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Abstract— Brain tumor detection poses significant challenges 

in clinical practice, particularly in distinguishing between 

malignant and benign tumors. This study presents an optimized 

approach utilizing a hybrid model combining Convolutional 

Neural Networks (CNN) and Support Vector Machines (SVM) 

for segmentation of brain tumors in Magnetic Resonance 

Imaging (MRI) images. The CNN component extracts high-level 

features from MRI scans, while the SVM classifier refines 

segmentation boundaries, enhancing precision and accuracy. 

Our proposed framework aims to optimize brain tumor 

detection by leveraging the complementary strengths of CNN 

and SVM techniques. Experimental evaluation on a diverse 

dataset showcases the efficacy of our approach, demonstrating 

superior segmentation accuracy and computational efficiency. 

This CNN-SVM hybrid segmentation methodology offers a 

promising solution for improving brain tumor detection in 

clinical settings, contributing to more accurate diagnosis and 

treatment planning for patients with neurological disorders, 

while addressing challenges such as tumor heterogeneity and 

size variation. 
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I. INTRODUCTION 

he human brain, housed within the protective confines 

of the skull, is an unparalleled marvel of complexity 

[1,2]. This intricate organ, comprised of a vast network 

of neurons and synapses, orchestrates the symphony of human 

thoughts, emotions, and actions. However, comprehending 

the complexities of the brain remains a formidable challenge 

for researchers and medical practitioners, particularly when 

addressing pathological conditions such as brain cancer. 

The evolution of clinical imaging advances has been 

instrumental in elucidating the inner workings of the brain. 

Magnetic Resonance Imaging (MRI), a sophisticated and 

non-invasive tool, offers unprecedented insights into the 

structural nuances of the brain [6]. As we navigate the  

 

 
 

 

intricate landscape of brain health, attention shifts to the 

delicate interplay between normalcy and pathology, 

particularly in distinguishing between benign and malignant 

conditions. 

Mind malignant growth, set apart by wild cell 

multiplication in the cerebrum, represents a significant test in 

the clinical space. The intricacies inborn in the cerebrum's life 

structures further upset the recognition and conclusion of 

these bizarre developments. [3,4]. 

 

  
          (a)                                            (b) 

Figure 1: Depiction of brain tumor characteristics observed through MRI 
imaging[20].  

 

In Figure 1, 

(a) Malignant Brain Tumor: The MRI scan reveals features 

consistent with a malignant brain tumor, indicating irregular 

and invasive growth patterns. Malignant tumors often exhibit 

aggressive behavior and may give inadequately characterized 

borders, irregular shapes, and areas of necrosis or 

hemorrhage.  

(b) Benign Brain Tumor: In contrast, the MRI imaging 

shows characteristics typical of a benign brain tumor, 

displaying a well-defined and encapsulated mass. Benign 

tumors tend to grow slowly, remain localized, and have 

smoother borders compared to malignant tumors. 

 

This illustration provides insights into the distinct 

characteristics of malignant and benign brain tumors as 
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visualized through MRI imaging, aiding clinicians in 

diagnostic interpretation and treatment decision-making. 

Globally, brain cancer holds a prominent position in 

cancer-related mortality statistics [5]. Amidst the urgency for 

timely diagnosis and effective interventions, medical 

researchers and practitioners turn to advanced imaging 

techniques, notably MRI, as a beacon of hope. 

As the healthcare practitioners grapples with the 

complexities of brain pathologies, the demand for precise and 

efficient diagnostic tools becomes paramount. While the 

traditional approach of visually inspecting and manually 

interpreting MRI images remains invaluable, there is a 

growing interest in integrating cutting-edge technologies. In 

this context, machine learning (ML) and deep learning 

methodologies garner attention for their potential to 

revolutionize medical image analysis. 

This research endeavors to propose an innovative and 

integrative approach for the detection and classification of 

brain tumors. Our hybrid model, which synergizes 

Convolutional Neural Networks (CNNs) and Support Vector 

Machines (SVMs), aims to overcome the limitations of 

traditional methods. To substantiate our theoretical 

framework, we incorporate actual MRI images into our 

exploration, featuring instances of both normal and malignant 

brain conditions. 

In the subsequent sections, we embark on a detailed 

exploration of our proposed hybrid CNN-SVM model, 

elucidating its architectural foundations and the collaborative 

dynamics between CNN and SVM in the realm of 

classification. The inclusion of MRI images serves not only 

as a graphic representation of the challenges posed by brain 

tumors but also as a testament to the practical applicability of 

our model in real-world medical scenarios. 

Traversing the realms of image representation, we dig into 

the underlying complexities of the CNN, featuring its capacity 

to independently extricate urgent elements for precise growth 

arrangement. This exploration points not exclusively to 

contribute to the technical discourse surrounding medical 

image analysis yet in addition to bridge the gap between 

advanced technology and the pressing needs of clinical 

diagnosis. 

The subsequent sections will navigate the intricate 

workings of our hybrid CNN-SVM model, offering detailed 

insights into its methodology, dataset integration, and the 

structural intricacies of the CNN. Our exploration will 

culminate in a comprehensive discussion of the results 

obtained, demonstrating the superiority of our model in brain 

tumor detection and classification. Finally, the conclusion 

will encapsulate the significance of our findings, envisioning 

a future where the fusion of advanced technologies and 

medical expertise reshapes the landscape of brain health 

diagnostics. 

II. PROPOSED CNN-SVM HYBRID METHOD 

The envisioned hybrid model, denoted as CNN-SVM, is 

meticulously crafted to harness the inherent advantages of 

both Convolutional Neural Network (CNN) and Support 

Vector Machine (SVM), a conceptualization elegantly 

illustrated in Fig. 2. In Fig. 2, we present an exposition of the 

foundational architecture of CNN, unveiling its layers, 

including Convolution, Pooling, Flatten, and Fully Connected 

layers, a comprehensive depiction derived from pertinent 

literature [7,8]. The nuanced discussion surrounding the 

hybrid CNN-SVM model is reserved for the concluding 

segment of this section, providing a thorough examination of 

its innovative characteristics and integrative potential. 
 

A. Intricacies of Convolutional Neural Networks(CNN) 

 

Convolutional Neural Networks (CNNs) represent a 

distinctive subset within the broader domain of artificial 

neural networks (ANNs). In general, this network architecture 

comprises the input layer, hidden layer, and output layer 

[7,9,10]. The characteristic feature of sequential information 

flow persists, with each layer's output seamlessly 

transitioning into the subsequent layer's input. Illustrated in 

Fig. 2, the application of CNNs in image analysis unfolds 

across four pivotal stages: the convolution layer, pooling 

layer, flatten layer, and fully connected layer. It's noteworthy 

that the structural composition, encompassing the number and 

type of layers, can deviate across different architectures 

[9,10]. 

 
Fig. 2.  The diagram visually represents a Convolutional Neural Network 

(CNN) architecture, showcasing layers for feature extraction through 
convolutions, dimensionality reduction via pooling, and final classification 

through fully connected layers. 

 

Within the CNN model, the convolution layer assumes a 

foundational role as the initial stage for extracting features 

from an image. In this process, the inherent properties of each 

pixel and the relationships with neighboring pixels are 

meticulously captured through mathematical operations. Post 

feature extraction, the pooling layer assumes prominence, 

discerning crucial information and engaging in subsampling 

to reduce redundant data. This subsampling process, 

incorporating techniques like Max pooling, Avg pooling, and 

Sum Pooling, aims to diminish the data map's size without 

sacrificing essential information. However, it's imperative to 

recognize that feature mapping in the pooling layer can 

sometimes contribute to overfitting. 

To counter potential overfitting concerns, the flatten layer 

intervenes, transitioning 2D arrays into 1D arrays. This 

strategic step precedes the application of the fully connected 
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layer, typically serving as the conclusive layer in a network. 

Here, meticulous connections are established, culminating in 

the final output. The cohesion and interplay of these layers 

underscore the efficacy of CNNs across diverse applications, 

with Fig. 2 offering a visual representation of their sequential 

operation [7,9]. 

B. Intricacies of Support Vector Machines(SVM) 

 

 
 
Fig. 3.  The illustration depicts the structure of a Support Vector Machine 
(SVM), comprising a hyperplane that optimally separates data points into 

distinct classes based on their features. 

 

Belonging to the realm of supervised machine learning, 

Support Vector Machines (SVMs) showcase competence in 

processing linear and non-linear data, rendering them 

adaptable for tasks encompassing both classification and 

regression. In the context of this investigation, the SVM 

classifier takes a prominent position within the ultimate layer 

of the fully connected segment in the Convolutional Neural 

Network (CNN). This deliberate fusion is designed not only 

to augment flexibility but also to proficiently adjust to varying 

data lengths through the manipulation of kernels [8,9]. 

 

C. Integrated CNN – SVM model 

 

Constructing a unified architecture involves a deliberate 

substitution of the final layer in the Convolutional Neural  

Network (CNN) with the Support Vector Machine (SVM) 

[10]. In this amalgamated design, the output originating from 

CNN's fully connected layer seamlessly feeds into the SVM, 

strategically implemented to enhance the classification 

process. The decision to synergize CNN and SVM stems from 

the exceptional adaptability of CNN, allowing for the 

incorporation of hidden layers [10]. This adaptability not only 

expedites feature extraction but also significantly elevates 

accuracy and overall performance—attributes that have 

consistently been a focal point in neural network research [3]. 

Additionally, the distinctive feature extraction capabilities 

and efficient processing speed of SVM further validate the 

harmonious collaboration between these models, yielding 

superior outcomes in the extraction of brain tumors from MRI 

images.  

 
Fig. 4 visually encapsulates the intricacies of this unified CNN-SVM model 

[3]. 

 

Within the CNN module, a tailored approach is adopted, 

employing specific convolution and subsampling techniques. 

Operating on a 28 × 28 feature map, a 5 × 5 convolution is 

applied, afterwards a subsequent 14 × 14 feature map with 2 

× 2 convolution. This meticulous design aims to expedite 

information extraction during both the training and testing 

phases of the model [10]. 

Shifting focus to the SVM model, the output from CNN's 

fully connected layer is harnessed to enhance various facets 

of the machine learning process. This includes refined 

training methodologies, in-depth analysis of feature vectors, 

robust classification capabilities, and more informed 

decision-making. 

Beyond its technical merits, the proposed unified model 

holds immense promise for medical diagnostics. By 

leveraging diagnostic knowledge, it presents an avenue to 

reduce brain tumor mortality rates and significantly advance 

the early-stage detection of tumors [10]. 

The work here underscores the significance of this model 

in scientific progress, particularly in its precision in layering 

and meticulous adjustment of image filters, collectively 

contributing to the accurate representation of tumors. The 

effectiveness of combining multiple models is emphasized, 

with the author asserting that the collaborative impact far 

surpasses the efficacy of deploying a singular model in 

isolation [10]. 

III. METHODOLOGY 

Fig. 5 illustrates the procedural structure of a novel hybrid 

CNN and SVM model and its distinct stages, culminating in 

five comprehensive steps: 

 

I. Initialization of MRI Image Input: 

The MRI brain image serves as the initial input, sourced 

from a designated directory, and subsequently transferred to 

the graphical user interface (GUI) platform for further 

processing within the system. 

 

II. Pre-Processing of MRI Brain Image: 

This pivotal phase involves the execution of primary 

operations on the MRI images to ensure optimal readability 
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by the system and enhance conditions for image analysis. Key 

steps encompass: 

 

i. Standardization of Image Dimensions: Each image is 

resized to a uniform dimension, such as (232 ×232), ensuring 

consistency across the dataset and facilitating standardized 

analysis[17]. 

ii. Skull Removal: Leveraging specialized functions, the 

extraneous skull surrounding the brain is meticulously 

extracted, streamlining depiction of the brain region of 

interest[18]. 

iii. Image Refinement: Employing a median filter, noise is 

effectively filtered out, augmenting the discernibility of 

features essential for subsequent feature detection and 

classification tasks[19]. 

 

Fig. 5. Hybrid CNN-SVM Methodology 

III. Feature Extraction: 

Integral to the analysis, feature extraction is undertaken 

utilizing diverse algorithms to discern pertinent features 

within the images. Various methodologies, including Henry 

gases solubility optimization (HGSO), Harris hawks 

Optimization (HHO), and binary optimization techniques, 

have been examined to ascertain ideal component choice for 

further developed productivity classification accuracy [11, 

13, 15]. 

 

IV. Image Segmentation: 

Acknowledging the criticality of image segmentation in 

facilitating object extraction, the threshold-based 

segmentation model is employed. By systematically varying 

thresholds and Max values, the segmentation process 

partitions the grayscale image into discernible segments, 

enhancing information extraction. Multilevel thresholding 

demonstrates superior efficacy in delineating distinct features 

within brain MRI images [12, 14]. 

 

V. Classification of Brain MRI Images: 

Following meticulous feature extraction and segmentation, 

the subsequent step entails classification of the images. The 

model is trained and tested using SVM, CNN, and a hybrid 

SVM + CNN approach, with performance metrics such as 

Positive Predictive Value (PPV), False Positive Value (FPV), 

and Accuracy. Comparative analysis is subsequently 

conducted to elucidate the model's efficacy in discerning and 

classifying brain MRI images accurately [2, 16]. 

 

By adopting this methodology, a novel and robust approach 

to hybrid CNN and SVM modeling is introduced, paving the 

way for enhanced accuracy and efficacy in the classification 

of brain MRI images. 

IV. STATISTICAL FUNCTION ANALYSIS 

Understanding the significance of statistical functions in 

determining the characteristics of brain MRI images, this 

study explores various methodologies to identify optimal 

features. Each statistical function plays a distinct role in 

analyzing image attributes, as outlined below: 

 

A. Mean Value: Representing the average brightness level 

across the image, the mean provides insight into overall image 

consistency. By summing all pixel values and dividing the 

absolute number of pixels, the mean establishes a baseline for 

subsequent analysis. 

 𝑴 = ( 𝟏𝒎𝒙𝒏) ∑ ∑  𝒇(𝒙, 𝒚)𝒏−𝟏 
𝒚=𝟎

𝒎−𝟏 
𝒙=𝟎   

 

In the presented equation, 'M' represents the Mean value, 

where '(mxn)' denotes the maximum number of pixels that can 

be accommodated in an image. The term '(m − 1)' signifies 
that in each step, one point is subtracted from 'm', while the x-

axis (x = 0) initiates from the zero point. Similarly, '(n − 1)' 
indicates that in each grayscale block, one point is deducted, 

facilitating the linkage with other blocks. The y-axis (y = 0) 

also commences from zero points, akin to the x-axis. 

Ultimately, to encompass all points without omissions, the 

function 'F(x, y)' endeavors to access every pixel in the image. 

This formulation ensures comprehensive coverage of image 

points, promoting thorough analysis and processing. 

 

B. Variance: Reflecting the dispersion of pixel values 

around the mean, variance quantifies the degree of variability 

in gray levels. Higher variance indicates greater diversity in 

pixel intensities, offering valuable insights into image 

complexity. 

 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆 = ( 𝟏𝒎𝒙𝒏) ∑ ∑(𝒇(𝒙, 𝒚) − 𝑴)𝟐𝒏−𝟏
𝒚=𝟎

𝒎−𝟏
𝒙=𝟎   

 

Similarly, the variance equation supplements the mean value 
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to ascertain the deviation between the gray levels and the 

average mean by employing the expression ((f(x,y)−M)2. This 

formulation seeks to quantify the dispersion of pixel 

intensities around the mean, providing valuable insights into 

the variability of image data 

 

C. Standard Deviation: Serving as a measure of data 

dispersion from the mean, standard deviation highlights 

variations in pixel values. It complements the variance by 

providing a more intuitive understanding of data distribution. 

𝑺𝑫(𝝈) = √( 𝟏𝒎𝒙𝒏) ∑ ∑(𝒇(𝒙, 𝒚) − 𝑴)𝟐𝒏−𝟏
𝒚=𝟎

𝒎−𝟏
𝒙=𝟎  

 

D. Entropy: A statistical measure of image heterogeneity, 

entropy evaluates texture complexity within MRI images. By 

assessing pixel distribution and randomness, entropy aids in 

identifying regions of interest, particularly in tumor detection. 

 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 = − ∑ ∑  𝒇(𝒙, 𝒚)𝒏−𝟏 
𝒚=𝟎

𝒎−𝟏 
𝒙=𝟎 𝐥𝐨𝐠𝟐 𝒇(𝒙, 𝒚) 

 

E. Energy: Determining the intensity and uniformity of 

pixel values, energy quantifies the overall image similarity. It 

measures the sum of squared pixel values, offering a 

comprehensive assessment of image composition. 

 𝑬𝒏𝒆𝒓𝒈𝒚 = ∑ ∑  𝒇𝟐(𝒙, 𝒚)𝒏−𝟏 
𝒚=𝟎

𝒎−𝟏 
𝒙=𝟎  

 

F. Homogeneity: Assessing the uniformity of pixel 

distribution, homogeneity evaluates the likeness between 

nearby pixels. It gives significant bits of knowledge into 

image texture and structural coherence. 

 𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚 = ∑ 𝒑(𝒙, 𝒚)𝟏 + |𝒙 − 𝒚|𝒙,𝒚  

 

G. Correlation: Examining the connection between pixel 

pairs, correlation measures the degree of linear association 

between image elements. It identifies patterns and 

dependencies within the image, facilitating feature 

recognition. 

 𝐶𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 = ∑ ∑  (𝒙, 𝒚)𝒇(𝒙, 𝒚) − 𝑴𝒙𝑴𝒚𝒏−𝟏 𝒚=𝟎𝒎−𝟏 𝒙=𝟎 𝝈𝒙𝝈𝒚  

 

H. Contrast: Quantifying the power contrasts between 

adjoining pixels, contrast highlights variations in grayscale 

values. Higher contrast values indicate sharper transitions 

between image elements, aiding in edge detection and feature 

delineation. 

𝑪𝒐𝒏𝒕𝒓𝒂𝒔𝒕 = ∑ ∑  (𝒙, 𝒚)𝟐𝒇(𝒙, 𝒚)𝒏−𝟏 
𝒚=𝟎

𝒎−𝟏 
𝒙=𝟎  

By leveraging these statistical functions, this research aims 

to optimize feature selection for brain MRI image analysis. 

The evaluation of benign and malignant characteristics based 

on these factors gives important experiences into disease 

identification and classification. 

 

V. DATASET OVERVIEW 

 

The dataset utilized in this study was obtained from the 

Brain Tumor Image Segmentation Challenge (BRATS) 2015 

[39]. BRATS offers a diverse range of datasets tailored to 

tackle the challenges posed by medical imaging. Specifically, 

BRATS 2015 builds upon the advancements of previous 

iterations such as BRATS 2012 and BRATS 2013, thereby 

presenting an updated and refined collection of cases for 

analysis. 

Comprising both training and testing sets, the BRATS 2015 

dataset consists of a total of 330 cases. The training set 

encompasses 110 cases, while the testing set includes 220 

cases. This distribution ensures a comprehensive evaluation 

of the proposed methodologies across a diverse assessment of 

the proposed range of scenarios and enables robust validation 

of the results. 

By leveraging the BRATS 2015 dataset, this research aims 

to address key challenges in medical imaging analysis, 

particularly in the context of brain tumor detection and 

segmentation. The utilization of this standardized dataset 

ensures consistency and facilitates comparison with existing 

literature, thereby enhancing the reliability and 

reproducibility of the findings. 

VI. EXPERIMENTAL OUTCOMES AND PERFORMANCE 

ANALYSIS 

In analyzing the performance of our model, we employ a 

range of key evaluation metrics to ensure a comprehensive 

assessment of its adequacy in precisely arranging brain tumor 

images. 

 

(a) Accuracy: This metric serves as a fundamental indicator 

of the model's overall effectiveness in correctly classifying 

pixels within the images. It quantifies the level of accurately 

grouped pixels in relation to the overall pixel count in the 

image. The formula for accuracy is obtained by adding up true 

positives (TP) and true negatives (TN) divided by the 

aggregate sum of TP, TN, false positives (FP), and false 

negatives (FN). 

 Accuracy = (TP +  TN) (TP +  TN +  FP +  FN) 

 

(b) Positive Predictive Value (PPV): PPV measures the 

probability of correctly identifying positive instances, 

providing knowledge into the accuracy of classifying 
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abnormal features within the images. It is calculated by 

dividing the number of true positives (TP) by the sum of TP 

and false positives (FP). 

 PPV =  TP(TP +  FP) 

 

(c) False Predictive Value (FPV): FPV accounts for the 

probability of falsely identifying negative instances, offering 

valuable information regarding misclassifications of normal 

features as abnormal. It is computed by dividing the quantity 

of false positives (FP) by the sum of FP and true negatives 

(TN). 

 FPV = FP(FP +  TN) 

 

These evaluation parameters collectively provide a robust 

assessment of our model's performance, ensuring reliable and 

precise diagnostic outcomes in the classification of brain 

tumor images. 

This comprehensive evaluation paradigm collectively 

facilitated a robust assessment of our model's performance, 

ensuring dependable and precise diagnostic outcomes in the 

classification of brain tumor images. 

Our innovative hybrid CNN-SVM model showcased 

exceptional efficiency in accurately classifying brain MRI 

images for tumor detection. Through the seamless integration 

of Convolutional Neural Network (CNN) and Support Vector 

Machine (SVM) architectures, our model achieved an 

outstanding accuracy rate of 99.2%. This noteworthy level of 

accuracy underscores the reliability and efficacy of our 

methodology in accurately distinguishing between tumor and 

non-tumor regions within MRI scans. 

 

 

Fig. 6. Representation of Classification Report 

Fig. 6, provides insights into model's performance, 

unveiling high precision, recall, and F1-score metrics across 

tumor and non-tumor classes. Additionally, the SVM+CNN 

classification report accentuates the model's capacity to attain 

exceptional performance metrics, further validating its 

robustness. 

 

Fig. 7. Depicting Confusion Matrix 

Fig. 7 presents the confusion matrix of the model, 

showcasing strong performance spanning all categories 

classes with minimal misclassifications. The adept utilization 

of both CNN and SVM techniques significantly contributes to 

the model's superior performance, presenting auspicious 

avenues for enhancing medical diagnostics and advancing 

early-stage detection of brain tumors. 

As progress, continual validation and refinement of our 

model hold promise in facilitating its widespread adoption in 

clinical settings, potentially heralding a new era in 

neuroimaging and ultimately elevating patient outcomes. 

VII. CONCLUSION 

The developed hybrid CNN-SVM model emerges as a 

potential tool for brain MRI image classification, specifically 

in tumor detection. By integrating CNN and SVM 

architectures, our model achieves an outstanding accuracy 

rate of 99.2%, demonstrating its viability in distinguishing 

between tumor and non-tumor regions within MRI scans. 

Through rigorous evaluation using various metrics, including 

accuracy, PPV, and FPV, the reliability and precision of our 

model are substantiated. The thorough analysis provided by 

the classification report and confusion matrix further 

highlights the model's robust performance with minimal 

misclassifications. Moving forward, ongoing validation and 

refinement hold the possibility to enhance the model's utility 

in clinical settings, potentially revolutionizing neuroimaging 

practices and ultimately improving patient outcomes. 
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