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Abstract 

Nutrients are crucial for plant growth and 

health. Inadequate macronutrients can lead 

to various damage to plants. However, 

deficiencies of different macronutrients 

often show similar visual symptoms, 

creating challenges for farmers to accurately 

identify them. Leveraging the synergy 

between computer vision technology and 

IoT presents a non-destructive approach to 

monitor and control nutrient levels, 

particularly in hydroponic systems. 

Although computer vision helps analyze 

plant image data based on different 

characteristics, a single characteristic may 

not accurately represent overall plant health. 

Moreover, accurate knowledge of 

macronutrient deficiency percentages is 

essential to support advanced precision 

agriculture systems. In this study, we 

propose a multi-layer perceptron (MLP) 

architecture capable of multitasking, 

including both recognition and estimation 

tasks. Furthermore, we aim to determine 

the optimal architecture by considering a 

combination of three key features: texture, 

color and leaf shape. Through rigorous 

analysis and design, our proposed model 

shows promising potential for simultaneous 

identification and estimation of 

macronutrient deficiencies. This model can 

contribute significantly in advancing 

precision agriculture practices in India. 

 

I. Introduction 

Plants of various types hold significant 

economic value within the agricultural sector 

of India. However, production often struggles 

to meet consumption demands, leading to 

inflation rates ranging from 0.20% to 0.55% in 

2019 [1]. Contributing factors include 

dwindling land availability due to 

urbanization, crop failures due to erratic 

weather patterns, pest infestations, and 

diseases [2]. To mitigate these challenges, 

innovative farming methods like hydroponics 

offer promise, especially in areas with limited 

land and unpredictable weather conditions [3]. 

Hydroponic farming focuses on delivering 

essential nutrients to plants [4]. Both macro 

and micronutrients are crucial for plant growth 

and development [5]. Macronutrients such as 

Nitrogen (N), Phosphorus (P), Potassium (K), 

Calcium (Ca), Magnesium (Mg), and Sulfur 

(S) are required in relatively large quantities (> 

1000 mg/kg dry matter), while micronutrients 

including Iron (Fe), Manganese (Mn), Zinc 

(Zn), Copper (Cu), Chlorine (Cl), Boron (B), 

and Molybdenum (Mo) are needed in smaller 

amounts (<100 mg/kg dry matter) [6]. 

Imbalances in nutrient content can lead to 

visible symptoms on plant leaves, including 

chlorosis, leaf distortion, and necrosis [7], [8]. 

However, distinguishing between different 

nutrient deficiencies can be challenging due to 

overlapping visual symptoms [10].In the 

context of advancing agriculture in India, 

technological integration plays a crucial role 

[11]. Monitoring and control systems, 

integrated with the Internet of Things (IoT), 

offer solutions for intelligent farming, 

including automated hydroponic setups [12]. 

Computer Vision emerges as a key technology 

for monitoring plant health [13], [14]. By 
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combining IoT and computer vision 

technologies, automated hydroponic systems 

can assess plant conditions and provide timely 

solutions Several studies have attempted to 

estimate the percentage of nutrient deficiencies 

using plant images [16], [23]. Color 

characteristics have been utilized in various 

crops, employing techniques such as 

Multivariate Linear Regression, Genetic 

Algorithm, Back Propagation-ANN, and KNN 

[23], [24]. Texture features have also been 

explored using algorithms like Support Vector 

Machine (SVM) [25]. Deep learning 

approaches, including Recurrent Convolution 

Neural Network (RCNN), have been applied 

across different plant types [1]. However, most 

studies have relied on a single feature for 

estimation, rendering resulting models less 

robust across all nutrient types [26], as each 

nutrient exhibits distinct visual characteristics. 

In India, where agricultural challenges are 

diverse and complex, there is a pressing need 

for comprehensive solutions. This study aims 

to address this need by proposing a novel 

approach that integrates multiple features for 

simultaneous identification and estimation of 

nutrient deficiencies across various plant types, 

thereby enhancing the precision and 

effectiveness of agricultural practices. 

Computer vision relies on image data for 

analysis, with various color models being 

employed, including the RGB model [15], 

[16]. Several studies have explored the 

identification of nutrient deficiencies in plants 

using leaf images, employing algorithms such 

as K-Nearest Neighbors (KNN), Artificial 

Neural Network (ANN), Naïve Bayes, Multi-

Layer Perceptron (MLP), and Convolutional 

Neural Network (CNN) with diverse 

architectures [17], [18], [19]. While MLP has 

shown promise, most studies have focused 

solely on identifying nutrient deficiency types 

[20]. Achieving precise agricultural practices 

requires estimating the percentage of nutrient 

deficiencies to tailor nutrient solutions to plant 

requirements [21], [22]. 

 
 

          Fig.1.Introduction to Working System 

 
II. Literature review 

The literature review you've provided offers a 

comprehensive overview of existing research 

efforts in the field of nutrient deficiency 

identification and estimation in plants using 

computer vision technologies. Let's delve 

deeper into some key points: 

 
A. Nutrient Deficiency Identification: 

Methodologies: The review mentions various 

machine learning algorithms employed for 

nutrient deficiency identification, ranging from 

traditional classifiers like KNN, Naïve Bayes, 

and MLP to more advanced techniques like 

CNNs. It would be beneficial to discuss the 

strengths and weaknesses of each approach, as 

well as any comparative studies that have 

evaluated their performance in this specific 

context. Data Acquisition and Preprocessing: 

Further detail could be provided on how leaf 

images are captured and processed before 

being fed into the machine learning models. 

This might include considerations such as 

image resolution, lighting conditions, and 

preprocessing techniques like normalization or 

augmentation. 

 

B. Challenges in Classification: 

 Expanding on the challenges of distinguishing 

between similar nutrient deficiencies could 

involve discussing specific examples where 

certain deficiencies may exhibit overlapping 

symptoms. Additionally, exploring how these 

challenges might vary across different plant 

species or environmental conditions could 

provide valuable insights. 
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C. Nutrient Deficiency Estimation: 

Feature Extraction Techniques: In addition to 

color and texture features, the review briefly 

mentions the use of leaf shape as a potential 

feature for nutrient deficiency estimation. 

Elaborating on how these features are extracted 

from images and their relevance to estimating 

deficiency percentages could offer a more 

comprehensive understanding. 

 

D. Model Evaluation:  

Discussing the metrics used to evaluate the 

performance of deficiency estimation models, 

such as mean squared error or coefficient of 

determination, would provide clarity on how 

researchers assess the accuracy of their 

predictions. 

 

E. Integration of Multiple Features: 

While the review acknowledges the limitation 

of relying on a single feature for estimation, 

exploring strategies for integrating multiple 

features into a unified model could be 

beneficial. This could include techniques like 

feature fusion, where information from 

different modalities (e.g., color, texture, shape) 

is combined to improve predictive 

performance. 

         Fig.2. Use Case Diagram 

A. Challenges and Opportunities: 

Generalization Across Plant Types: Delving 

into the specific challenges associated with 

generalizing nutrient deficiency identification 

and estimation models across different plant 

species or cultivars could shed light on the 

complexities of this task. Factors such as leaf 

morphology, growth habits, and nutrient 

uptake mechanisms may influence the 

transferability of models between plant types. 

 

B. Data Annotation and Labeling:  

Discussing the process of annotating leaf 

images with ground truth labels for nutrient 

deficiencies could highlight potential sources 

of bias or variability in the training data, as well 

as strategies for mitigating these issues. 

 

C. Real-time Implementation:  

Exploring the feasibility of deploying 

computer vision-based nutrient monitoring 

systems in real-world agricultural settings, 

including considerations of computational 

resources, scalability, and cost-effectiveness, 

would be relevant for assessing the practical 

utility of these technologies. 

 

D. Interdisciplinary Collaboration:  

Emphasizing the importance of 

interdisciplinary collaboration between 

researchers, agricultural practitioners, and 

technology experts is crucial for identifying 

research priorities and translating scientific 

advancements into practical solutions. 

Discussing specific examples of successful 

collaborations or potential avenues for 

partnership could provide concrete 

recommendations for future endeavors. 

 

E. Ethical and Societal Implications:  

Considering the broader ethical and societal 

implications of deploying automated nutrient 

monitoring systems in agriculture, such as 

issues related to data privacy, equity, and 

environmental sustainability, could enrich the 

discussion and inform future research agendas. 

By exploring these additional dimensions, 

researchers can gain a more nuanced 

understanding of the challenges and 

opportunities in leveraging computer vision 

technologies for nutrient deficiency 
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identification and estimation in agriculture, 

ultimately guiding the development of more 

effective and sustainable solutions. 

 

F. Classification of Crop Diseases: 

Infectious Diseases: These are caused by 

pathogens such as fungi, bacteria, and viruses. 

They often spread rapidly under favorable 

environmental conditions, leading to 

widespread crop damage. Fungal diseases, 

such as black leaf mould and powdery mildew, 

thrive in warm and humid conditions, affecting 

various parts of the plant including leaves, 

stems, and fruits. Bacterial diseases, like 

bacterial spots, can cause lesions on leaves and 

fruits, leading to reduced yield and quality. 

Viral diseases, though less common, can have 

severe consequences on crop health and 

productivity, affecting processes like 

photosynthesis and nutrient uptake. 

 

G. Non-Infectious Diseases:  
These are caused by environmental factors and 

deficiencies in essential nutrients, leading to 
physiological disorders in plants. Nutrient 

deficiencies, such as nitrogen, phosphorus, and 
potassium deficiencies, can result in stunted 

growth, leaf discoloration, and reduced yield. 
Soil acidity and mineral toxicities can disrupt 

nutrient uptake and physiological processes in 

plants, affecting their overall health and 
productivity. Machine learning techniques, 

particularly deep learning algorithms, offer 
significant advantages in disease detection by 

analyzing large volumes of image data to 

identify patterns and anomalies. The choice of 
tomato plants for this project is strategic due 

to their economic importance, widespread 
cultivation, and susceptibility to various 

diseases. Hydroponic cultivation of tomatoes 
presents unique challenges and opportunities, 

including controlled environments that can 

influence disease development and crop quality. 
Target Diseases: 

The selection of specific diseases for focus 

allows for a more targeted approach in disease 

management and mitigation strategies. Each 

targeted disease presents distinct symptoms and 

challenges in detection, requiring tailored 

algorithms and image processing techniques for 

accurate identification. 

H. Existing ML-based Image Processing: 

The integration of RGB cameras and single-

board computers like Nvidia Jetson TX1 

demonstrates the practical application of 

machine learning in real-world agricultural 

scenarios. Deep learning models, such as 

AlexNet and SqueezeNet, offer high accuracy in 

disease detection by leveraging large-scale 

image datasets for training and validation. 

 
I. Image Segmentation and Classification 

Techniques: 

Image segmentation techniques, such as k-

means clustering and HSV color spacing, play 

a crucial role in isolating diseased regions 

within plant images for further analysis. 

Classification methods like CNNs, SVMs, and 

GWT offer diverse approaches to categorizing 

and labeling image data, with CNNs being 

particularly effective for tasks involving spatial 

dependencies and feature extraction. 

 

J. Method Selection: 

The selection of appropriate image processing 

and machine learning methods depends on 

factors such as image quality, computational 

resources, and the specific characteristics of 

the target crop and disease. 

The adoption of CNNs for image classification 

reflects their versatility and performance in 

handling complex visual data, making them 

well-suited for tasks like disease detection in 

agriculture. 

 

III. CNN Model Architecture: 

The architecture of CNNs is characterized by 

hierarchical layers that progressively extract 

and transform features from raw input data. 

Each layer in a CNN performs specific 

operations, such as convolution, pooling, and 

normalization, contributing to the model's 

ability to learn hierarchical representations of 

input images. By addressing these aspects 

comprehensively, the project aims to advance 

the field of agricultural technology by 

providing scalable and efficient solutions for 

disease detection and management in crops, 

ultimately contributing to global food security 

and sustainability. 

 

In today's interconnected world, the demand for 
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intelligent and efficient computing systems is 

ever- growing, especially in domains requiring 

real-time processing and low power 

consumption. Embedded systems, with their 

dedicated functions within larger mechanical or 

electrical systems, play a pivotal role in fulfilling 

these requirements. Image processing, a 

fundamental aspect of many embedded 

applications, finds crucial applications in 

diverse fields such as IoT devices, drones, 

wearable devices, and agricultural monitoring 

systems. 

 

Embedded systems are characterized by limited 

processing power and memory, making efficient 

resource utilization imperative. This limitation 

necessitates the use of optimized algorithms and 

lightweight frameworks for image processing 

tasks. On the other end of the spectrum, personal 

computers (PCs) offer ample computing 

resources, making them suitable for intensive 

image processing tasks. Additionally, cloud 

computing platforms provide scalability and 

flexibility, allowing users to deploy and scale 

image processing applications as needed, 

particularly beneficial for applications with 

large datasets or complex processing 

requirements. MATLAB, a popular platform for       

numerical computing, stands out as a go-to tool 

for image processing and machine learning 

tasks. With its comprehensive set of tools and 

functions tailored for image processing, 

MATLAB enables researchers and practitioners 

to perform a wide range of tasks, including 

feature extraction, segmentation, and 

classification, with ease and efficiency. Single-

board computers (SBCs) such as Raspberry Pi 

and Nvidia Jetson TX1 offer a balance between 

computational power and cost-effectiveness, 

making them ideal for embedded image 

processing applications. Equipped with 

interfaces for connecting camera modules, these 

SBCs enable on-device processing, making 

them suitable for real-time applications like 

agricultural monitoring. 

In recent years, the emergence of TinyML has 

revolutionized machine learning deployment 

on constrained edge devices. TensorFlow Lite 

for Microcontrollers (TF Lite Micro) is a prime 

example, offering a framework specifically 

optimized for running machine learning 

models on devices with limited resources. This 

enables real-time ML tasks on low-powered 

devices, opening up new possibilities for 

embedded applications. 

 

Machine learning on mobile devices further 

extends the reach of intelligent computing. 

Frameworks like TensorFlow Lite and PyTorch 

provide seamless integration and efficient 

execution of ML models on smartphones and 

tablets. Apache Spark and Shogun offer 

distributed computing and versatile machine 

learning capabilities, catering to diverse 

application requirements. 

In the context of the project discussed, utilizing 

TensorFlow for building the CNN model offers 

several advantages. TensorFlow Lite enables 

deployment of the ML model on multiple edge 

devices, ensuring broader accessibility and 

deployment options. Compatibility with 

mobile platforms ensures seamless integration 

and efficient execution on devices with varying 

computational resources. Furthermore, 

TensorFlow's extensive ecosystem and 

community support provide resources and tools 

for model development, optimization, and 

deployment across different platforms. 

 

In conclusion, the convergence of image 

processing and machine learning technologies 

with embedded systems holds immense 

potential for driving innovation across various 

domains. As technology continues to advance, 

the integration of intelligent computing 

capabilities into embedded systems will 

undoubtedly pave the way for groundbreaking 

applications and solutions. 

 

IV. Proposed method 

 

A. Sensor Deployment: 

Choose sensors that are reliable, accurate, and 

suitable for the specific requirements of 

hydroponic farming. Ensure proper placement 

of sensors throughout the hydroponic system to 

capture representative data from different parts 

of the farm. Use wireless or IoT-enabled 

sensors for seamless data collection and 

integration into the monitoring system. 
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B. Data Collection: 

Implement robust data logging mechanisms to 

ensure continuous and reliable data collection. 

Consider using cloud-based storage solutions for 

scalability and accessibility of the collected data. 

Regularly calibrate sensors to maintain data 

accuracy and consistency. 

 

C. Data Preprocessing: 

Explore various techniques for data cleaning, 

such as outlier detection, smoothing, and 

interpolation. Normalize or standardize sensor 

readings to facilitate comparison and analysis 

across different parameters. Handle missing data 

appropriately through imputation or exclusion 

strategies. 

D. Feature Extraction: 

Engage domain experts to identify relevant 

features that can provide insights into plant 

health and disease status. Consider using 

advanced techniques such as signal processing, 

image analysis, and spectral analysis for feature 

extraction from sensor data and imagery. 

Employ dimensionality reduction techniques if 

dealing with high-dimensional data to improve 

computational efficiency and model 

performance. 

E. Machine Learning Models: 

Experiment with different machine learning 

algorithms such as decision trees, random 

forests, support vector machines, and neural 

networks to find the most effective models for 

disease detection. Fine-tune hyperparameters 

and conduct cross-validation to optimize 

model performance and generalization. 

Evaluate models using appropriate metrics such 

as accuracy, precision, recall, and F1-score. 

F. Anomaly Detection: 

Choose anomaly detection algorithms based on 
the nature of the data and the types of anomalies 
expected in the hydroponic system.Set 
appropriate thresholds or utilize unsupervised 
learning techniques to detect anomalies without 
labeled data. Incorporate feedback mechanisms 
to adjust detection thresholds dynamically based 
on changing environmental conditions. 

 

 

G. Predictive Analytics: 

Explore time series forecasting methods such as 
autoregressive models, moving averages, and 
ARIMA (AutoRegressive Integrated Moving 
Average) models for predicting disease 
outbreaks. 

Consider integrating external factors such as 
weather forecasts, pest infestation patterns, and 
crop growth stages into predictive models for 
improved accuracy. Validate predictive models 
using historical data and assess their 
performance using metrics such as mean 
absolute error and root mean squared error. 

H. Integration with Decision Support 
Systems: 

Develop user-friendly interfaces and dashboards 
that visualize real-time data, disease alerts, and 
recommendations for farmers. Implement 
notification mechanisms such as email alerts or 
mobile notifications to ensure timely responses 
to detected anomalies or predicted disease 
outbreaks. 

Enable remote monitoring and control 
capabilities to facilitate proactive management 
of the hydroponic farm. 

I. Continuous Monitoring and Feedback 
Loop: 

Establish procedures for ongoing monitoring 
and evaluation of the detection and prediction 
system's performance. Solicit feedback from 
end-users, such as farmers and agricultural 
advisors, to identify areas for improvement and 
prioritize enhancements. Regularly update 
models and algorithms based on new data, 
emerging trends, and evolving disease patterns 
to maintain relevance and effectiveness. 

J. Collaboration with Agricultural 
Experts:  

Foster collaboration between data scientists, 
engineers, and agricultural experts to leverage 
complementary skills and domain knowledge. 
Organize workshops, seminars, or collaborative 
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projects to facilitate knowledge sharing and 
interdisciplinary research in hydroponic farming 
and disease management. Encourage open 
communication and feedback exchanges to 
ensure that the developed solutions align with 
the practical needs and challenges faced by 
hydroponic farmers. By incorporating these 
additional details and considerations into the 
proposed method, hydroponic farmers can 
enhance the effectiveness and sustainability of 
disease detection and prediction efforts in their 
farming practices. 

 

Fig.3. Flow chart for the proposed system 

 

V. Result Analysis 

The excerpt provided outlines the process of 
training and testing a Convolutional Neural 
Network (CNN) model for the classification of 
images related to diseases in hydroponic 

farming. In this response, I'll expand upon the 
key concepts and processes described in the 
excerpt, providing a detailed explanation of each 
step involved in training the CNN model, 
evaluating its performance on validation and test 
sets, and deploying it on an iOS device. 
Additionally, I'll discuss the implications of 
transforming the model into the TensorFlow Lite 
(TFLite) format. 

Fig.4. Visualisation of training and validation 
accuracies and losses 

 Introduction to CNNs in Image Classification: 

Provide an overview of CNNs and their role in 
image classification tasks. Explain the 
architecture of CNNs, including convolutional 
layers, pooling layers, and fully connected layers. 
Discuss the importance of CNNs in various 
fields, including agriculture, for tasks such as 
disease detection in plants.  

A. Data Preprocessing and Augmentation: 

Describe the preprocessing steps applied to the 
image data, such as resizing, normalization, and 
data augmentation. Explain the purpose of data 
augmentation in increasing the diversity and 
robustness of the training dataset. Discuss 
techniques used for data augmentation, such as 
rotation, flipping, and adjusting brightness.  

B. Model Training and Validation:  

Detail the process of training the CNN model 
using the training dataset. Explain the choice of 
loss function (Sparse Categorical Crossentropy) 
for computing the loss between predicted and true 
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labels. Discuss the use of the validation set for 
monitoring model performance during training 
and preventing over fitting. Analyze the behavior 
of the model's accuracy and loss over multiple 
epochs, highlighting the correlation between 
decreasing loss and increasing accuracy. 

C. Evaluation on Test Set: 

Describe the process of evaluating the trained 
model on the test set. Discuss the characteristics 
of the test set, including its composition and the 
challenges posed by variations in brightness and 
image orientation. 

Fig.5.Visualization of testing accuracy and loss 

Present the results of the model's accuracy and 
loss on the test set after multiple epochs of 
testing. Performance on iOS Device: Explain the 
process of deploying the trained CNN model on 
an iOS device. Discuss any challenges or 
considerations specific to deploying machine 
learning models on mobile devices. Present the 
accuracy achieved by the model on the iOS 
device for classifying images of tomato leaves 
with Black mould disease. Implications of Model 
Transformation to TFLite Format: 

Discuss the process of converting the trained 
CNN model into the TensorFlow Lite (TFLite) 
format. 

Explain the potential impact of model 
transformation on accuracy and performance. 
Consider factors such as model size, 
computational efficiency, and compatibility with 
mobile devices. Conclusion and Future 
Directions: Summarize the findings of the study, 
including the performance of the CNN model on 
training, validation, and test sets. Discuss 
potential future directions for improving the 
model's accuracy and scalability, such as fine- 
tuning hyperparameters, incorporating additional 
data sources, or exploring advanced CNN 
architectures. 

By elaborating on each aspect of the training, 
testing, and deployment process outlined in the 
excerpt, this response will provide a 
comprehensive explanation of the CNN model's 
development and performance evaluation for 
disease classification in hydroponic farming. 
Comparison with other Systems: 

In the pursuit of sustainable agriculture, 
hydroponic farming has emerged as a promising 
solution for efficient crop production. However, 
like traditional farming methods, hydroponic 
systems are susceptible to plant diseases, which 
can significantly impact crop yield and quality. To 
address this challenge, various systems for 
disease detection and prediction have been 
developed, each with its unique strengths and 
limitations. In this essay, we will conduct a 
comparative analysis of these systems, with a 
focus on their applicability, performance, and 
implications for sustainable agriculture. 

D. Traditional Manual Inspection: 

Traditionally, farmers have relied on manual 
inspection to detect diseases in hydroponic crops. 
While this approach is straightforward and 
familiar to farmers, it has several limitations. 
Manual inspection is labor-intensive and time-
consuming, often resulting in delays in disease 
detection. Moreover, the subjective nature of 
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human observation can lead to inconsistencies in 
disease diagnosis and treatment decisions.  

E. Rule-Based Systems: 

Rule-based systems utilize predefined rules or 
heuristics to detect diseases based on observed 
symptoms or environmental conditions. While 
these systems are relatively simple to implement 
and understand, they lack the flexibility and 
adaptability required to handle complex disease 
patterns and dynamic environmental factors. 
Additionally, rule-based systems may struggle to 
maintain accuracy in the face of evolving disease 
strains or environmental changes. 

F. Non-AI Machine Vision Systems: 

Non-AI machine vision systems automate image 
analysis processes to detect diseases based on 
visual cues captured by cameras or sensors. These 
systems offer the advantage of objective and 
consistent assessments of plant health. However, 
they often require extensive manual feature 
engineering and may struggle to handle variations 
in plant appearance and environmental conditions 
effectively. AI-Based Systems (e.g., CNNs) 
Artificial intelligence (AI)-based systems, 
particularly Convolutional Neural Networks 
(CNNs), have gained traction for disease 
detection in hydroponic farming. CNNs can learn 
complex patterns and features directly from data, 
enabling them to adapt to diverse disease types 
and environmental conditions. While AI-based 
systems require large amounts of labeled data for 
training and are computationally intensive, they 
offer unparalleled accuracy and scalability in 
disease detection. 

G. Integrated IoT Solutions: 

Integrated IoT solutions combine sensor data 
with AI algorithms for real-time monitoring and 
decision- making in hydroponic farming. These 
solutions offer holistic insights into 
environmental conditions and plant health, 
facilitating timely interventions to prevent 
disease outbreaks. However, they require 
significant upfront investment in hardware and 

infrastructure, and integration and maintenance 
can be complex.  

H. Commercial Hydroponic Monitoring 
Systems: 

Commercial hydroponic monitoring systems 
provide comprehensive solutions with hardware, 
software, and support services for disease 
detection and monitoring. While these systems 
offer user-friendly interfaces and actionable 
insights, they are often proprietary and expensive, 
limiting their accessibility to small-scale farmers.  

I. Research Prototypes and Academic 
Models: 

Research prototypes and academic models push 
the boundaries of technology with innovative 
algorithms and approaches for disease detection 
in hydroponic farming. While these models are 
often open-source and accessible for 
experimentation, they may lack robustness, 
scalability, or real-world validation, necessitating 
adaptation and optimization for practical 
deployment disease detection systems in 
hydroponic farming encompass a range of 
approaches, each with its advantages and 
challenges. While traditional manual inspection 
methods remain prevalent, AI-based systems, 
particularly CNNs, hold promise for achieving 
high accuracy and scalability in disease detection. 
However, challenges such as data requirements, 
computational resources, and model 
interpretability need to be addressed to realize the 
full potential of AI-based systems in hydroponic 
agriculture. Ultimately, a combination of AI 
techniques with other monitoring systems or 
expert knowledge may offer the most effective 
solution for sustainable disease management in 
hydroponic farming. 

Conclusion: 

In the world of permaculture, hydroponic farming 
stands out as a new method with many benefits 
such as efficiency and reduced environmental 
impact. But like all farming methods, hydroponic 
farming has its challenges, including the threat of 
plant diseases. Timely and accurate detection of 
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diseases is important to prevent crop loss and 
ensure the stability of hydroponic systems. 
Against this background, the development of 
advanced technologies, especially deep learning 
models such as convolutional neural networks 
(CNN), holds great promise. 

The project discussed in this article aims to solve 
the challenge of disease detection in hydroponic 
farming using CNN-based models. Classification 
as a model. The model is designed to detect 
disease when a leaf is present and provide a good 
way to control the disease. The main goal 
throughout the project is to increase efficiency 
and effectiveness, especially in the global 
hydroponic farming environment. The results 
obtained during training and validation show the 
effectiveness of the CNN model. The model 
demonstrated the ability to identify images 
indicating leaf diseases, achieving 98.98% 
accuracy during the training period and 100% 
accuracy during the validation period. Moreover, 
the performance continues to be tested with 
99.01% accuracy and low loss rate. These results 
demonstrate the potential for practical use of this 
model in hydroponic farming. 

However, it is important to know the limitations 
and areas for improvement encountered during 
the study. Although the model showed high 
accuracy in tests, its performance on images of 
the real hydroponic farm has not been tested. This 
difference indicates the need to further refine and 
improve the model in the real world to ensure that 
its results are good in different situations. 
Looking forward, future work in this area should 
focus on several key areas to improve the utility 
of CNN-based disease diagnosis. It is important 
to integrate image processing subsystems into 
hydroponic systems to enable instant monitoring 
and automatic decision making. 

The results of image processing can be combined 
with other data collected from the hydroponic 
farm, such as environmental parameters and 
nutrient levels, to create a dashboard that 
provides a better understanding of farmers. 
Additionally, expanding the disease classification 

to include more plant diseases will strengthen the 
use and effectiveness of these systems. This 
expansion could allow for better disease control 
by reducing the need for farmers to monitor. 
Additionally, the use of built-in training for 
mobile devices provides the opportunity to 
improve the performance of the model over time, 
making it possible to adapt to changes in the 
model range, disease, and environment. 

In summary, this project represents the 
development of disease detection in hydroponics 
using CNN-based classification models. 
Although initial results are encouraging, further 
research and development is needed to verify the 
model's performance in real conditions and 
integrate it into hydroponic farming systems. 
Through the use of technology and integration, 
the goals of hydroponic permaculture can be 
achieved, ensuring food security and 
environmental sustainability for future 
generations 
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