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Abstract— Abstract: This study introduces a novel digital 

hardware architecture tailored for speech applications, 

focusing on a configurable Multiple-and-Accumulate (MAC) 

unit. In digital speech processing, signals are typically 

segmented into frames for subsequent analysis. These frames 

are then categorized based on their signal response, commonly 

into voiced, unvoiced, and silence segments. Such classification, 

known as V/UV/S, holds significant importance across various 

speech-based applications. A key parameter widely utilized for 

distinguishing between speech activity and silence is Short-

Time Energy (STE). 

 
The proposed MAC unit serves the purpose of computing 

STE for speech frames. Given the variability in frame sizes 

encountered in speech frames, the configurability of the MAC 

unit in terms of frame size enables efficient computation of 

STE using streaming samples. Implemented in Verilog HDL 

and utilizing the Xilinx Vivado tool, this paper elaborates on 

the hardware architecture of the proposed MAC unit and 

provides comprehensive insights into its performance metrics. 
 

I. INTRODUCTION 
 
In speech-based applications, voice signals are typically 

divided into short-duration overlapping chunks that are 

sequentially sequenced. Salient traits are extracted by 

processing the resulting speech segments. To create 

recognition models for a broad range of speech-based 

applications, characteristics derived from a sizable 

collection of speech signals are combined. However, not 

every speech signal segment provides useful information for 

activities like system modeling and recognition. Speech 

segments are categorized as voiced (V), unvoiced (UV), and 

silence (S) in a more general sense. Voiced speech is 

produced when the vocal cords' vibrations alter the air 

coming out of the lungs, giving the impression of quasi-

periodic excitement [1]. The resulting sound is primarily 

made up of oscillations at a low frequency.  
Silence and unvoiced portions are included in the non-
voiced speech. When air from the lungs goes through a tiny 

constriction in the vocal tract, it becomes turbulent and 

 

noiselike excitement without any dominating low-frequency 

oscillations, resulting in unvoiced speech that is non-

periodic and uncorrelated in character [1]. Conversely, the 

quietness happens when the vocal tract system is not 

stimulated. Therefore, in many speech-based applications, 

knowing the type of speech segment is useful. For instance, 

the frontend of the feature extraction stage of speech 

recognition systems uses the V/UV/S detector to remove 

UV/S speech segments [2].  
The literature has offered a number of strategies for 
classifying speech segments during the past few decades  
[3]–[6]. These techniques primarily focus on offering 

software domain solutions. As far as the authors are aware, 

there aren't many published works about the creation of 

specific, unique hardware designs for the V/UV/S 

classification of speech segments This inspired us to 

conduct research in this area and to propose a digital. 

architecture for speech segment instantaneous V/UV/S 

categorization. We decided to create the aforementioned 

architecture using the short-time energy (STE) and short-

time average zero-crossing rate (STAZCR), two widely-

used time-domain-based speech characteristics. The 

following justifies the selection of these criteria above 

others: First off, mel-frequency cepstral coefficients 

(MFCC) are thought to be the state-of-the-art features and 

are frequently employed in feature extraction approaches. 

[7, 8]. The energy of the speech segment is represented by 

the first coefficient in the MFCC feature vector. Since the 

computed value satisfies the conditions of both the MFCC 

feature vector building and the V/UV/S classification, we 

choose to utilize STE. Second, silence and speech activity 

can be effectively classified using STE. However, it is 

challenging to further categorize the speech as V/UV. As a 

result, we decided to make STAZCR the second parameter. 

Thirdly, in comparison to other methods, the computing 

complexity of the STE and STAZCR is lower. However, 

their mathematical formulas provide hardware realization 

feasibility and satisfy the recurrence property. 
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The following sums up the important contributions 

made in this paper: First off, the suggested architecture can 

be reconfigured to accommodate speech chunks with 

varying lengths up to 1024 powers of 2. Second, in order to 

map the needed functionality in hardware, we used the 

algorithmic state machine with datapath (ASMD)-based 

design technique. The suggested architecture is able to 

operate with window function architectures that are 

pipelined or recursive coordinate rotation digital computer 

(CORDIC) based. These architectures generate windowed 

speech samples sequentially at a rate of one sample per 

clock cycle or one sample per L clock cycles, respectively 

[9]. STE and STAZCR can process clear, noise-free speech 

signals because they employ thresholds derived from 

empirical observations. Consequently, the intended 

hardware architecture is meant to be used in low-noise voice 

recognition systems. 

 

II. LITERATURE SURVEY 
 
S. Sunil Kumar et al. proposed, the task of determining 

whether vocal fold activity zones are present or absent in the 

speech signal is known as voice/non-voice detection. The 

majority of current state-of-the-art techniques rely solely on 

the signal's amplitude, either in the time or frequency 

domains, and this has a substantial impact on how well they 

function during weakly voiced laryngeal transitions and 

noisy speech segments. In this study, we present a robust 

technique based on the source signal's phase harmonics for 

identifying voice and non-vocal areas in the speech signal. 

Here, zero frequency filtering (ZFF) is used to extract the 

voice signal's source signal from the vocal tract resonances. 

The experimental findings show how reliable the suggested 

approach is for correctly identifying voiced and non-voiced 

regions. [2] 

 

R. Bachu et al. The voiced-unvoiced choice is typically 

made in speech analysis in order to extract information from 

the speech signals. Two techniques are used in this research 

to distinguish between the voiced and unvoiced portions of 

the speech signals. They are energy and zero crossing rate, 

or ZCR. Here, we divided the speech sample into segments 

and utilized energy and zero crossing rate computations to 

distinguish between voiced and unvoiced speech segments 

in order to assess the findings. The findings imply that while 

energy is high for voiced parts and low for unvoiced parts, 

zero crossing rates are low for voiced parts and high for 

unvoiced parts. These techniques have therefore been shown 

to be successful in differentiating between voiced and 

unvoiced speech.[3] 

 

B. Atal et al. The voiced-unvoiced determination in speech 

analysis is typically carried out in tandem with pitch 

analysis. Pitch analysis and voiced-unvoiced (V-UV) 

decision-making are linked, which adds needless complexity 

and complicates the classification of brief speech fragments 

that last less than a few pitch intervals. We provide in this 

study a pattern recognition method for classifying, based on 

signal measurements, a given segment of a speech signal as 

voiced speech, unvoiced speech, or silence. The speech 

segment that has to be categorized is measured using five 

distinct techniques in this procedure.[4] 

 

F. Ykhlef et al. In this study, we have evaluated many 

temporal domain characteristics for speech signal 

categorization into voiced and non-voiced categories. To 

create three distinct classifiers, we have seamlessly selected 

the autocorrelation function (ACF), weighted ACF 

(WACF), and average magnitude difference function 

(AMDF). Experiments were carried out in both clean and 

noisy situations using the TIMIT database. The generated 

classifiers have been validated by the use of white noise 

taken from the NOISEX92 database. The average value of 

the percentage of classification accuracy (Pc) has been used 

to rank these classifiers overall.[5] 

 

S. Ahmadi et al. An enhanced algorithm for pitch 

determination and voice identification based on cepstrum is 

showcased. A multifeature voiced/unvoiced classification 

technique based on statistical analysis of the energy, zero-

crossing rate, and cepstral peak of short-time speech signal 

segments is used to determine the voice. A modified 

cepstrum-based technique is used to extract pitch frequency 

information, which is then meticulously adjusted utilizing 

pitch tracking, correction, and smoothing algorithms. A 

thorough investigation of performance on a sizable database 

shows a significant improvement over the traditional 

cepstrum approach. Furthermore, demonstrated is the 

suggested algorithm's resistance to additive noise.[6] 

 
N. S. S. Srinivas et al. Recognition of language from voice 

utterance is known as spoken language identification (LID) or 

spoken language recognition (LR). This research proposes a 

novel Fourier parameter (FP) model for spoken language 

recognition that is independent of the speaker. The analysis and 

comparison of the suggested FP features' performance with the 

legacy mel-frequency cepstral coefficient (MFCC) features is 

done. The two multilingual databases utilized to extract FP and 

MFCC characteristics are the Oriental Language Recognition 

Speech Corpus (AP18-OLR) and the Indian Institute of 

Technology Kharagpur Multilingual Indian Language Speech 

Corpus (IITKGP-MLILSC). Three classifiers—feed-forward 

artificial neural networks, deep neural networks, and support 

vector machines—are used to create spoken LID/LR models 

utilizing the retrieved FP and MFCC characteristics.[7] 
 

 

N. Sugan et al. Speech emotion recognition, also known as 

speech utterance analysis, is the act of determining the 

speaker's emotional state from the speech. Numerous other 

cepstral qualities have been suggested in previous studies as 

a means of developing SER systems. Two widely utilized 

variations of cepstral features are the mel-frequency cepstral 

coefficients (MFCC) and the human-factor cepstral 

coefficients (HFCC). Mel and human-factor filter banks are 

used, respectively, to extract MFCC and HFCC 

characteristics from voice signals. Each filter in these filter 

banks has a triangle-shaped magnitude response. Because of 

this, these filter banks are known as triangular filter banks 

(TFB), and the derived cepstral coefficients that correspond 

to them are designated as TFBCC-M (for MFCC) and 

TFBCC-HF (for HFCC).[8] 
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V. Kumar et al. In signal processing, communication 

systems, and image processing, popular window techniques 

like Hanning, Blackman, Blackman-Harris, and flat top 

windows are a logical choice before fast Fourier transform 

(FFT) to minimize the undesired phenomenon, such as 

spectral leakage and picket fence effect, which arise due to 

direct truncation by rectangular window. It is vital to select a 

certain window function and window length based on the 

applications since window characteristics vary depending on 

the kind of function and length of window employed. On the 

other hand, effective and adaptable very-large-scale-

integration (VLSI) architecture is required for the window 

function to be implemented in real-time. Therefore, this 

article provides a novel hardware efficient VLSI architecture 

based on coordinate rotation digital computer (CORDIC) 

that can be reconfigured to select a window function from 

the aforementioned popular window. [9] 
 
 
 

III. METHODOLOGY 
 

In this article an approach is used to calculate the 

short time energy (STE) of the speech signal using a 

configurable MAC. Here new digital hardware architecture 

with a customizable Multiple-and-Accumulate (MAC) unit 

designed for voice applications. Signals in digital voice 

processing are usually divided into frames for further 

examination. The signal response of these frames is then used 

to classify them, usually into spoken, unvoiced, and quiet 

segments. This kind of categorization, called V/UV/S, is very 

important for many speech-based applications. Short-Time 

Energy (STE) is a critical characteristic that is frequently used 

to differentiate between speaking activity and quiet. 

 

The computation of STE for voice frames is the 

function of the proposed MAC unit. The MAC unit's frame 

size configurable feature allows for the efficient 

computation of STE utilizing streaming samples, especially 

considering the wide range of frame sizes seen in speech 

frames. Upon power-up, the controller switches into the idle 

state, and waits for the start signal. Before the start signal 

arrives, the controller must be provided with the MAC 

configuration data, denoting the frame size of the speech 

signal, for appropriately computing the STE.  
Whenever start signal is asserted (for one clock cycle), 

then the controller switches into the computation state. At 

the time, its internal counter register and accumulator 

register are reset to zero. Next The controller waits to 

receive a valid speech frame sample on the data Sample 

input. When a speech sample arrives on the said input, the 

dataValid input is asserted for one clock cycle. When 

dataValid at low logic then the MAC unit is disabled.  
When the dataValid input is at high logic, then the MAC 

unit is enabled. When MAC is enabled, then the accumulator 

register value is added to the resultant of the multiplier and the 

final resultant is updated in the MAC. Upon updating the MAC, 

the controller increments its counter register. The controller 

compares its counter value with the frame value. When the 

count value is less than the frame value, then the counter 

repeats the previous steps to repeat the process  
If the count value is equal to the frame value, then the 

contents of the accumulator register is the desired STE value. 

The computed value is sent out via the output line and the 

corresponding outputValid signal is asserted for one clock 
cycle. Finally, the controller switches back to the idle state.  

This is a special instance that yields speech segments 

that do not overlap. There are very few speech-based 

programs that support this version. Ultimately, segment-

based speech parameters are computed using the acquired 

speech segments. It is frequently challenging to categorize 

the voice segments in the V/UV/S classification situation 

with a single parameter.  
Consequently, the segment-based STE is used in this 

article jointly to accomplish the intended goal. These 
parameters have the following definitions:  

A speech segment's STE is indicated by [10], ∞ = ∑ |   [m] · h [n − m] |2,n ∈ [0,Nf − 1], (1)  
  =−∞ 

 
where h denotes a Hamming window function defined as [11] 

ℎ[  ] = 0.54 − 0.46 cos ( 2     ) , =  , (2) 
 

 

− 1 

   

    
 

where the window length is indicated by N. A speech 

segment is categorized as a speech (Sp) segment if its E is 

comparatively high in relation to a predetermined threshold 

(Eth); otherwise, it is classified as a quiet segment. Figures 

1(a) and 1(b) provide contour graphs that demonstrate this. 

The E estimations are shown in a linear scale in the former 

and in decibel and log-compressed scales in the latter.  
To minimize space overheads and computational 

complexity in the event of hardware implementation, the E 

estimations are, however, given in a linear scale. Moreover, 

the speech segments are categorized as S/Sp using the E 

estimates derived on xp [m]. The categorization result is 

combined to determine the borders of transition between 

S/Sp areas in xp [m].  
 
 
 
 
 
 
 
 

 

Fig.1(a)  
 
 
 
 
 
 
 
 
 
 
 

Fig.1(b) 

 

After entering the idle state, the controller awaits the start 
signal. In order for the controller to calculate the STE 
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correctly, it has to be given the MAC configuration data, 

which indicates the speech signal's frame size, prior to the 
start signal.  
After asserting the start signal for one clock cycle, the 

controller enters the calculation stage. Its accumulator 
register and internal counter register are reset to zero at that 
point.  
On the dataSample input, the controller waits to receive a 

valid voice frame sample. The dataValid input is asserted for 

one clock cycle upon the arrival of a voice sample on the 

specified input. The MAC unit is deactivated while 

dataValid at low logic. 

 

Calculating the Short-Time Energy (STE) of speech signals 

using a MAC unit that may be configured. The frame size 

characteristic of this MAC unit may be adjusted, which is 

important for effective STE calculation utilizing streaming 

samples and the classification of speech frames into spoken, 

unvoiced, and silent segments (V/UV/S categorization). 

When activated, the MAC unit is used by the controller in 

this design to analyze speech samples and transition between 

the idle and calculation modes. The computed STE value is 

then output by the controller. This design is specifically 

made to handle the range of frame sizes that are frequently 

used in voice processing. 
 
The following figure 2 differentiates between the speech 

signal, voiced signal, unvoiced signal, silence. This 

classification of signal into these categories helps the 

controller to perform the desired processing to the signal.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.2 

 

The portion of signal which represents the silence does not 

contain any information. Remaining part of the signal is 

combination of voiced and unvoiced signal. Unvoiced signal 

is a mixture of information and noise together. The 

controller shifts to operational mode from idle state 

whenever controller input is fed with a speech signal. 

Another input to the controller is given with the 

configurable MAC, which contains information about the 

number of frames to be divided for the further processing. 

 

Before the controller process the signal that has to be pre-
emphasized and should undergo window technique to 

eliminate the sudden spikes or raises in the signal. From figure 

4 whenever the data valid signal is high start signal is made 

high to proceed with the operation. The process begins to start 

after the activation of start signal. MAC register counts the 

number of frames processed and increments the counter each 

time after completion of frame processing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.3 

 

Above figure represents the MAC which is a part of the 
controller . This MAC unit helps the controller initiating and 
terminating the process of the controller.  
In digital signal processing and computer architectures, a 

Multiple Accumulate Unit (MAC) is an essential part. It 

carries out the action of multiplying two input values and 

adding the outcome to the sum of the previous values. 

Typically, a multiplier, an accumulator, and control logic 

make up a MAC unit. 

 

The data input and the coefficient input are the two values 

that the MAC unit gets when it is operating. These inputs 

are multiplied by the multiplier to create a product, which is 

then added to the current value of the accumulator. The 

accumulated total is kept in the accumulator and is updated 

with every calculation cycle.  
The capability of the MAC unit is essential for many 

applications, including matrix computations, convolution, and 

filtering. Compared to independent multiplier and accumulator 

units, it lets complicated mathematical operations be computed 

efficiently with less hardware complexity. Furthermore, MAC 

units are frequently utilized in microprocessors and digital 

signal processors (DSPs) for the quick and energy-efficient 

processing of data and signals. 

 

IV. RESULTS 
 

Figure 4 represents the simulated results of the controller 

output of the speech signal, various components and signals 

that are given to the controller and MAC. Data Valid 
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signals becomes logic high whenever the input is given 
with a speech or voice signal.  

 
 
 
 
 

 

Fig.4 

 

Verilog-HDL is utilized for the proposed 

architecture's simulation duties. The outcomes of the 

simulation provide a clear explanation of the controller's 

operation for every clock cycle. To put the controller in the 

idle state, use the reset signal. The voice signal is where the 

controller begins processing when the start signal changes 

from logic low to logic high. This procedure keeps on until 

all frames have been processed. Upon completion of this 

procedure, Short-Time Energy (STE) is acquired and 

utilized for further uses. 

 

V. CONCLUSION 
 
This study suggests a digital architecture that uses a MAC 

unit that may be configured to calculate the energy of voice 

signals or frames. Using the programmable MAC, this 

design calculates the segment-based short-time energy 

(STE). Short voice signal energy calculations can be 

analyzed and used for future uses. 
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