
International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717

Vol.10, Issue.5, May 2024

A Review On Comparative Study Of Shell’s In
Linux

Shubhanga CS

departmnet of computer science

cshubhanga@gmail.com

Sonali Shetty

department of computer science

sonalishetty235@gmail.com

Soorya Prakash Acharya

department of computer science

sooryapacharya@gmail.com

Smita Ravi Naik

department of computer science

smitan949@gmail.com

Dr. G Srinivasan

department of computer science

srinivasgopalan@aiet.org.in

Abstract—There are several command-line interpreters, or

”shells,” that the Linux operating system supports. The main
interface that allows the user to interact with the Linux kernel

and execute scripts, programs, and instructions is provided by

these shells, each of which has its own special features and

powers. In this review article, the most popular Linux shells—
Bourne-Again SHell (Bash), Z Shell (Zsh), Korn Shell (Ksh),

Fish (Friendly Interactive SHell), and C Shell (Csh)—are

thoroughly compared. In order to give consumers useful

information to help them choose the best shell for their

particular requirements, it tries to emphasize the unique

qualities, performance characteristics, scripting capabilities,

and user experience of each shell.

Keywords— Linux Shells, Shell Comparison, Command Line

Interpreters, Bash, Zsh, Fish, Tcsh, Scripting Languages, Shell

Performance, User Interface Customization, Scripting

Capabilities, CrossPlatform Compatibility, Shell Extensions,

Command Line Productivity, Shell Efficiency, Open Source

Shells, Interactive Shell Features, Shell Scripting, Terminal

Emulators, Linux Operating System, Command Execution

Speed, Shell Usability, Configuration Flexibility.

I. INTRODUCTION

Within the world of Linux operating systems, the shell

functions as an essential interface that links users and the

kernel. By converting user inputs into executable

commands that communicate with the operating system's

core, a shell serves as a command interpreter. It provides a

strong and adaptable command-line environment and is

essential in enabling communication between users and the

system.A shell can be used for more than just running

commands; it can be used to traverse files, launch

applications, manage processes, and alter files. Because

they offer a flexible and scriptable environment for both

interactive use and automation, shells are an essential part

of the Linux user experience.

Comprehending the function of shells is crucial for both

administrators and users of Linux, since it serves as the

entry point to fully utilizing the operating system's

command-line interface. This overview lays the

groundwork for a more thorough examination of Linux

shells, including their history, functionality, and essential

role in system administration and everyday computing

duties.

II. DIFFERENT KIND OF SHELL'S

BASH, an acronym for "Bourne Again SHell," is a well-
established open-source scripting language and command-
line shell. Since its inception in 1989 as a component of
Brian Fox's GNU Project, Bash has evolved into the standard
shell for numerous Unix-like operating systems, such as
Linux and macOS. It was developed from the Bourne Shell
(sh) and combines elements from other Unix shells, making
it a feature-rich tool that power users, developers, and system
administrators use extensively.

Bash's main function is to read and carry out user
commands via a command-line interface. Bash is a robust
programming language with more capabilities than just a
command interpreter. By writing scripts with variables,
functions, control structures (if statements, loops), and other
programming constructs, users take advantage of its scripting
features to automate activities.

Environment variables for configuration, I/O redirection
for controlling input and output, pipelines for linking
commands, and task control for managing several processes
at once are some of Bash's key features. These characteristics
help Bash be more flexible and effective at handling a range
of command-line activities. In Bash, environment variables
are essential because they let users tailor their working
environment and adjust the behavior of the shell. Users may
remember and re-execute earlier instructions with the
command history function, which improves productivity and
navigation. Working with groups of files is made easier with
the help of file globbing and wildcards, which simplify file-
related tasks.

Bash's ability to be extended is demonstrated by its
scripting functionality. The ability to write custom functions
and scripts allows users to design system utilities, automate
repetitive operations, and customize the shell for particular
use cases. While integrating features from other shells, Bash
maintains standards and backward compatibility,
guaranteeing consistency with the original Bourne Shell (sh).
This commitment encourages script portability across many
Unix-like platforms and supports a smooth user experience.
Users of Bash benefit from a thriving community,
comprehensive documentation, tutorials, and online
resources. This infrastructure of support helps users become
proficient with Bash's capabilities and functions, which is
one of the reasons it remains so popular in Unix and Linux
contexts.

137

mailto:cshubhanga@gmail.com
mailto:vinigowda2003@gmail.com
mailto:hulasadvenkatesh@gmail.com
mailto:Vijayalaxmimkunnur2002@gmail.com
mailto:maheshkini@aiet.org.in

ZSH, which stands for "Z Shell," is a strong scripting
language and command-line shell that may be used instead
of Bash. It was created in 1990 by Paul Falstad as a more
feature-rich and enhanced Bourne Shell (sh) with more
capabilities. Zsh is a very flexible and user-friendly shell that
combines functionality from other shells, such as Bash,
KornShell, and others.

Zsh is a command-line interface that provides an
interactive and effective user experience by interpreting and
executing commands supplied by the user. Although Zsh and
Bash are similar, Zsh has certain characteristics that make it
different. Variables, arrays, and associative arrays are just a
few of the programming features that Zsh's scripting
language offers its users. Moreover, it has sophisticated
scripting features including named directories, strong
globbing patterns, and the capacity to create and utilize
unique widgets for improved interactivity. One of Zsh's
primary features is a comprehensive auto-completion system
that lets users finish commands, routes, and parameters by
just hitting the Tab key. With the help of this function,
command-line efficiency is greatly increased and manual
typing is decreased.

Prompt theming is a notable feature of Zsh that allows
users to completely modify the appearance of the command
prompt. To provide a customized and educational command-
line experience, themes can contain details about the system,
version control status, and current directory. Zsh has a syntax
highlighting function that highlights various parts of a
command in different colors, making command-line
readability improved. Users will find it simpler to recognize
and comprehend complicated commands with the help of this
visual assistance. Popular frameworks like Oh-My-Zsh serve
as examples of Zsh's plugin system, which makes it simple to
integrate new features and themes. By adding plugins that
provide features like enhanced syntax highlighting, more
auto-completions, and more, users may increase Zsh's
functionality. Zsh also has an intelligent correction
mechanism that offers pre-execution suggestions for
commands that are written incorrectly.

 FISH, is a cutting-edge command-line interface that
improves user experience on Unix-like computers. Its
advanced syntax highlighting, which dynamically colors
commands, arguments, and variables to help users rapidly
comprehend and evaluate command structures, is one of its
most notable features. This feature enhances the visual
experience, particularly for those who use the command line
frequently.

Fish shell is unique in that it has an auto-suggestions
feature. Fish makes real-time completion suggestions to
users as they input commands, taking into account their
command history and available alternatives. This proactive
approach is especially helpful for those who are new to the
command line, since it not only expedites the command-
entry process but also aids users in learning new commands
and choices.

Fish's emphasis on consistency and simplicity in syntax
makes it easier to use for users of different ability levels. By
reducing the need for complex programming constructs, the
shell enhances readability and user-friendliness. Fish
emphasizes simplicity without sacrificing its scripting skills.
Because of its strong scripting language support, users may

write effective and potent scripts for customization and
automation.

Fish shell's adaptability is further enhanced by built-in
commands and functions. By offering an extensive collection
of tools for frequently performed command-line operations,
the shell minimizes the need for third-party programs. The
provision of important functionality to users in an inclusive
environment fosters productivity and efficiency.

Fish's programming language is created with readability
for humans in mind. For customers who wish to take use of
the power of scripting but may not be experienced
developers, this functionality is especially helpful. Because
of the language's simple and straightforward syntax, users
may write and maintain scripts without encountering
needless complexity.

Fish shell is a command-line interface that is both
feature-rich and easy to use. With its emphasis on simplicity,
clever auto-suggestions, dynamic syntax highlighting, and
strong scripting features, Fish is a tempting choice for users
looking for a fun and productive command-line interface.
Fish shell offers an ideal blend of power and accessibility for
both rookie and expert command-line users.

III. SHELLS INTERACTION WITH THE SYSTEM

A. Parsing and Interpretation

A shell's parsing and interpretation process starts when a
user types a command into it in order to determine the user's
purpose. This procedure, which divides the input command
into its component components and gets it ready for
execution, is essential to the shell's operation and takes many
phases.

Tokenization is the initial stage of the parsing process, in
which the input command is divided into distinct tokens by
the shell according to whitespace characters (such tabs and
spaces). Like command names, parameters, and redirection
operators, each token stands for a unique component of the
command. Tokens include, for instance, ls, -l, and
/home/user in the command ls -l /home/user.

The command name, which is the first token in the
command, is recognized by the shell once the input
command has been tokenized. The executable program or
built-in command that the shell needs to run is indicated by
the command name. The command name is ls in the sample
command ls -l /home/user.

The shell parses the remaining tokens to extract the
command's parameters and arguments after recognizing the
command name. Arguments can be file names, directory
paths, or other arguments that provide the command further
information. Options, also referred to as switches or flags,
alter how a command behaves. The -l option in the ls -l
/home/user command tells the ls command to provide
comprehensive details about files and directories.

The shell recognizes redirection operators, which manage
the input and output streams for commands, in addition to
command names and parameters. The operators ?, \, and | are
frequently used for redirection purposes. They divert output
to a file, input from a file, and pipe output from one
command to another, respectively. The output of the ls

138

program, for instance, is sent to a file called files.txt when
the command ls ? files.txt is used.

The shell has successfully disassembled the input
command into its component pieces and determined the
command name, parameters, and redirection operators once
the parsing step is finished. This procedure guarantees that
the order is accurately comprehended and ready to be carried
out. After that, the shell carries out the command, interacting
with the operating system and carrying out the user-specified
actions by using the information that has been processed.

B. System Calls

Shells act as a go-between for the operating system
kernel and users, making it easier to control system resources
and carry out tasks. System calls are one of the main ways
that shells communicate with the kernel. The kernel provides
these system calls, which enable processes—including shell
processes—to ask the operating system for services.

Fork() and exec() are two of the many system calls that
shells use, and they are essential for starting processes and
executing commands. The child process, created by the
fork() system function, is a perfect replica of the parent
process, down to the address space and execution context.
This method facilitates concurrency and multitasking by
allowing shells to launch additional processes to carry out
instructions. The exec() system function is used to replace
the child process's memory image with a new program
image—typically, the executable that corresponds to the
command to be executed—after a new process is formed
using fork(). By loading the desired program into the newly
formed process, this technique enables shells to execute
commands. In essence, the command execution replaces the
shell process.

Shells are used for file manipulation and input/output
activities, in addition to process management. They make use
of system methods like open(), read(), write(), and close().
To open or create new files, use the open() system function,
which returns a file descriptor representing the opened file.
Shells can then utilize this file descriptor to use the read()
and write() system functions, respectively, to read from or
write to the file. The close() system function is used to
terminate the file descriptor and release the related resources
when file operations are finished.

Shells can successfully modify files and communicate
with other system resources thanks to these system functions.
Shells use the kernel's system call interface to connect with
the underlying operating system in order to carry out various
tasks such as managing processes, executing commands, and
working on files. The command-line interface is built on the
tight relationship between shells and the kernel, which
enables users to effectively control and manage their systems
through shell interactions.

C. Environment Variables

Environment variables are dynamic values that influence
the behaviour of commands and scripts run within the shell
environment. Shells are essential for handling these
variables. Important data including user preferences, system
setups, and executable file paths are stored in these variables.
To properly modify and improve their working
environments, users must comprehend how shells manage
and change environment variables.

The current user's username (USER), home directory
(HOME), and shell-specific variables like the path (PATH)
variable, which specifies the directories the shell searches for
executable files, are just a few examples of the vast array of
data that environment variables in shells might include.
Environment variables can also hold information about
terminal settings, system locales, and language preferences,
which can affect how commands and programs run in the
shell environment.

Shells enable users to dynamically customize and
configure the shell environment by giving them access to a
variety of ways for interacting with environment variables.
Using built-in shell commands, users may examine and
modify the current set of environment variables. Examples of
these commands include env and printenv. To guarantee that
variables are available in later commands and scripts, users
can designate variables for export to child processes using
the export command, for example.

Moreover, shells allow environment variables to be
added, changed, and removed in order to customize the shell
environment to meet particular needs. Assignment
statements (VAR=value) can be used to change variables that
already exist. Alternatively, users can unset variables
completely (unset VAR) or prepend or append values to
variables. With the help of these features, users may adjust
their work surroundings, personalize the behavior of
commands, and optimize their workflow to suit their unique
needs and preferences.

Additionally, environment variables provide
communication between various shell environment processes
and applications. Users may propagate data across many
processes and scripts by exporting variables, which makes it
easier for different system components to integrate and
communicate with one another.

D. Filesystem Manipulation

Using a variety of utilities and commands, shells are
effective tools for navigating, manipulating, and managing
files and directories inside the filesystem. These commands
improve productivity and workflow efficiency by providing
users with a smooth and effective approach to carry out
typical filesystem operations straight from the command line.

The mkdir command's generation of directories is one of
the essential filesystem activities that shells provide. By
passing the required directory names as parameters to the
mkdir command, users can create new directories in the
filesystem hierarchy. This feature makes it possible for users
to set up their filesystem in a way that best suits their needs,
which makes managing and organizing data more effective.

Shells offer commands to create, remove, copy, move,
and alter files and folders in a similar manner. Users can
copy files and directories from one location to another using
the cp command, but they can also destroy files and
directories with the rm command. Users may rename files
and transfer them between directories with ease thanks to the
mv command, which makes filesystem movement easier.
Users can also alter the timestamp on existing files or create
new, empty files using the touch command.

System calls that are made by the shell to communicate
with the filesystem constitute the foundation of these
filesystem activities. For instance, the unlink() system call

139

removes a file or directory from the filesystem, but the
mkdir() system call creates a new directory with the given
name. In a similar vein, files and directories can be renamed
by using the rename() system function, which modifies the
filenames in the filesystem hierarchy.

Users may effectively and easily carry out a variety of
filesystem activities by utilizing these filesystem utilities and
commands. Shells offer a single interface for manipulating
files, abstracting system calls and filesystem operations into
easily understood commands. Regardless of technical
proficiency, users may efficiently manage filesystem
resources thanks to this abstraction layer, which also
improves usability.

E. Scripting and Automation

One of the main features of shells is that they may allow

scripting and automation. By writing and running shell

scripts, users can automate tedious chores and carry out

complicated processes. Shell scripts are basically text files

that are run by the shell as a single program. These text files

contain sequences of shell commands and control structures,

such loops and conditionals. With the help of this

functionality, users may automate a variety of operations,

including data processing, process management, and system

administration, so greatly increasing the power and

flexibility of the shell.

By utilizing the shell's syntax and command set, shell

scripting makes it possible for scripts to easily carry out

operations including program execution, file manipulation,

and system monitoring. Additionally, shell scripts are

effective tools for automating intricate operations because

they may call other programs, initiate utilities, and utilize

built-in shell functions like text manipulation, variable

replacement, and input/output redirection.

When a shell script runs, the shell examines each

command in turn, parses its syntax, interprets it, and then

invokes the appropriate system functions to communicate

with the operating system. Interpretive execution enables

dynamic execution flow, where control structures based on

conditional evaluations or iterative processes over data sets

may be used to change the script's behavior.

Utilizing the huge ecosystem of Unix/Linux commands

and tools is one of the main advantages of shell scripting,

since it allows scripts to accomplish a wide range of

activities. With the straightforward syntax of shell

commands, a shell script can, for example, automate file

backups, the monitoring of system logs for certain

occurrences, or the bulk processing of picture files.

Shell scripting also makes it easier to automate system

administration chores like setting up users' accounts,

installing applications, and configuring the system. System

administrators may guarantee consistency, lower the

possibility of human mistake, and save a substantial amount

of time and effort by scripting these procedures.

But there are duties associated with shell scripting's

capabilities. It necessitates a deep comprehension of

command tools, shell syntax, and system architecture. To

avoid unexpected effects on the system, scripts must be

properly designed to manage mistakes, provide security, and

operate effectively.

F. Job Control

The shell's job control capabilities are essential for

effective system administration and user interaction in the

multitasking environments of Unix and Linux. The term

"job control" describes the shell's capacity to control the

execution of several processes, giving users the freedom to

execute commands in the background, pause and resume

running programs, and change the order in which they are

executed. This feature makes it possible for the user to

manage system resources and processes much more

effectively, which leads to a workflow that is more dynamic

and effective.

1) Background Execution and Process Suspension:

The capability of job control to execute tasks in the

background is one of its main features. Users can

launch a process and return to the shell prompt instantly

by adding an ampersand (&) to a command. This

enables the simultaneous execution of other tasks.

Long-running programs that don't need frequent user

input benefit greatly from this non-blocking style of

operation.

Additionally, job control makes it easier to pause

running processes by utilizing signals. For instance,

using Ctrl+Z will usually cause a foreground task to be

suspended. By initiating a SIGSTOP signal, this step

puts the process in a paused state without ending it. The

shell may be used to handle suspended processes. It

maintains a job table that lists all current and suspended

tasks and enables users to list, restart, or end them as

2) Resuming Execution

It is possible to restart suspended processes in the

background or in the foreground. The fg command

allows it to take control of the terminal and

communicate with the user directly by resuming a

paused operation in the foreground. In contrast, a

stopped task can be resumed in the background by

using the bg command. This allows the job to continue

running without obstructing the shell or needing

immediate user interaction.

3) Process Priority Management

Moreover, shells let users control process priority

by utilizing the "niceness" idea. Higher priority

processes use more CPU time than lower priority

processes. Commands such as nice and renice, which in

the end invoke the setpriority() system function, allow

users to modify a process's niceness and hence its

scheduling priority.

4) Signal Management

These job control characteristics are based on how

the shell uses signal processing and system calls. With

the use of the kill() system function, a process can

receive signals from the shell or other processes,

allowing for actions like termination (SIGTERM),

140

forced termination (SIGKILL), and suspension

(SIGSTOP). Furthermore, a more reliable method for

handling signals is offered by the sigaction() system

call, which enables programs to designate unique

handlers for particular signals. This makes it possible

for processes to respond to signals from the operating

system or other processes with graceful shutdowns,

restarts, or other unique behaviors.

G. Input and Output Redirection

The usual input, output, and error streams of commands

can be redirected by users thanks to shell support for input

and output redirection. File descriptors and system methods

like dup2(), which duplicate file descriptors to reroute input

and output to files or other processes, are used to

accomplish this capability.

H. Security Considerations

Shell scripts are vulnerable to injection attacks, privilege

escalation, and inappropriate processing of user input, just

like any other executable code. Validating input data,

limiting the usage of root capabilities, and using tools like

Shell Check for static analysis are all recommended

practices for shell script security.

I. Process Management

Shells handle all aspects of process management,

including its creation, observation, and termination. Fork()

and wait() are two examples of system functions they use to

start child processes and coordinate their execution. Shells

also keep track of information about processes that are

currently in use, such as their process IDs (PIDs) and

execution status.

TABLE 1

COMPARATIVE STUDY ON SHELLS IN LINUX

IV. CONCLUSION

 In conclusion, the wide variety of shells that are
accessible in the Linux environment greatly enhances the
operating system's adaptability and versatility. Reviewing a
variety of shells, including Fish, Zsh, and Bash, reveals a
feature-rich environment that accommodates a wide range of
user needs and preferences. Because of its widespread use
and powerful scripting features, Bash is still a go-to option
for a lot of users and system administrators. With its
additional customisation choices and potent tab-completion,

Zsh is a compelling choice for those looking for a more
engaging experience. Especially for those who are unfamiliar
with the command line, Fish Shell stands out as a
contemporary and friendly option thanks to its emphasis on
user-friendliness, syntax highlighting, and clever auto-
suggestions.

Because each shell is different and offers advantages over
the others, users may customize their command-line
experience to fit their tastes and workflow. With these varied
solutions available, the Linux ecosystem can accommodate
users with different use cases and skill levels, creating a
dynamic and inclusive environment. Exploration and
development of shells adds a great deal to the overall user
experience as the Linux community grows, allowing for
more effective and efficient interaction with the command
line's strong capabilities. The choice of a shell ultimately
comes down to personal taste, workflow demands, and
individual user requirements, which reflects the flexible and
open character of the Linux operating system.

REFERENCES

[1] Shivangi Shandilya,Surekha Sangwan,Ritu Yadav (2014). "Shell

Scripting and Shell Programming in Unix", (IJIRT), vol. 1, no. 11, pp
2349-600.

[2] M. Seltzer and M. Olson, “LIBTP: Portable, modular transactions for
UNIX,” in Proc. Winter 1992 USENIX Conf., Jan. 1992, pp. 9–26.

[3] Evolution Of The Unix System Architecture:An Exploratory Case
Study.

[4] W. Joy, E. Cooper, R. Fabry, S. Leffler, K. McKusick, and D.
Mosher, “4.2BSD system manual,” in UNIX Programmer’s Manual—
Volume 2c—Supplementary Documents: 4.2 Berkeley Software
Distribution. Berkeley, CA, USA: Computer Systems Research
Group, Department of Electrical Engineering and Computer Science,
University of California, Aug. 1983.

[5] W. Joy, “An introduction to display editing with vi,” in UNIX
Programmer’s Manual—Volume 2c—Supplementary Documents: 4.2
Berkeley Software Distribution. Berkeley, CA, USA: Computer
Systems Research Group, Department of Electrical Engineering and
Computer Science, University of California, Aug. 1983

[6] Kerrisk, M. (2010). The Linux Programming Interface: A Linux and
UNIX System Programming Handbook. No Starch Press.

[7] Robbins, A., & Beebe, N. (2005). Classic Shell Scripting: Hidden
Commands that Unlock the Power of Unix. O'Reilly Media, Inc.

[8] Love, R. (2010). Linux System Programming: Talking Directly to the
Kernel and C Library. O'Reilly Media, Inc.

[9] W. N. Joy and M. Horton, “Ex reference manual,” in UNIX
Programmer’s Manual—Volume 2c—Supplementary Documents: 4.2
Berkeley Software Distribution. Berkeley, CA, USA: Computer
Systems Research Group, Department of Electrical Engineering and
Computer Science, University of California, Aug. 1983.

[10] W. N. Joy, S. L. Graham, C. B. Haley, M. K. McKusick, and P. B.
Kessler, “Berkeley Pascal user’s manual,” in UNIX Programmer’s
Manual—Volume 2c—Supplementary Documents: 4.2 Berkeley
Software Distribution. Berkeley, CA, USA: Computer Systems
Research Group, Department of Electrical Engineering and Computer
Science, University of California, Aug. 1983.

[11] Stevens, R. P., Rago, S. A., & Fenner, B. (2013). Advanced
Programming in the UNIX Environment. Addison-Wesley
Professional.

[12] Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating
System Concepts. John Wiley & Sons, Inc.

[13] A. Caroline Mary, "Shellshock Attack on Linux Systems – Bash",
(IRJET 2015), vol. 2, no. 8,pp. 2395-0072.

[14] nixCraft.cyberciti.biz.

[15] Evolution of Shells.

[16] W. Toomey, “Unix: Building a development environment from

Feature Bash Zsh Fish Tcsh

Autocompletion Basic Advanced Advanced Advanced

Scripting

Capabilities

Excellent Excellent Good Good

Interactive Use Good Excellent Excellent Good

Customization Moderate High High Moderate

Plugin System Limited Extensive Moderate Limited

Learning Curve Moderate Steep Easy Moderate

Performance Good Good Excellent Good

141

[17] scratch,” in Reflections on Operating Systems—Historical and
Philosophical Aspects, L. Demol and G. Primiero, Eds. New York,
NY,

[18] Tycho Kirchner, Konstantin Riege & Steve Hofmann, "Bashing
irreproducibility with shournal," (Springer 2024) 14:4872.

[19] Kartalopoulos, S. V., "Differentiating Data Security and Network
Security," Communications, 2008. vol. 08, pp.1469‐1473,19‐23
May 2008.

[20] http://www.thegeekstuff.com/2010/07/executeshell-script.

[21] http://en.wikipedia.org/wiki/Shell_script.

[22] http://www.calpoly.edu/~rasplund/script.html.

[23] http://supportweb.cs.bham.ac.uk/docs/tutorials/d.ocsystem/build/tutor
ials/unixscripting/unixscripting.html.

[24] Robin Harder, "Using Scopus and OpenAlex APIs to retrieve
bibliographic data for evidence synthesis. A procedure based on Bash
and SQL", (Elsevier 2024).

[25] J.A.Bradshaw, K.J.Carden & D.Riordan, "Ecological applications
using a novel expert system shel",(cabios) vol. 7, no. 1,pp. 1991.

[26] W. Joy, “An introduction to the C shell, in UNIX Programmer’s", vol.
2,Berkeley, CA.

[27] Diomidis Spinellis, Senior Member,"Evolution of the Unix System
Architecture:An Exploratory Case Study",(IEEE 2021), vol. 47, no. 6,
june 2021.

[28] https://Linux.org." (2023).

[29] Bridges, C., Yeomans, B., Iacopino, C., Frame, T. E., Schofield, A.,
Kenyon, S. et al. Smartphone qualification and Linux-based tools for
CubeSat computing payloads. In Proceedings of the 2013 IEEE
Aerospace Conference, Mar. 2013. [Online] Available: http://dx.doi.
org/10.1109/AERO.2013.6497349.

[30] Min-kyu Choi , Rosslin John Robles, Chang-hwa Hong2), Tai-hoon
Kim1), “Wireless Network Security: Vulnerabilities, Threats and
Countermeasures”, Vol. 3, No. 3, July, 2008

[31] Kartalopoulos, S. V., "Differentiating Data Security and Network
Security," Communications, 2008. ICC '08. IEEE International
Conference on, pp.1469‐1473, 19‐23 May 2008.

[32] D. Merkel, “Docker: Lightweight Linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, May
2014.

[33] S. R. Bourne, “An introduction to the UNIX shell,” in UNIX
Programmer’s Manual. Volume 2—Supplementary Documents, 7th
ed. Murray Hill, NJ, USA: Bell Telephone Laboratories, 1979.

[34] D. G. Feitelson, “Perpetual development: A model of the Linux
kernel life cycle,” J. Syst. Softw., vol. 85, no. 4, pp. 859–875, 2012.

[35] R. Love, Linux Kernel Development, 3rd ed. Upper Saddle River, NJ,
USA: Addison-Wesley, 2010.

[36] D. Bovet, Understanding the Linux kernel, 3rd ed. Sebastopol, CA,
USA: O’Reilly, 2006.

[37] Kumar, Surender, and Rupinder Kaur. "Plant disease detection using
image processing-a review." International Journal of Computer
Applications 124.16 (2015).

[38] N. Takahashi and T. Takamatsu, “UNIX license makes Linux the last
missing piece of the puzzle,” Ann. Bus. Administ. Sci., vol. 12, pp.
123–137, 2013.

[39] W. R. Stevens, UNIX Network Programming: Networking APIs:
Sockets and XTI, vol. 1, 2nd ed. Englewood Cliffs, NJ, USA: Prentice
Hall, 1998.

[40] M. Bagherzadeh, N. Kahani, C.-P. Bezemer, A. E. Hassan, J. Dingel,
and J. R. Cordy, “Analyzing a decade of Linux system calls,”
Empirical Softw. Eng., vol. 23, no. 3, pp. 1519–1551, Jun. 2018.

142

