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Abstract— Cloud computing, empowers clients to 

remotely store their information in a cloud, in order to enjoy 

services on demand. With quick improvement of cloud 

computing, more ventures will outsource their delicate 

information for partaking in a cloud. To keep the common 

information classified against untrusted cloud service providers 

(CSPs), a characteristic path is to store just the scrambled 

information in a cloud. To take care of the issue ,a completely 

homomorphic encryption plan Scalable Data Sharing in Cloud 

Storage which has both generally little key and cipher text key 

size. Our development takes after delivering a completely 

homomorphic plan people in general and private keys comprise 

of two extensive whole numbers (one of which is shared by both 

the public and private key) and the figure content comprises of 

one substantial number. In that capacity, our plan has smaller 

message expansion and key size original scheme . 

Fully Homomorphic Public Key Encryption cipher text is an 

integer rather than a vector.expect that our plan is secure under 

key ward encryptions, absolutely to keep the documentation less 

complex, to manage the more broad case is prompt.  

Keywords—Cloud service providers; Ciphertext; 

Public-key; Homomorphic Encryption. 

 

I. INTRODUCTION 

Cloud storage is gaining popularity recently. In 

enterprise settings, we can see the rise in demand for data 

outsourcing, which assists in the strategic management of 

corporate data. It is also used as a core technology behind 

many online services for personal applications. Nowadays, it 

is easy to apply for free accounts for email, photo album, file 

sharing and/or remote access, with storage size more than 25 

GB (or a few dollars for more than 1 TB). Together with the 

current wireless technology, users can access almost all of 

their files and emails by a mobile phone in any corner of the 

world. 

 

Cloud computing, as an emerging computing 

paradigm, enables users to remotely store their data into a 

cloud so as to enjoy scalable services on-demand. Especially 

for small and medium-sized enterprises with limited budgets, 

they can achieve cost savings and productivity. However, 

allowing cloud service providers (CSPs), which are not in the 

same trusted domains as enterprise users, to take care of 

confidential data, may raise potential security and privacy 

issues. To keep the sensitive user data confidential against 

untrusted CSPs, a natural way is to apply cryptographic 

approaches, by disclosing decryption keys only to authorized 

users. However, when enterprise users outsource confidential 

data for sharing on cloud servers, the adopted encryption 

system should not only support fine-grained access control, 

but also provide high performance, full delegation, and 

scalability, so as to best serve the needs of accessing data 

anytime and anywhere.Efficient search on encrypted data is 

also an important concern in clouds. The clouds should not 

know the query but should be able to return the records that 

satisfy the query. This is achieved by means of searchable 

encryption [3], [4]. The keywords are sent to the cloud 

encrypted, and the cloud returns the result without knowing 

the actual keyword for the search. The problem here is that the 

data records should have keywords associated with them to 

enable the search. The correct records are returned only 

When searched with the exact keywords. Several 

trends are opening up the era of Cloud Computing.The ever 

cheaper and more powerful processors, together with the 

“software as a service” (SaaS) computing architecture, are 

transforming data centres into pools of computing service on 

a huge scale. Meanwhile, the increasing network bandwidth 

and reliable yet flexible network connections make it even 

possible that clients can now subscribe high-quality services 

from data and software that reside solely on remote data 

centres. 

 

Although envisioned as a promising service platform 

for the Internet, this new data storage paradigm in “Cloud” 

brings about many challenging design issues which have 

profound influence on the security and performance of the 

overall system. One of the biggest concerns with cloud data 

storage is that of data integrity verification at untrusted 

servers. What is more serious is that for saving money and 

storage space the service provider might neglect to keep or 

deliberately delete rarely accessed data files which belong to 

an ordinary client. Consider the large size of the outsourced 

electronic data and the client’s constrained resource 

capability, the core of the problem can be generalized as how 

can the client find an efficient way to perform periodical 

integrity verifications without the local copy of data files. 

 

1.1 Our Contributions 

 

In modern cryptography, a fundamental problem we 

often study is about leveraging the secrecy of a small piece of 

knowledge into the ability to perform cryptographic functions 

(e.g., encryption, authentication) multiple times. In this paper, 

we study how to make a decryption key more powerful in the 

sense that it allows decryption of multiple ciphertexts, without 

increasing its size. Specifically, our problem statement is “To  
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design an efficient public-key encryption scheme 

which supports flexible delegation in the sense that any subset 

of the ciphertexts (produced by the encryption scheme) is 

decryptable by a constant-size decryption key (generated by 

the owner of the master-secret key).” We solve this problem 

by introducing a special type of public-key encryption which 

we call key-aggregate cryptosystem (KAC).  

 

In KAC, users encrypt a message not only under a 

public-key, but also under an identifier of ciphertext called 

class. That means the ciphertexts are further categorized into 

different classes. The key owner holds a master-secret called 

master-secret key, which can be used to extract secret keys for 

different classes. More importantly, the extracted key have 

can be an aggregate key which is as compact as a secret key 

for a single class, but aggregates the power of many such keys, 

i.e., the decryption power for any subset of ciphertext classes. 

With our solution, Alice can simply send Bob a single 

aggregate key via a secure e-mail. Bob can download the 

encrypted photos from Alice’s Dropbox space and then use 

this aggregate key to decrypt these encrypted photos. The 

scenario is depicted in Fig. 1.  

 

The sizes of ciphertext, public-key, master-secret key, 

and aggregate key in our KAC schemes are all of constant 

size. The public system parameter has size linear in the 

number of ciphertext classes, but only a small part of it is 

needed each time and it can be fetched on demand from large 

(but non-confidential) cloud storage. Previous results may 

achieve a similar property featuring a constant-size 

decryption key, but the classes need to conform to some 

predefined hierarchical relationship. Our work is flexible in 

the sense that this constraint is eliminated, that is, no special 

relation is required between the classes.  

 

 
Fig. 1. Alice shares files with identifiers 2, 3, 6, and 8 with Bob by 

sending him a single aggregate key.  

 

The detail and other related works can be found in 

Section 2. The existing system has several concrete KAC 

schemes with different security levels and extensions in this 

paper. All constructions can be proven secure in the standard 

model. To the best of our knowledge, our aggregation 

mechanism in KAC has not been investigated. 

The detail and other related works can be found in 

Section 3. We propose the several concrete Fully  

 

 

Homomorphic with different public key encryption for 

data sharing in cloud storage . 
II. KEY-AGGREGATE ENCRYPTION 

We first give the framework and definition for key aggregate 

encryption. Then we describe how to use KAC in a scenario 

of its application in cloud storage. 

 

2.1 Framework 

 

A key-aggregate encryption scheme consists of five 

polynomial-time algorithms as follows. 

The data owner establishes the public system 

parameter via Setup and generates a public/master-secret key 

pair via KeyGen. Messages can be encrypted via Encrypt by 

anyone who also decides what ciphertext class is associated 

with the plaintext message to be encrypted. The data owner 

can use the master-secret to generate an aggregate decryption 

key for a set of ciphertext classes via Extract. The generated 

keys can be passed to delegates securely (via secure e-mails or 

secure devices) Finally, any user with an aggregate key can 

decrypt any ciphertext provided that the ciphertext’s class is 

contained in the aggregate key via Decrypt. 

 
Setup : executed by the data owner to setup an account on an 

untrusted server. On input a security level parameter 1_ and the 

number of ciphertext classes n (i.e., class index should be an integer 

bounded by 1 and n), it outputs the public system parameter param, 

which is omitted from the input of the other algorithms for brevity. 

KeyGen: executed by the data owner to randomly 

generate a public/master-secret key pair (pk; msk). 

Encrypt(pk, i, m): executed by anyone who wants to encrypt data. 

On input a public-key pk, an index I denoting the ciphertext class, 

and a message m, it outputs a ciphertext C. 

Extract(msk, S): executed by the data owner for delegating the 

decrypting power for a certain set of ciphertext classes to a 

delegatee. On input the master-secret key msk and a set S of indices 

corresponding to different classes, it outputs the aggregate key for 

set S denoted by KS. 

Decrypt(KS, S, i,C): executed by a delegatee who received an 

aggregate key KS generated by Extract. On input KS, the set S, an 

index i denoting the ciphertext class the ciphertext C belongs to, and 

C, it outputs the decrypted result m if i 2 S. 

 

 
Fig. 2. Using KAC for data sharing in cloud storage. 
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2.2 Sharing Encrypted Data 

A canonical application of KAC is data sharing. The key 

aggregation property is especially useful when we expect the 

delegation to be efficient and flexible. The schemes enable a 

content provider to share her data in a confidential and 

selective way, with a fixed and small ciphertext expansion, by 

distributing to each authorized user a single and small 

aggregate key. 

 

III. FULLY HOMOMORPHIC PUBLIC KEY 

ENCRYPTION 

Homomorphic scheme into a fully homomorphic 

scheme that our scheme is a specialization of Gentry’s 

scheme, we only need to recast Gentry’s method for our 

parameters. Indeed we can simplify the method somewhat, 

since our cipher text is an integer rather than a vector depicted 

in fig 3. Assume that our scheme is secure under key 

dependent encryptions, purely to keep the notation simpler; to 

deal with the more general case is immediate from our 

discussion. At a high level we need to define a new algorithm 

called Re crypt, which takes a cipher text c and re-encrypts it 

to cnew, whilst at the same time removing some of the errors 

in c. Intuitively this takes a “dirty cipher text” c and “cleans it” 

to obtain the cipher text cnew. The encryption key with some 

additional information, by extending the algorithm Key Gen 

with the following additional operations, based on two integer 

parameters s1 and s2. We make use of the fact that we are only 

interested in the coefficients of Z(x) modulo 2p. 

 
Fig 3. System Architecture Fully Homomorphic Encryption  

 

Generate s1 uniformly random integers Bi in [−p, . . . , p] such 

that there exists a subset S of s2 elements  

 
Define ski = 1 if i ∈ S and 0 otherwise. Notice that 

only s2 of the bits {ski} are set to one. Encrypt the bits ski 

under the somewhat homomorphic scheme to obtain ci ← 

Encrypt(ski, PK).The public key now consists of PK = (p, α, 

s1, s2, {ci,Bi}s1 i=1) . 

The re-encryption operation Re crypt(c, PK): This 

algorithm takes as input a “dirty” cipher text c, and then 

produces a “cleaner” cipher text cnew of the same message,  

but with less “errors” in its randomization vector. 

The re-encryption works by performing a homomorphic 

decryption on an encryption of the cipher texts bits. The 

system parameter can also be generated by a trusted party, 

shared between all users and even hard-coded to the user 

program (and can be updated via “patches”). 

 

IV.      PERFORMANCE ANALYSIS 

4.1 Compression Factors 

For a concrete comparison, we investigate the space 

requirements of the tree-based key assignment approach we 

described in Section 2.1. This is used in the complete subtree 

scheme, which is a representative solution to the broadcast 

encryption problem following the well-known subset-cover 

framework [33]. It employs a static logical key hierarchy, 

which is materialized with a full binary key tree of height h 

(equals to 3 in Fig. 2), and thus can support up to 2h ciphertext 

classes, a selected part of which is intended for an authorized 

delegatee. In an ideal case as depicted in Fig. 3a, the delegatee 

can be granted the access to 2hs classes with the possession of 

only one key, where hs is the height of a certain subtree (e.g., 

hs ¼ 2).  

 

On the other hand, to decrypt ciphertexts of a set of 

classes, sometimes the delegatee may have to hold a large 

number of keys is depicted in 4a . Therefore, we are interested 

in na, the number of symmetric keys to be assigned in this 

hierarchical key approach, in an average sense. We assume 

that there are exactly 2h ciphertext classes, and the delegatee 

of concern is entitled to a portion r of them. That is, r is the 

delegation ratio, the ratio of the delegated ciphertext classes 

to the total classes. A comparison of the number of granted 

keys between three methods is depicted in Fig. 4b. We can see 

that if we grant the key one by one, the number of granted keys 

would be equal to the number of the delegated ciphertext 

classes. With the tree-based structure, we can save a number 

of granted keys according to the delegation ratio. On the 

contrary, in our proposed approach, the delegation of 

decryption can be efficiently implemented with the aggregate 

key, which is only of fixed size. 

 

Obviously, if r ¼ 0, na should also be 0, which means 

no access to any of the classes, if r ¼ 100%, na should be as 

low as 1, which means that the possession of only the root key 

in the hierarchy can grant the access to all the 2h classes. 

Consequently, one may expect that na may first increase with 

r, and may decrease later. We set r ¼ 10%; 20%; . . . ; 90%, 

and choose the portion in a random manner to model an 

arbitrary “delegation pattern” 

In our experiment, the delegation is randomly 

chosen. It models the situation that the needs for delegating to 

different users may not be predictable as time goes by, even 

after a careful initial planning. This gives empirical evidences 

to support our thesis that hierarchical key assignment does not 

save much in all cases.  
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4.2 Performance of Our Proposed Schemes 

Our approaches allow the compression factor F (F ¼ n in 

our schemes) to be a tunable parameter, at the cost of 

O(n)-sized system parameter. Encryption can be done in 

constant time, while decryption can be done in O(Sj) group 

multiplications (or point addition on elliptic curves) with two 

pairing operations, where S is the set of ciphertext classes 

decryptable by the granted aggregate key and jSj _ n. As 

expected, key extraction requires O(Sj) group multiplications 

as well, which seems unavoidable. However, as demonstrated 

by the experiment results, we do not need to set a very high n 

to have better compression than the tree-based approach. 

Note that group multiplication is a very fast operation. Again, 

we confirm empirically that our analysis is true. 
 

 
Fig. 4. (a) Compression achieved by the tree-based approach for 

delegating different ratio of the classes. (b) Number of granted keys 

(na) required for different approaches in the case of 65,536 classes of 

data. 

The basic Fully Homomorphic encryption  system is 

implemented in C with the pairing-based cryptography (PBC) 

Library8 version 0.4.18 for the underlying elliptic-curve 

group and pairing operations. Since the granted key can be as 

small as one GG element, and the ciphertext only contains two 

GG and one GGT elements, we used (symmetric) pairings 

over Type-A (supersingular) curves as defined in the PBC 

library which offers the highest efficiency among all types of 

curves, even though Type-A curves do not provide the 

shortest representation for group elements. In our 

implementation, p is a 160-bit Solinas prime, which offers 

1,024-bit of discrete-logarithm security. With this Type-A 

curves setting in PBC. 

 

 

 

TABLE 1 

Performance of Our Basic Construction for h ¼ 16 with Respect to 

Different Delegation Ratio r (in Milliseconds) 

 

 
Our experiment results are shown in Table 1. The 

execution times of Setup, KeyGen, and Encrypt are 

independent of the delegation ratio r. In our experiments, 

KeyGen takes 3.3 milliseconds and Encrypt takes 6.8 

milliseconds. As expected, the running time complexities of 

Extract and Decrypt increase linearly with the delegation ratio 

r (which determines the size of the delegated set S). Our 

timing results also conform to what can be seen from the 

equation in Extract and Decrypt—two pairing operations take 

negligible time, the running time of Decrypt is roughly a 

double of Extract. Note that our experiments dealt with up to 

65,536 number of classes (which is also the compression 

factor), and should be large enough for fine grained data 

sharing in most situations. 

 

Finally, we remark that for applications where the 

number of cipher text classes is large but the non confidential 

storage is limited, one should deploy our schemes using the 

Type-D pairing bundled with the PBC. The system parameter 

requires approximately 2.6 megabytes, which is as large as a 

lower quality MP3 file or a higher resolution JPEG file that a 

typical cellphone can store more than a dozen of them. But we 

saved expensive secure storage without the hassle of 

managing a hierarchy of delegation classes. 

 

V. CONCLUSION AND FUTURE WORK 

It is been considered how to “compress” secret keys 

in public-key cryptosystems which support delegation of 

secret keys for different ciphertext classes in cloud storage. 

No matter which one among the power set of classes, the 

delegate can always get an aggregate key of constant size. Our 

approach is more flexible than hierarchical key assignment 

which can only save spaces if all key-holders share a similar 

set of privileges. A limitation in our work is the predefined 

bound of the number of maximum ciphertext classes. In cloud 

storage, the number of ciphertexts usually grows rapidly. So 

we have to reserve enough ciphertext classes for the future 

extension. Otherwise, we need to expand the public-key. 

Although the parameter can be downloaded with ciphertexts, 

it would be better if its size is independent of the maximum 

number of ciphertext classes. On the other hand, when one 

carries the delegated keys around in a mobile device without 

using special trusted hardware, the key is prompt to leakage, 

designing a leakage-resilient cryptosystem, yet allows 

efficient and flexible key delegation is also an interesting 

direction. 
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