
 ISSN (ONLINE) : 2395-695X
ISSN (PRINT) : 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Ecology, Science and Technology (IJARBEST)
 Vol. 1, Issue 9, December 2015

15

 An Adaptive Framework for Reliable

Distributed Computing

R.SENTHIL KUMAR1, S.VIVEK PANDIAN2, S.ABIRAMI3,

Assistant Professor, Department of Computer Science Engineering,

R.V.S Educational Trust’s Group of Institution’s, Dindigul, India123

Abstract-Most application level fault tolerance schemes in

existing systems are non-adaptive in the sense that the fault

tolerance schemes incorporated in applications are usually

designed without incorporating information from system

environments such as the amount of available memory and the

local or network I/O bandwidth. However, from an application

point of view, it is often desirable for fault tolerant high

performance applications to be able to achieve high performance

under whatever system environment it executes with as low fault

tolerance overhead as possible. Here we demonstrate that, in

order to achieve high reliability with as low performance

penalty as possible, fault tolerant schemes in applications need

to be able to adapt themselves to different system environments.

An effective adaptive fault tolerance system is required for real

time application. An adaptive fault tolerance system does the

following activities. If three systems are running simultaneously,

job is submitted to all system. If one system fails, our adaptive

framework will check the load conditions of running system and

it will submit to the least loaded system.

Index Terms-Check points, fault tolerance, failure recovery,

SMP, snapshots

I. INTRODUCTION

Fault-tolerance or graceful degradation is the property that

enables a system to continue operating properly in the event

of the failure of (or one or more faults within) some of its

components. If its operating quality decreases at all, the

decrease is proportional to the severity of the failure, as

compared to a naïvely-designed system in which even a small

failure can cause total breakdown. Fault-tolerance is

particularly sought-after in high-availability or life-critical

systems.

Fault-tolerance is not just a property of individual machines;

it may also characterize the rules by which they interact. For

example, the Transmission Control Protocol (TCP) is

designed to allow reliable two-way communication in a

packet-switched network, even in the presence of

communications links which are imperfect or overloaded.

It does this by requiring the end points of the communication

to expect packet loss, duplication, reordering and corruption,

so that these conditions do not damage data integrity, and only

reduce throughput by a proportional amount.

A. Fault tolerance requirements

The basic characteristics of fault tolerance require:

• No single point of failure

• No single point of repair

• Fault isolation to the failing component

• Fault containment to prevent propagation of the

failure

• Availability of reversion modes
Fault-tolerant systems are typically based on the concept of

redundancy.

B. No single point of repair
If a system experiences a failure, it must continue to operate

without interruption during the repair process.

C. Fault isolation to the failing component
When a failure occurs, the system must be able to isolate the

failure to the offending component. This requires the addition

of dedicated failure detection mechanisms that exist only for

the purpose of fault isolation. Recovery from a fault condition

requires classifying the fault or failing component.

Due to the large process state of such kind of applications, the

relatively low I/O bandwidth between memory and the central

network disk, and the high enough frequency of failures, for

these systems, the classical system-level fault tolerance

approaches is often either impractical (an application would

spend most of its time taking checkpoints) or infeasible (there

is no enough time for an application to save its core to disk

before the next failure occurs). Therefore the cheaper

application level fault tolerance schemes may be deployed as

an alternative in such large computational science programs.
However, most application level fault tolerance schemes

proposed in literature are non-adaptive in the sense that the

fault tolerance schemes incorporated in applications are either

designed without incorporating system environments(such as

the amount of available memory and the local and network

I/O bandwidth,etc) or designed only for a specific system

environment. From the application point of view, fault

tolerant high performance applications need to be able to

achieve high performance under different system

environments with as low performance overhead as possible.

In order to achieve high reliability and survivability with low

performance overhead, the fault tolerance schemes in such

applications need to be adaptable to different (or

dynamic)system environments. In this paper, we propose a

framework under which different failures can be incorporated

http://www.ijarbest.com/

 ISSN (ONLINE) : 2395-695X
ISSN (PRINT) : 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Ecology, Science and Technology (IJARBEST)
 Vol. 1, Issue 9, December 2015

16

in applications using an adaptive method. In our framework,

applications will be able to choose the best available fault

tolerance at runtime (or dynamically) according to different

(or dynamic) system environments.

II. FAULT TOLERANCE IN PARALLEL AND

DISTRIBUTED SYSTEMS

In recent years, Multi-Processors (MP), Symmetrical

Multi-Processors (SMP), and Massively Parallel Processors

(MPP) have been sweeping the marketplace and gaining

ground to offload vast amounts of data processing. This

processing is performed in "parallel" among the available

Central Processing Units (CPUs).

Parallel processing is an efficient form of information

processing which emphasizes the exploitation of concurrent

events in the computing process. Concurrent implies

parallelism, simultaneity , and pipelining .Parallel events may

occurs in multiple resources during the same time interval,

simultaneous events may occurs at the same time instant, and

pipelined events may occur in overlapped time spans. Parallel

processing demands concurrent execution of many programs

in the computer. Parallel processing and distributed

processing are closely related each other. In some cases, we

use certain distributed technique to achieve parallelism.

Fault tolerance techniques can be divided into two big

branches and some hybrid techniques. The first branch is

Messaging Logging. In this branch, there are three sub

branches: Pessimistic Messaging Logging, Optimistic

Messaging Logging., and Casual Messaging Logging. The

second branch is Check pointing and Rollback recovery.

There are also three sub-branches in this branch: Network

disk based Check pointing and rollback recovery, Diskless

Check pointing, and Local Disk based check pointing.

Our research is mainly concentrated on incorporating failures

into tightly coupled large scale high performance

computational intensive applications. These applications are

often communication intensive, so checkpoint and rollback

recovery approaches generally work better than message

logging approaches. In the rest of this section, we confine our

literature review to check pointing and rollback recovery

schemes instead of general fault tolerance schemes
Most traditional distributed multiprocessor recovery schemes

are designed to tolerant arbitrary number of failures. So they

store their checkpoint data in a central stable storage. The

central stable storage usually has its own fault tolerance

techniques to prevent it from failures. But the bandwidth

between the processors and the central stable storage is

usually very low. Several experimental studies presented in

have shown that the main performance overhead of check

pointing is the time spent on writing the checkpoint data to the

central stable storage.

In summary, a review of the existing fault tolerance research

demonstrates that

• To tolerate arbitrary number of failures with low

performance overhead, a two-level (or multi-level)

recovery scheme should be used.

• If enough memory is available, Checkpoint Mirroring

should be used rather than Parity Based Check

pointing.

• If there is no enough memory but there is enough local

disk storage available, local disk storage can be use

to reduce the checkpoint performance overhead.

• To achieve low performance overhead, user defined

check pointing schemes should be used instead of

the system-level check pointing schemes.

III. MOTIVATIONS FOR AN ADAPTIVE FAULT

TOLERANCE

We have seen that the previous fault tolerant research works

have produced some very precious result. However, there

appears to be a significant gap between the fault tolerant

research results and their optimal deployment into

applications. Each fault tolerance scheme has its own

advantages and disadvantages. Different systems have

different resource characteristics. From the application point

of view, it is desirable that fault tolerant high performance

applications is able to achieve both high performance and

high reliability (survivability)with low fault tolerance

overhead no matter under which kind of system environments

it is running. To achieve this goal, the best strategy would be

to adaptively choose the fault tolerance schemes in

applications based on different (or dynamic) system

environments that the applications are running.

A. Reasons for using fault tolerant algorithms

Increasing the number of components in a distributed system

means increasing the probability that some of these

components will be subject to failure during the execution of a

distributed algorithm. Computers in a network may fail,

processes in a System can be erroneously killed by switching

off a workstation, or a machine may produce an incorrect

result due to, memory malfunctioning. Modern computers are

becoming more and more in any individual computer.

Nonetheless, the chance of a failure occurring at some place

in a distributed system may grow arbitrarily large when the

algorithm each time a failure occurs, algorithms should be

designed so as to deal properly with such failures.

Vulnerability to failures is also a concern in sequential

computations, in safety-critical application, or if a

computation runs for a long time and produces a

non-verifiable result. Internal checks protect against errors of

some types but of course no protection can be achieved

against the complete loss of the program or erroneous changes

in its code. Therefore the possibilities of fault-tolerant

computing by sequential algorithms and uniprocessor

computing systems are limited. Fortunately, the study of

fault-tolerant algorithms has advanced considerably since

1981, and reliable applications based on replication are now

well within reach. In robust algorithms each step of each

process is taken with sufficient care to ensure that, in spite of

failures, correct processes only take correct steps. In

stabilizing algorithms correct processes can be affected by

http://www.ijarbest.com/

 ISSN (ONLINE) : 2395-695X
ISSN (PRINT) : 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Ecology, Science and Technology (IJARBEST)
 Vol. 1, Issue 9, December 2015

17

failures, but the algorithm is guaranteed to recover from any

arbitrary configuration when the processes resume correct

behavior.

B. Failure models

To determine how the correctly operating processes can

protect themselves against failed processes, assumptions must

be made about how a process might fail. In the following

chapters it is always assumed that only processes can fail;

channels are reliable. Thus, if a correct process sends a

message to another correct process, receipt of the message

within finite time is guaranteed. (A failing channel can be

modeled by a failure in one of the incident processes, for

example, an omission failure.) As an additional assumption,

we always assume that each process can send to each other

process. The fault models are:

Initially dead processes: A process is called initially dead if it

does not execute a single step of its local algorithm.

Crash model: A process is said to crash if it executes its local

algorithm correctly up to some moment, and does not execute

any step thereafter.

Byzantine behavior: A process is said to be Byzantine if it

executes arbitrary steps that are not in accordance with its

local algorithm. N particular, a Byzantine process may send

messages with an arbitrary content.

C. Failure detection

The impossibility of solving consensus in asynchronous

systems has led to weaker problem formulations and stronger

models. Failure detectors are new widely recognized as an

alternative way to strengthen the computation model.Studying

synchronous models is practically motivated because most

distributed programming environments do provide clocks and

timers in some way. With failure detectors, the situation is

similar; quite often the run-time support system will return

error messages upon an attempt to communicate with a

crashed process. However, these error messages are not

always absolutely reliable. It is therefore useful to study how

reliable they must be to allow a solution for the consensus

problem.

IV. AN ADAPTIVE APPLICATION LEVEL FAULT

TOLERANCE SCHEME

In this section, we present an adapting application level fault

tolerance scheme for high performance grid computing.

A. Overview

Our goal is to establish a framework under which different

failures can be optimally incorporated in applications using an

adaptive method. In our framework, applications will be able

to adaptively choose the best (minimizing the mean execution

time of the application) available fault tolerance at runtime

according to different system environments. Different fault

tolerant schemes require different resources. When designing

the fault tolerant application, the application developer may

not have apriority knowledge of the system characteristics of

the platform the application will be running on. Therefore, an

adapting application level fault tolerance scheme need to be

able to detect system information at run time. The system

characteristics that is necessary in determining checkpoint

schemes may include

• The number of available processors

• The amount of available memory on each processor

• The amount of available local disk storage on each

processor

• Whether there is a central fail free stable storage

available

Different fault tolerant schemes have different degree of

reliability. To tolerate the failure of all processors, a central

stable storage is usually necessary. However, if we want to

tolerate only a small number of processor failures, a central

stable storage is usually not necessary. For example, schemes

such as neighbor-based diskless check pointing also means

that both its memory and its local disk become work fine to

tolerate single processor failure. In order to maximize the

degree of reliability while maintaining low performance

overhead, a multi-level recovery scheme is often desirable in

an adapting application level fault tolerance scheme.

B. A Multi-level adaptive recovery scheme

Assume a processor can access the following five types of

storage in the computing system

• local memory of the processor

• local disk of the processor

• neighbor processors’ memory

• neighbor processors’ disk

• central stable storage

If one type of storage is not available in the system, then we

assume there are zero bytes of that type of storage in the

system. We also assume that the bandwidth of these five

types’ storages is strictly decreasing. Assume a node failure

unavailable. Which kind of checkpoint schemes (or

combination, or modification of schemes) is best for a specific

system is affected by many factors. At the present time, we

only consider the following factors:

• The amount of available storage of each kind

• The overhead of each checkpoint scheme (which is

mainly dependent on the bandwidth of each storage

and the characteristics of that checkpoint schemes)

• The failure distribution of the system.

• The characteristics of the application

• The number of available processors for this

application.

The five candidate basic checkpoint schemes that we consider

at the present time are

• CSSC: Central Stable Storage Checkpoint scheme

• NDPC: Neighbor Disk-based Parity Checkpoint

scheme

• NDCM: Neighbor Disk-based Checkpoint Mirroring

scheme

• NMPC: Neighbor Memory-based Parity checkpoint

scheme

• NMCM: Neighbor Memory-based Checkpoint

Mirroring scheme

The multi-level adaptive recovery scheme is the combination

http://www.ijarbest.com/

 ISSN (ONLINE) : 2395-695X
ISSN (PRINT) : 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Ecology, Science and Technology (IJARBEST)
 Vol. 1, Issue 9, December 2015

18

of some of the above five basic schemes. Just as shown in

existing research works, on most systems, the performance of

these five basic recovery schemes is increasing (but it is also

possible in the future to perform experiments to decide the

performance of different schemes at run time).Since we also

know the degree of fault tolerance of each basic scheme, so

which combination to choose is mainly dependent on the

availability and the amount of each storage. The checkpoint

frequency of each basic scheme is mainly decided by the

overhead of the scheme and the failure rate of the system.

V. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed adapting fault

tolerance scheme experimentally.

A. Snapshots

An algorithm whose task is to analyze properties of

computations, usually arising from other algorithms. It is,

however, surprisingly hard to observe the computations of a

distributed system from within the same system. An important

building block in the design of algorithms operating on

system computations is a procedure for computing and storing

a single configuration of this computation called snapshot.

The construction of snapshots is motivated by several

applications, of which we list three here. First, properties of

the computation, as far as they are reflected within a single

configuration, can be analyzed off-line, i.e., by an algorithm

that inspects the (fixed) snapshot rather than the (varying)

actual process states. These properties include stable

properties; a property P of configurations is stable if P(r) r->

=>P (d). If a computation ever reaches a configuration r for

which P holds, P remains true in every configuration d from

then on. Consequently, if P is found to be true for a snapshot

of the configuration, the truth of P can be concluded for all

configurations from then on. Examples of stable properties

include termination, deadlock, loss of tokens, and non-reach

ability of objects in dynamic memory structure. Second, a

snapshot can be used instead of the initial configuration if the

computation must be restarted due to a process failure. To this

end, the local state Cp for process P, captured in the snapshot,

is restored in that process, after which the operation of the

algorithm is continued. Third, snapshots are a useful tool in

debugging distributed programs. An off-line analysis of a

configuration taken from an erroneous execution may reveal

why a program does not act as expected.

B. Distributed computing environment

The performance of the DCE is entirely depends on number of

participants included in a particular process using

multithreading. Where number of participants increase,

system failure rate is also increased to make the DCE reliable,

fault detection, fault tolerance and failure recovery must be

done.

C. Fault tolerance
While a participant fail, leader check whether the job to be

continue or redo leader increment the failure system count and

check with the initial total number of participants.

“t” – number of faulty system “n” –

number of participants

if 2t < n then the current process can be continue otherwise the

entire process must be redo.

D. Failure recovery

If failure system is less then total number of participants

then failure recovery can be done. Recovery can be done by

system properties stored in the adjacent system. The

performance depends on number of agents included in a

process. Total time taken to execute a job is equal to division

of time taken by single CPU and number of participants plus

communication delay.

 Fig 1: Failure recovery

P1, P2, P3, P4, P5, P6 – Processing systems (Participants)

 P3 job can be takeover by P4 or P2

VI. CONCLUSION

Mainframes and Parallel computers are highly

reliable and cost number crunches. The recent decade of

client server technology evolution indicates cost as a prime

factor. There by, identifying distributed object based

solutions and Linux clusters. With full advantage of economy

distributed object based solution still stays as a bumbling

amateur. As the first pedestal, we had designed a Reliable

Distributed Computing Environment in windows platform.

Current implementation of the distributed computing

environment is designed using Message based Middleware

this can be enhanced with naming service. Intelligence can be

added to enhance the job distribution. Current

implementation of the distributed computing environment is

designed to run in Microsoft Network under windows-NT

architecture (Intranet), this can be extended to Internet with

the help of WEB SERVERS.

REFERENCES
[1] N. R. Adiga and et al. An overview of the BlueGene/L

supercomputer. In Proceedings of the Supercomputing

Conference (SC’2002), Baltimore MD, USA, pages 1– 22,

2002.

[2] N. H. Vaidya. A case for two-level recovery schemes.IEEE

Trans. Computers, 47(6):656–666, 1998.

[3] L. M. Silva and J. G. Silva.An experimental study about

diskless check pointing. In EUROMICRO’98,pages 395–402,

1998.

[4] T. Chiueh and P. Deng. Evaluation of checkpoint mechanisms

for massively parallel machines. In FTCS, pages 370–379,

1996.

http://www.ijarbest.com/

 ISSN (ONLINE) : 2395-695X
ISSN (PRINT) : 2395-695X

Available online at www.ijarbest.com

 International Journal of Advanced Research in Biology, Ecology, Science and Technology (IJARBEST)
 Vol. 1, Issue 9, December 2015

19

[5] J. Dongarra, H. Meuer, and E. Strohmaier. TOP500

Supercomputer Sites, 28th edition. In Proceedings of the

Supercomputing Conference (SC’2006), Pittsburgh PA, USA.

ACM, 2006.

[6] G. E. Fagg and J. Dongarra. FT-MPI: Fault tolerant MPI,

supporting dynamic applications in a dynamic world. In

PVM/MPI 2000, pages 346–353, 2000.

[7] G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun,Z. Chen, J.

Computing Infrastructure. Morgan Kauffman, San Francisco,

1999.

[8] Y. Kim. Fault Tolerant Matrix Operations for Parallel and

Distributed Systems. Ph.D. dissertation, University of

Tennessee, Knoxville, June 1996.

[9] Pjesivac-Grbovic, K. London, and J. J.Dongarra. Extending

the MPI specification for process fault tolerance on high

performance computing systems. In Proceedings of the

International Supercomputer Conference, Heidelberg,

Germany, 2004.

[10] G. E. Fagg, E. Gabriel, Z. Chen, , T. Angskun,G. Bosilca, J.

Pjesivac-Grbovic, and J. J. Dongarra. Process fault-tolerance:

Semantics, design and applications for high performance

computing. Submitted to International Journal of High

Performance Computing Applications, 2004.

Mr. R.Senthil Kumar was born on 8th July1987.

He did his B.E – CSE in PSNA College of

Engineering and Technology, Anna University

in 2008 and M.E (Computer Science

Engineering) in PSNA College of Engineering

and Technology, in the year 2010. He is

currently working as Assistant Professor in

Department of Computer Science Engineering in

RVS Educational Trust’s Group of Institutions.

His area of specialization is Distributed Computing and published

papers in several National and International Conferences and Journals

Mr. S.Vivekpandian was born on 1st may1987.

He did his B.E – CSE in Trichy Engineering

College, Anna University in 2010 and M.E

(Computer Science Engineering) in MAM

College of Engineering in the year 2012. He is

currently working as Assistant Professor in

Department of Computer Science Engineering in

RVS Educational Trust’s Group of Institutions.

His area of specialization is Cloud Computing

and published papers in several National and International

Conferences and Journals

Mrs. S.Abirami was born on 11th June1984.

She did his B.E – CSE in Sengunthar College

of Engineering and Technology, Anna

University in 2005 and M.E (Computer

Science Engineering) in A.S.L.Pauls College

of Engineering and Technology, in the year

2013. He is currently working as Assistant

Professor in Department of Computer

Science Engineering in RVS Educational

Trust’s Group of Institutions. His area of specialization is Soft

Computing and published papers in several National and

International Conferences and Journals

Author’s photo

Author’s photo

Author’s photo

http://www.ijarbest.com/

