
 ISSN (ONLINE) : 2395-695X
ISSN (PRINT) : 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Ecology, Science and Technology (IJARBEST)
 Vol. 1, Issue 9, December 2015

20

 Information Sharing Using

Homomorphic Re-crypt In Cloud Storage

B.Vijaya Nirmala1, N.Deepa2, V.R.Arulmozhi3

1,2,3 Assistant Professor/Department of CSE, RVS Educational Trust’s Group of Institution Dindigul,Tamilnadu, India.
1bvijayanirmalacse@gmail.com

2deepanatrayan@gmail.com

3arulmozhiram@gmail.com

Abstract— Cloud computing, empowers clients to

remotely store their information in a cloud, in order to enjoy

services on demand. With quick improvement of cloud

computing, more ventures will outsource their delicate

information for partaking in a cloud. To keep the common

information classified against untrusted cloud service providers

(CSPs), a characteristic path is to store just the scrambled

information in a cloud. To take care of the issue ,a completely

homomorphic encryption plan Scalable Data Sharing in Cloud

Storage which has both generally little key and cipher text key

size. Our development takes after delivering a completely

homomorphic plan people in general and private keys comprise

of two extensive whole numbers (one of which is shared by both

the public and private key) and the figure content comprises of

one substantial number. In that capacity, our plan has smaller

message expansion and key size original scheme .

Fully Homomorphic Public Key Encryption cipher text is an

integer rather than a vector.expect that our plan is secure under

key ward encryptions, absolutely to keep the documentation less

complex, to manage the more broad case is prompt.

Keywords—Cloud service providers; Ciphertext;

Public-key; Homomorphic Encryption.

I. INTRODUCTION

Cloud storage is gaining popularity recently. In

enterprise settings, we can see the rise in demand for data

outsourcing, which assists in the strategic management of

corporate data. It is also used as a core technology behind

many online services for personal applications. Nowadays, it

is easy to apply for free accounts for email, photo album, file

sharing and/or remote access, with storage size more than 25

GB (or a few dollars for more than 1 TB). Together with the

current wireless technology, users can access almost all of

their files and emails by a mobile phone in any corner of the

world.

Cloud computing, as an emerging computing

paradigm, enables users to remotely store their data into a

cloud so as to enjoy scalable services on-demand. Especially

for small and medium-sized enterprises with limited budgets,

they can achieve cost savings and productivity. However,

allowing cloud service providers (CSPs), which are not in the

same trusted domains as enterprise users, to take care of

confidential data, may raise potential security and privacy

issues. To keep the sensitive user data confidential against

untrusted CSPs, a natural way is to apply cryptographic

approaches, by disclosing decryption keys only to authorized

users. However, when enterprise users outsource confidential

data for sharing on cloud servers, the adopted encryption

system should not only support fine-grained access control,

but also provide high performance, full delegation, and

scalability, so as to best serve the needs of accessing data

anytime and anywhere.Efficient search on encrypted data is

also an important concern in clouds. The clouds should not

know the query but should be able to return the records that

satisfy the query. This is achieved by means of searchable

encryption [3], [4]. The keywords are sent to the cloud

encrypted, and the cloud returns the result without knowing

the actual keyword for the search. The problem here is that the

data records should have keywords associated with them to

enable the search. The correct records are returned only

When searched with the exact keywords. Several

trends are opening up the era of Cloud Computing.The ever

cheaper and more powerful processors, together with the

“software as a service” (SaaS) computing architecture, are

transforming data centres into pools of computing service on

a huge scale. Meanwhile, the increasing network bandwidth

and reliable yet flexible network connections make it even

possible that clients can now subscribe high-quality services

from data and software that reside solely on remote data

centres.

Although envisioned as a promising service platform

for the Internet, this new data storage paradigm in “Cloud”

brings about many challenging design issues which have

profound influence on the security and performance of the

overall system. One of the biggest concerns with cloud data

storage is that of data integrity verification at untrusted

servers. What is more serious is that for saving money and

storage space the service provider might neglect to keep or

deliberately delete rarely accessed data files which belong to

an ordinary client. Consider the large size of the outsourced

electronic data and the client’s constrained resource

capability, the core of the problem can be generalized as how

can the client find an efficient way to perform periodical

integrity verifications without the local copy of data files.

1.1 Our Contributions

In modern cryptography, a fundamental problem we

often study is about leveraging the secrecy of a small piece of

knowledge into the ability to perform cryptographic functions

(e.g., encryption, authentication) multiple times. In this paper,

we study how to make a decryption key more powerful in the

sense that it allows decryption of multiple ciphertexts, without

increasing its size. Specifically, our problem statement is “To

http://www.ijarbest.com/
mailto:bvijayanirmalacse@gmail.com
mailto:deepanatrayan@gmail.com
mailto:arulmozhiram@gmail.com

 ISSN (ONLINE) : 2395-695X
ISSN (PRINT) : 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Ecology, Science and Technology (IJARBEST)
 Vol. 1, Issue 9, December 2015

21

design an efficient public-key encryption scheme

which supports flexible delegation in the sense that any subset

of the ciphertexts (produced by the encryption scheme) is

decryptable by a constant-size decryption key (generated by

the owner of the master-secret key).” We solve this problem

by introducing a special type of public-key encryption which

we call key-aggregate cryptosystem (KAC).

In KAC, users encrypt a message not only under a

public-key, but also under an identifier of ciphertext called

class. That means the ciphertexts are further categorized into

different classes. The key owner holds a master-secret called

master-secret key, which can be used to extract secret keys for

different classes. More importantly, the extracted key have

can be an aggregate key which is as compact as a secret key

for a single class, but aggregates the power of many such keys,

i.e., the decryption power for any subset of ciphertext classes.

With our solution, Alice can simply send Bob a single

aggregate key via a secure e-mail. Bob can download the

encrypted photos from Alice’s Dropbox space and then use

this aggregate key to decrypt these encrypted photos. The

scenario is depicted in Fig. 1.

The sizes of ciphertext, public-key, master-secret key,

and aggregate key in our KAC schemes are all of constant

size. The public system parameter has size linear in the

number of ciphertext classes, but only a small part of it is

needed each time and it can be fetched on demand from large

(but non-confidential) cloud storage. Previous results may

achieve a similar property featuring a constant-size

decryption key, but the classes need to conform to some

predefined hierarchical relationship. Our work is flexible in

the sense that this constraint is eliminated, that is, no special

relation is required between the classes.

Fig. 1. Alice shares files with identifiers 2, 3, 6, and 8 with Bob by

sending him a single aggregate key.

The detail and other related works can be found in

Section 2. The existing system has several concrete KAC

schemes with different security levels and extensions in this

paper. All constructions can be proven secure in the standard

model. To the best of our knowledge, our aggregation

mechanism in KAC has not been investigated.

The detail and other related works can be found in

Section 3. We propose the several concrete Fully

Homomorphic with different public key encryption for

data sharing in cloud storage .
II. KEY-AGGREGATE ENCRYPTION

We first give the framework and definition for key aggregate

encryption. Then we describe how to use KAC in a scenario

of its application in cloud storage.

2.1 Framework

A key-aggregate encryption scheme consists of five

polynomial-time algorithms as follows.

The data owner establishes the public system

parameter via Setup and generates a public/master-secret key

pair via KeyGen. Messages can be encrypted via Encrypt by

anyone who also decides what ciphertext class is associated

with the plaintext message to be encrypted. The data owner

can use the master-secret to generate an aggregate decryption

key for a set of ciphertext classes via Extract. The generated

keys can be passed to delegates securely (via secure e-mails or

secure devices) Finally, any user with an aggregate key can

decrypt any ciphertext provided that the ciphertext’s class is

contained in the aggregate key via Decrypt.

Setup : executed by the data owner to setup an account on an

untrusted server. On input a security level parameter 1_ and the

number of ciphertext classes n (i.e., class index should be an integer

bounded by 1 and n), it outputs the public system parameter param,

which is omitted from the input of the other algorithms for brevity.

KeyGen: executed by the data owner to randomly

generate a public/master-secret key pair (pk; msk).

Encrypt(pk, i, m): executed by anyone who wants to encrypt data.

On input a public-key pk, an index I denoting the ciphertext class,

and a message m, it outputs a ciphertext C.

Extract(msk, S): executed by the data owner for delegating the

decrypting power for a certain set of ciphertext classes to a

delegatee. On input the master-secret key msk and a set S of indices

corresponding to different classes, it outputs the aggregate key for

set S denoted by KS.

Decrypt(KS, S, i,C): executed by a delegatee who received an

aggregate key KS generated by Extract. On input KS, the set S, an

index i denoting the ciphertext class the ciphertext C belongs to, and

C, it outputs the decrypted result m if i 2 S.

Fig. 2. Using KAC for data sharing in cloud storage.

http://www.ijarbest.com/

 ISSN (ONLINE) : 2395-695X
ISSN (PRINT) : 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Ecology, Science and Technology (IJARBEST)
 Vol. 1, Issue 9, December 2015

22

2.2 Sharing Encrypted Data

A canonical application of KAC is data sharing. The key

aggregation property is especially useful when we expect the

delegation to be efficient and flexible. The schemes enable a

content provider to share her data in a confidential and

selective way, with a fixed and small ciphertext expansion, by

distributing to each authorized user a single and small

aggregate key.

III. FULLY HOMOMORPHIC PUBLIC KEY

ENCRYPTION

Homomorphic scheme into a fully homomorphic

scheme that our scheme is a specialization of Gentry’s

scheme, we only need to recast Gentry’s method for our

parameters. Indeed we can simplify the method somewhat,

since our cipher text is an integer rather than a vector depicted

in fig 3. Assume that our scheme is secure under key

dependent encryptions, purely to keep the notation simpler; to

deal with the more general case is immediate from our

discussion. At a high level we need to define a new algorithm

called Re crypt, which takes a cipher text c and re-encrypts it

to cnew, whilst at the same time removing some of the errors

in c. Intuitively this takes a “dirty cipher text” c and “cleans it”

to obtain the cipher text cnew. The encryption key with some

additional information, by extending the algorithm Key Gen

with the following additional operations, based on two integer

parameters s1 and s2. We make use of the fact that we are only

interested in the coefficients of Z(x) modulo 2p.

Fig 3. System Architecture Fully Homomorphic Encryption

Generate s1 uniformly random integers Bi in [−p, . . . , p] such

that there exists a subset S of s2 elements

Define ski = 1 if i ∈ S and 0 otherwise. Notice that

only s2 of the bits {ski} are set to one. Encrypt the bits ski

under the somewhat homomorphic scheme to obtain ci ←

Encrypt(ski, PK).The public key now consists of PK = (p, α,

s1, s2, {ci,Bi}s1 i=1) .

The re-encryption operation Re crypt(c, PK): This

algorithm takes as input a “dirty” cipher text c, and then

produces a “cleaner” cipher text cnew of the same message,

but with less “errors” in its randomization vector.

The re-encryption works by performing a homomorphic

decryption on an encryption of the cipher texts bits. The

system parameter can also be generated by a trusted party,

shared between all users and even hard-coded to the user

program (and can be updated via “patches”).

IV. PERFORMANCE ANALYSIS

4.1 Compression Factors

For a concrete comparison, we investigate the space

requirements of the tree-based key assignment approach we

described in Section 2.1. This is used in the complete subtree

scheme, which is a representative solution to the broadcast

encryption problem following the well-known subset-cover

framework [33]. It employs a static logical key hierarchy,

which is materialized with a full binary key tree of height h

(equals to 3 in Fig. 2), and thus can support up to 2h ciphertext

classes, a selected part of which is intended for an authorized

delegatee. In an ideal case as depicted in Fig. 3a, the delegatee

can be granted the access to 2hs classes with the possession of

only one key, where hs is the height of a certain subtree (e.g.,

hs ¼ 2).

On the other hand, to decrypt ciphertexts of a set of

classes, sometimes the delegatee may have to hold a large

number of keys is depicted in 4a . Therefore, we are interested

in na, the number of symmetric keys to be assigned in this

hierarchical key approach, in an average sense. We assume

that there are exactly 2h ciphertext classes, and the delegatee

of concern is entitled to a portion r of them. That is, r is the

delegation ratio, the ratio of the delegated ciphertext classes

to the total classes. A comparison of the number of granted

keys between three methods is depicted in Fig. 4b. We can see

that if we grant the key one by one, the number of granted keys

would be equal to the number of the delegated ciphertext

classes. With the tree-based structure, we can save a number

of granted keys according to the delegation ratio. On the

contrary, in our proposed approach, the delegation of

decryption can be efficiently implemented with the aggregate

key, which is only of fixed size.

Obviously, if r ¼ 0, na should also be 0, which means

no access to any of the classes, if r ¼ 100%, na should be as

low as 1, which means that the possession of only the root key

in the hierarchy can grant the access to all the 2h classes.

Consequently, one may expect that na may first increase with

r, and may decrease later. We set r ¼ 10%; 20%; . . . ; 90%,

and choose the portion in a random manner to model an

arbitrary “delegation pattern”

In our experiment, the delegation is randomly

chosen. It models the situation that the needs for delegating to

different users may not be predictable as time goes by, even

after a careful initial planning. This gives empirical evidences

to support our thesis that hierarchical key assignment does not

save much in all cases.

http://www.ijarbest.com/

 ISSN (ONLINE) : 2395-695X
ISSN (PRINT) : 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Ecology, Science and Technology (IJARBEST)
 Vol. 1, Issue 9, December 2015

23

4.2 Performance of Our Proposed Schemes

Our approaches allow the compression factor F (F ¼ n in

our schemes) to be a tunable parameter, at the cost of

O(n)-sized system parameter. Encryption can be done in

constant time, while decryption can be done in O(Sj) group

multiplications (or point addition on elliptic curves) with two

pairing operations, where S is the set of ciphertext classes

decryptable by the granted aggregate key and jSj _ n. As

expected, key extraction requires O(Sj) group multiplications

as well, which seems unavoidable. However, as demonstrated

by the experiment results, we do not need to set a very high n

to have better compression than the tree-based approach.

Note that group multiplication is a very fast operation. Again,

we confirm empirically that our analysis is true.

Fig. 4. (a) Compression achieved by the tree-based approach for

delegating different ratio of the classes. (b) Number of granted keys

(na) required for different approaches in the case of 65,536 classes of

data.

The basic Fully Homomorphic encryption system is

implemented in C with the pairing-based cryptography (PBC)

Library8 version 0.4.18 for the underlying elliptic-curve

group and pairing operations. Since the granted key can be as

small as one GG element, and the ciphertext only contains two

GG and one GGT elements, we used (symmetric) pairings

over Type-A (supersingular) curves as defined in the PBC

library which offers the highest efficiency among all types of

curves, even though Type-A curves do not provide the

shortest representation for group elements. In our

implementation, p is a 160-bit Solinas prime, which offers

1,024-bit of discrete-logarithm security. With this Type-A

curves setting in PBC.

TABLE 1

Performance of Our Basic Construction for h ¼ 16 with Respect to

Different Delegation Ratio r (in Milliseconds)

Our experiment results are shown in Table 1. The

execution times of Setup, KeyGen, and Encrypt are

independent of the delegation ratio r. In our experiments,

KeyGen takes 3.3 milliseconds and Encrypt takes 6.8

milliseconds. As expected, the running time complexities of

Extract and Decrypt increase linearly with the delegation ratio

r (which determines the size of the delegated set S). Our

timing results also conform to what can be seen from the

equation in Extract and Decrypt—two pairing operations take

negligible time, the running time of Decrypt is roughly a

double of Extract. Note that our experiments dealt with up to

65,536 number of classes (which is also the compression

factor), and should be large enough for fine grained data

sharing in most situations.

Finally, we remark that for applications where the

number of cipher text classes is large but the non confidential

storage is limited, one should deploy our schemes using the

Type-D pairing bundled with the PBC. The system parameter

requires approximately 2.6 megabytes, which is as large as a

lower quality MP3 file or a higher resolution JPEG file that a

typical cellphone can store more than a dozen of them. But we

saved expensive secure storage without the hassle of

managing a hierarchy of delegation classes.

V. CONCLUSION AND FUTURE WORK

It is been considered how to “compress” secret keys

in public-key cryptosystems which support delegation of

secret keys for different ciphertext classes in cloud storage.

No matter which one among the power set of classes, the

delegate can always get an aggregate key of constant size. Our

approach is more flexible than hierarchical key assignment

which can only save spaces if all key-holders share a similar

set of privileges. A limitation in our work is the predefined

bound of the number of maximum ciphertext classes. In cloud

storage, the number of ciphertexts usually grows rapidly. So

we have to reserve enough ciphertext classes for the future

extension. Otherwise, we need to expand the public-key.

Although the parameter can be downloaded with ciphertexts,

it would be better if its size is independent of the maximum

number of ciphertext classes. On the other hand, when one

carries the delegated keys around in a mobile device without

using special trusted hardware, the key is prompt to leakage,

designing a leakage-resilient cryptosystem, yet allows

efficient and flexible key delegation is also an interesting

direction.

http://www.ijarbest.com/

 ISSN (ONLINE) : 2395-695X
ISSN (PRINT) : 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Ecology, Science and Technology (IJARBEST)
 Vol. 1, Issue 9, December 2015

24

REFERENCES

1. S.S.M. Chow, Y.J. He, L.C.K. Hui, and S.-M. Yiu, “SPICE – Simple

Privacy-Preserving Identity-Management for Cloud Environment,”

Proc. 10th Int’l Conf. Applied Cryptography and Network Security

(ACNS), vol. 7341, pp. 526-543, 2012.

2. C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-

Preserving Public Auditing for Secure Cloud Storage,” IEEE Trans.

Computers, vol. 62, no. 2, pp. 362-375, Feb. 2013.

3. B. Wang, S.S.M. Chow, M. Li, and H. Li, “Storing Shared Data on the

Cloud via Security-Mediator,” Proc. IEEE 33rd Int’l Conf. Distributed

Computing Systems (ICDCS), 2013.

4. S.S.M. Chow, C.-K. Chu, X. Huang, J. Zhou, and R.H. Deng, “Dynamic

Secure Cloud Storage with Provenance,” Cryptography and Security,

pp. 442-464, Springer, 2012.

5. G. Ateniese, A.D. Santis, A.L. Ferrara, and B. Masucci, “Provably-

Secure Time-Bound Hierarchical Key Assignment Schemes,” J.

Cryptology, vol. 25, no. 2, pp. 243-270, 2012.

6. S.S.M. Chow, Y. Dodis, Y. Rouselakis, and B. Waters, “Practical

Leakage-Resilient Identity-Based Encryption from Simple

Assumptions,” Proc. ACM Conf. Computer and Comm. Security, pp.

152-161, 2010.

7. T. Okamoto and K. Takashima, “Achieving Short Ciphertexts or Short

Secret-Keys for Adaptively Secure General Inner-Product Encryption,”

Proc. 10th Int’l Conf. Cryptology and Network Security (CANS ’11),

pp. 138-159, 2011.

8. S.S.M. Chow, J. Weng, Y. Yang, and R.H. Deng, “Efficient

Unidirectional Proxy Re-Encryption,” Proc. Progress in Cryptology

(AFRICACRYPT ’10), vol. 6055, pp. 316-332, 2010.

9. T.H. Yuen, S.S.M. Chow, Y. Zhang, and S.M. Yiu, “Identity-Based

Encryption Resilient to Continual Auxiliary Leakage,” Proc. Advances

in Cryptology Conf. (EUROCRYPT ’12), vol. 7237, pp. 117-134,

2012.

10. M. Chase and S.S.M. Chow, “Improving Privacy and Security in

Multi-Authority Attribute-Based Encryption,” Proc. ACM Conf.

Computer and Comm. Security, pp. 121-130. 2009.

11. J. Benaloh, “Key Compression and Its Application to Digital

Fingerprinting,” technical report, Microsoft Research, 2009.

12. B. Alomair and R. Poovendran, “Information Theoretically Secure

Encryption with Almost Free Authentication,” J. Universal Computer

Science, vol. 15, no. 15, pp. 2937-2956, 2009.

13. M.J. Atallah, M. Blanton, N. Fazio, and K.B. Frikken, “Dynamic and

Efficient Key Management for Access Hierarchies,” ACM Trans.

Information and System Security, vol. 12, no. 3, pp. 18:1-18:43, 2009.

14. J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient Controlled

Encryption: Ensuring Privacy of Electronic Medical Records,” Proc.

ACM Workshop Cloud Computing Security (CCSW ’09), pp.

103-114, 2009.

15. L. Hardesty, Secure Computers Aren’t so Secure. MIT press, http://

www.physorg.com/news176107396.html, 2009.

http://www.ijarbest.com/

