}

b. Mapper Class Code

Public class WordMapper extends MapReduceBase

implements Mapper<longwriteable,text,text,intwriteable>

{

 Public void map(intwriteable key, text values,

OutputCollected Output, Reporter report)

 {

 String S = values.tostring();

 for(string Word: S.Split(“ ”))

 {

 If(word.length() > 0)

 {

 Output.Collect(new text(word)), new intwriteable(1));

 }

 }

 }

}

c. Reducer class code

Public class Word Reducer extend MapReduce Base

implements Reducer<intwriteable,text,text,intwriteable>

{

 Public void reducer(text key,iterator value,outputcollector

output, Reporter report)

 {

 Int count = 0;

 While(values.hasnext())

 {

 Intwriteable I = values.next();

 Count += i.get();

 }

 Output.Collect(key, new intwriteable(count));

 }

}

3.5 Execution of Map Reduce Program

Hadoop jar

/usr/hdp/current/hadoop_mapreduce_historyserver/hadoop_

mapreduce_examples_2.6.0.2.2.0.0_2041.jar WordCount

test/constitution.txt count.txt

Here, constitution.txt is the input file and count.txt is the

output file.

To view the output file

#hadoop fs –ls count.txt

#hadoop fs –cat count.txt/partr-r-00000

4. CONCLUSION

 The final aspect of this paper is how well it integrates into

our existing enterprises.

Big Data is not a replacement for traditional systems; it’s just

coordinating our traditional system with new age. HDFS and

MapReduce framework can be used in almost all the fields

like Financial Services Sector, Health and Life Sciences,

Telecommunications, Defense, Surveillance, and Cyber

Security.

REFERENCES

1. J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters,” vol. 51, no. 1. New York,

NY, USA: ACM, Jan. 2008, pp. 107–113. [Online].

Available: http://doi.acm.org/10.1145/1327452.

2. J. Manyika et al., “Big Data: The Next Frontier for

Innovation, Competition, and Productivity,” 2011.

3. C. Lynch, “Big Data: How Do Your Data Grow?”

Nature, vol. 455, no. 7209, pp. 28-29, 2008.

4. T. White, Hadoop: The Definitive Guide, 1st ed.

O’Reilly Media, Inc.,2009.

5. Burghard C: Big Data and Analytics Key to Accountable

Care Success. IDC Health Insights; 2012.

6. Dembosky A: “Data Prescription for Better Healthcare.”

Financial Times, December 12, 2012, p. 19; 2012.

Available from: http://www.ft.com/intl/cms/

s/2/55cbca5a-4333-11e2-aa8f

7. Feldman B, Martin EM, Skotnes T: “Big Data in

Healthcare Hype and Hope.” October 2012. Dr. Bonnie

360;2012.http://www.west-info.eu/files/big-data-inhealt

hcare.pdf.

http://www.ijarbest.com/

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)
 Vol. 2, Issue 1, January 2016

24

8. Fernandes L, O’Connor M, Weaver V: Big data, bigger

outcomes. J AHIMA 2012:38–42

BIOGRAPHY

S.Lavanya received the Master Degree from Anna

University, Chennai in 2012. She is currently working

as Assistant Professor in Paavai Engineering College,

Tamil Nadu. Her research area includes Data

Warehousing and Mining, Big Data and Image

Processing.

He has received his Master’s Degree in Information

Technology from Madras Institute of Technology, Anna

University Chennai in 2012.He is currently working as

an assistant professor in Paavai Engineering College,

Pachal, Namakkal. He has published 5International

Journal Papers, 7 National and International

Conferences. He has been the committee member for

various international conferences. He is the Life

member of ISTE. He served as a volunteer in ICATS

conferences held in Paavai Institutions. His research

interests include Image Processing, Big Data and

Networking

She received her Master’s Degree in Mainframe

Technology from Anna University of Technology,

Coimbatore in 2011.She is currently working as an

assistant professor in Paavai Engineering College,

Pachal, and Namakkal. She has Received 2 Prestigious

award

1. Best student award in the year 2008.2. Best paper

award in the international conference ISCO 2011.She has

published 5 International Journal Papers, 15 International

and National Conferences. She has been the reviewer for

various international conferences. She is the LIFE

member of ISTE. She is an organizer of IIT-B Spoken

Tutorial and IITB Workshops in Paavai Institutions. She

served as an organizer in ICATS conferences held in

Paavai Institutions.

Her research interests include Image Processing, Big

Data and Networking

http://www.ijarbest.com/

