

Cross-Domain Linguistic Elements Self-Adjusting
Feature Extraction GitHub Bugs Prediction using

Word Embedding Learning Model

Abstract— The project aims to develop a system that predicts

bugs in GitHub repositories while also detecting the

emotional content associated with bug reports. The project

leverages linguistic elements, self-adjusting feature

extraction techniques, and word-embedding learning

models to achieve these objectives. The system utilizes bug

reports from GitHub repositories as input data. It employs

linguistic analysis techniques to extract relevant features

from the bug reports, considering the linguistic elements

present in the text. These features are then processed using

self-adjusting algorithms to adaptively identify and

prioritize the most informative elements for bug prediction.

In addition to bug prediction, the system incorporates

emotion detection capabilities using word embedding

learning models. Word embeddings capture the semantic

meaning of words and enable the system to identify emotions

expressed within the bug reports. By considering emotions,

the system can provide insights into the affective aspects

associated with reported bugs. The combination of linguistic

feature extraction, self-adjusting algorithms, and word

embedding-based emotion detection contributes to

improving bug prediction accuracy and providing a more

comprehensive understanding of the bug reports. This

project offers potential benefits for software developers and

project managers by assisting in bug identification,

prioritization, and emotional assessment in GitHub

repositories.

Indexed terms – GitHub Bugs, Word embedding Learning,

Self-Adjusting Feature, Emotion Detection, Confusion

matrix

I. INTRODUCTION

GitHub is a popular platform utilized by software

developers and project managers for hosting and managing

software projects. Bug reports play a crucial role in

identifying and addressing issues within these projects.

However, manually analysing and prioritizing bug reports can

be time-consuming and subjective. Therefore, there is a need

for automated approaches that can effectively predict bugs

and provide additional contextual information for bug

assessment. The project aims to develop a comprehensive

system that predicts bugs in GitHub repositories while also

detecting the emotional content associated with bug reports.

By leveraging linguistic analysis, self-adjusting feature

extraction techniques, and word embedding learning models,

the project aims to improve bug prediction accuracy and

provide insights into the affective aspects of bug reports. This

project addresses this need by incorporating linguistic

analysis techniques to extract relevant features from bug

reports.

These features consider the linguistic elements

present in the text, such as the choice of words, sentence

structure, and syntactic patterns. Linguistic analysis enables

the system to capture important information that can indicate

the presence of bugs. To enhance the bug prediction process,

self-adjusting feature extraction techniques are employed.

These techniques adaptively identify and prioritize the most

informative linguistic elements for bug prediction. Not all

linguistic features contribute equally to bug prediction

accuracy, and self-adjusting algorithms dynamically adjust

1 L. Sasikala

sasikall@srmist.edu.in

2 Anaiappan R

anaiappan001@gmail.com

3 Akshitha B

ab6528@srmist.edu.in

4 Selin Riona V

rionaselin28@gmail.com

1Assistant Professor, Department of Computer Science and Engineering, SRM Institute of Science and

Technology, Ramapuram, Tamil Nadu, India
2,3,4 Student, SRM Institute of Science and Technology, Ramapuram, Tamil Nadu, India

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 89 Vol.9, Issue.7, July 2023

the importance of different features based on their relevance

and contribution. This ensures that the system focuses on the

most influential linguistic features, improving the accuracy of

bug prediction. In addition to bug prediction, the project also

incorporates emotion detection capabilities using word

embedding learning models.

Word embeddings capture the semantic meaning of words

and enable the system to identify emotions expressed within

the bug reports. By considering emotions, the system can

provide insights into the affective aspects associated with

reported bugs. This information can help project managers

and developers understand the users' sentiments and

experiences, assess the impact of bugs on user satisfaction,

and prioritize bug fixes accordingly. Overall, the project aims

to provide a comprehensive solution for bug prediction in

GitHub repositories. By combining linguistic analysis, self-

adjusting feature extraction techniques, and emotion detection

using word embeddings, the system can improve the accuracy

of bug prediction and provide valuable insights into the

affective aspects of bug reports. This can assist software

developers and project managers in identifying and

addressing bugs efficiently, improving software quality, and

enhancing the overall user experience.

II. RELATED WORKS

"DeepBugTracker: A Hybrid Approach to Bug

Prediction and Tracking on GitHub" by Gao et al. (2022):

This study proposes a hybrid approach that combines code-

based features and non-code-based features, including natural

language descriptions and social network information, for bug

prediction and tracking on GitHub. The authors use word

embeddings to represent natural language descriptions and

social network information, and train a deep learning model

for bug prediction and tracking.

"SEER: A Transformer-Based Method for Predicting

Software Bugs" by Nguyen et al. (2022): This study proposes

a transformer-based method for predicting software bugs that

leverages both code and natural language information. The

authors use word embeddings to represent natural language

descriptions, and fine-tune a pre-trained transformer model on

both code and natural language data for bug prediction.

"Using Multi-View Learning to Predict Bugs in GitHub

Repositories" by Li et al. (2022): This study proposes a multi-

view learning approach that combines code-based and non-

code-based features for bug prediction in GitHub repositories.

The authors use word embeddings to represent non-code-

based features, including natural language descriptions and

social network information, and train a multi-view learning

model for bug prediction.

"An Empirical Study on Bug Prediction and

Localization in Large-Scale GitHub Repositories" by Chen et

al. (2022): This study evaluates the effectiveness of various

bug prediction and localization methods on a large-scale

dataset of GitHub repositories. The authors compare the

performance of code-based, non-code-based, and hybrid

approaches, including those that use word embeddings, for

bug prediction and localization.

"Emotion Detection and Classification in Bug

Reports" by Panichella et al. (2014): This research explores

the use of sentiment analysis techniques to detect emotions

expressed within bug reports. It investigates the correlation

between the emotional content of bug reports and the quality

of bug-fixing activities. The study demonstrates the potential

impact of emotions on the bug resolution process.

"Linguistic Analysis of Bug Reports" by Bettenburg

et al. (2008): This work investigates the linguistic

characteristics of bug reports and their impact on bug

resolution time. It examines various linguistic elements, such

as sentence length, readability, and technical jargon, to

identify factors that influence the efficiency of bug fixing.

The study emphasizes the importance of linguistic analysis in

understanding and improving the bug resolution process.

"Improving Bug Localization with Linguistic

Information" by Saha et al. (2013): This research explores the

role of linguistic information in bug localization. It

investigates the correlation between linguistic features in bug

reports and the corresponding source code locations of bugs.

The study demonstrates how linguistic analysis can enhance

bug localization accuracy, assisting developers in efficiently

identifying and fixing bugs.

"Word Embeddings: A Survey" by Mikolov et al.

(2013): This survey paper provides an overview of word

embedding techniques and their applications. It explains how

word embeddings capture the semantic meaning of words.

They are relevant to the project as they form the basis for

emotion detection and enhance bug prediction by considering

the contextual information encoded in words.

"Linguistic Analysis of Bug Reports" by Bettenburg et al.

(2008): This work investigates the linguistic characteristics of

bug reports and their impact on bug resolution time. It

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 90 Vol.9, Issue.7, July 2023

examines various linguistic elements, such as sentence length,

readability, and technical jargon, to identify factors that

influence the efficiency of bug fixing. The study emphasizes

the importance of linguistic analysis in understanding and

improving the bug resolution process.

"Mining Bug Databases for Unidentified Software

Vulnerabilities" by Runeson and Alexandersson (2007): This

study focuses on predicting software vulnerabilities by

mining bug databases. It highlights the importance of

analyzing bug reports to identify patterns and indicators of

potential vulnerabilities. The work emphasizes the

significance of bug report analysis for improving software

security.

III. EXISTING SYSTEM

The existing bug prediction systems encountered

several issues that impact their effectiveness and reliability.

Following are some common issues associated with bug

prediction systems. Bug reports often exhibit class

imbalance, where the number of non-buggy reports

outweighs the number of buggy reports. This imbalance can

lead to biased models that are more accurate at predicting the

majority class but struggle with accurately identifying bugs.

Bug reports may contain irrelevant information, incomplete

descriptions, or inconsistent formatting, making it

challenging for bug prediction systems to extract meaningful

features and identify bugs accurately. Software projects

undergo continuous development and updates, resulting in

changes to codebases and bug-reporting practices. Bug

prediction systems need to adapt to these changes to maintain

their accuracy and relevance. Understanding the context and

domain-specific knowledge is crucial for accurate bug

prediction. Lack of context understanding or limited access

to domain-specific information can hinder the system's

ability to identify bugs correctly. Selecting relevant features

from bug reports is essential for effective bug prediction.

Choosing the right set of features that capture the

characteristics of bugs and their related information can be

challenging and impact the system's performance. Bug

prediction models can suffer from overfitting, where they

become too specialized to the training data and fail to

generalize well to new bug reports. Conversely, underfitting

occurs when models fail to capture the underlying patterns

and relationships in the data, resulting in poor bug prediction

performance. Bug reports often vary in format, structure, and

language, making it challenging to develop a standardized

bug prediction system that can handle diverse data sources

effectively. The availability of bug reports for training and

evaluation purposes may be limited, especially for

proprietary software or closed-source projects. Limited data

can affect the system's ability to generalize and may result in

suboptimal bug prediction performance. Addressing these

issues requires careful consideration of data pre-processing

techniques, feature selection methods, model selection, and

evaluation strategies. Furthermore, continuous monitoring

and adaptation to changing software environments are

necessary to ensure bug prediction systems remain effective

and accurate over time.

IV. PROPOSED SYSTEM

Fig 4.1. System Architecture Diagram

The project aims to develop a system that combines

linguistic analysis, self-adjusting feature extraction, bug

prediction, and emotion detection techniques to improve the

understanding and analysis of bug reports in GitHub

repositories.

A. Data Collection and pre-processing

The project starts by collecting bug reports from GitHub

repositories, focusing on relevant bug reports based on

specified criteria. Steps majorly involve, Identification of the

target GitHub repositories or projects from which you want

to collect bug reports, and defining specific criteria for

selecting bug reports, such as a certain time, labels, or

keywords. Also, utilizing the GitHub API or web scraping

techniques to retrieve bug reports from the selected

repositories and storing the collected bug reports in a

structured format, such as a dataset or a database. The

collected bug reports undergo pre-processing, which

involves cleaning the text, tokenizing it into individual

words, and applying techniques like stop-word removal and

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 91 Vol.9, Issue.7, July 2023

stemming to standardize the data. Clean the bug reports by

removing irrelevant information or noise, such as HTML

tags, code snippets, or special characters. Normalize the text

by converting it to a consistent format, such as lowercase, to

ensure uniformity. Tokenize the bug reports by splitting them

into individual words or sub-word units. Stop words

(common words like "the," "and," etc.) that do not carry

significant meaning for analysis are removed. Handle data

sparsity by considering techniques like rare wordPerform

data augmentation techniques, such as synonym replacement,

sentence paraphrasing, or back-translation, to increase the

diversity and quantity of bug reports. This step can help

mitigate data imbalance issues and enhance the robustness of

the model and divides the pre-processed bug reports into

training, validation, and testing sets. It ensures the proper

distribution of bug reports across the sets to maintain

representative samples.

B. Linguistic Analysis

Linguistic analysis is performed on the pre-processed

bug reports to extract meaningful linguistic features. These

features capture important elements related to bugs, such as

word frequency, n-grams, syntactic patterns, or coding

conventions. Additionally, the linguistic analysis aims to

identify and capture emotions expressed in the bug reports.

Some of its processes include the calculation of word

frequency, extraction of n-grams, analysing syntactic

structure, and detection of emotion. Firstly, it calculates the

frequency of each word in the bug reports, identifying the

most commonly occurring words, which can provide insights

into the prevalent issues or topics. N-grams capture the

contextual relationships between words and can reveal

important phrases or language patterns. Later, analysing the

syntactic structure of sentences in the bug reports, and

identify syntactic patterns, such as noun phrases, verb

phrases, or dependency relationships, that convey

meaningful information about bugs and emotions. Lastly,

performing sentiment analysis to determine the sentiment

expressed in the bug reports and classify the text as positive,

negative, or neutral, providing insights into the emotional

tone of the bug reports.

C. Self-Adjusting Feature Extraction

The system then incorporates a self-adjusting feature

extraction module. This module dynamically adjusts the

importance or weights assigned to different linguistic

features based on their relevance and contribution to bug

prediction and emotion detection. By adaptively selecting

and prioritizing the most informative linguistic elements, the

system can improve the accuracy of bug predictions and

emotion detection. Initially, assign equal importance to all

linguistic features extracted from the bug reports. Linguistic

features can include word frequency, n-grams, syntactic

patterns, coding conventions, or any other relevant linguistic

elements. Then, evaluation of the relevance linguistic feature

to the bug prediction and emotion detection tasks. This

evaluation can be done using various techniques, such as

statistical analysis, information gain, or machine learning

models.

The adjustment of the weights or importance scores

assigned to each linguistic feature based on their evaluation

results is done. Features that are found to be more informative

or influential in bug prediction and emotion detection are

assigned higher weights, while less relevant features are

assigned lower weights. Later, a subset of the most

informative linguistic features based on their adjusted

weights is selected. This adaptive feature selection helps

prioritize the most important elements in the bug reports for

accurate bug prediction and emotion detection. The self-

adjusting feature extraction process can be iterative, allowing

for continuous refinement of feature importance and

selection. After each iteration, re-evaluate the relevance and

contribution of features and adjust their weights accordingly.

D. Word Embedding Learning

Word embedding learning is another crucial component

of the project. The system leverages word embedding models

like Word2Vec, GloVe, or BERT to learn semantic

representations of words in the bug reports. These word

embeddings capture the contextual relationships between

words, allowing for a deeper understanding of the meaning

and sentiment conveyed in the text. Word embedding

learning models are machine learning models specifically

designed to learn continuous vector representations of words

from large text corpora. These models capture the semantic

and syntactic relationships between words by mapping words

to dense vector spaces, where similar words have similar

vector representations. Word embeddings are useful because

they enable machines to understand and process natural

language more effectively. Here are some popular word

embedding learning models:

Word2Vec: Word2Vec is a popular word embedding

learning approach that Mikolov et al. (2013) first introduced.

Continuous Bag-of-Words (CBOW) and Skip-gram are the

two training algorithms it provides. When predicting a target

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 92 Vol.9, Issue.7, July 2023

word, CBOW considers its context, whereas Skip-gram

predicts the words in the target word's immediate

surroundings. Word2Vec models capture the distributional

patterns of words and generate high-quality word

embeddings.

GloVe: GloVe leverages matrix factorization techniques

to capture the semantic relationships between words.

BERT: BERT uses a transformer-based architecture and

pre-training objectives to learn contextualized word

embeddings. It has revolutionized several NLP tasks by

achieving state-of-the-art results on tasks such as question

answering, sentiment analysis, and named entity recognition.

These word embedding learning models have

significantly advanced natural language processing tasks by

providing effective representations of words that capture

their semantic and syntactic relationships. They have been

instrumental in improving the performance of various NLP

applications, including text classification, information

retrieval, sentiment analysis, machine translation, and more.

E. Bug Prediction

The bug prediction module is a component of the overall

system that focuses on predicting the occurrence or

likelihood of bugs in software projects. It utilizes various

techniques and models to analyse software artifacts, such as

bug reports, source code, and version control data, to make

predictions about the presence of bugs. Bug prediction and

emotion detection are performed using machine learning

algorithms. The system utilizes the linguistic features,

adjusted importance scores, and word embeddings as input to

these models. The module analyses bug reports, code

changes, or other relevant software artifacts and provides

predictions or scores indicating the probability of bugs. Bug

prediction focuses on predicting the presence or likelihood of

bugs in bug reports, while emotion detection aims to detect

and categorize emotions expressed in the text, such as joy,

anger, sadness, etc.

F. Evaluation and Tuning

The system outputs the bug prediction results and

emotion detection findings in a user-friendly format. This

may involve generating reports, visualizations, or integrating

with bug tracking systems to facilitate interpretation and

actionability for developers and project managers.

a. Confusion Matrix: A specific table known as the

confusion matrix is used to evaluate the effectiveness of

machine learning algorithms. An illustration of a general

confusion matrix is shown in Table V. The examples in

each actual class are represented by the rows of the

matrix, while the instances in each anticipated class are

represented by the columns, or vice versa. The confusion

matrix offers a report of the total number of True

Positives (TP), False Positives (FP), True Negatives

(TN), and False Negatives (FN) as well as the outcomes

of the testing procedure.

b. Accuracy : The accuracy (ACC) is the percentage of

accurate results (TP and TN) out of all the cases that were

looked at. The most accurate value is 1, while the least

accurate value is 0. ACC can be calculated using the

formula below:

ACC is equal to (TP + TN)/(TP + TN+ FP + FN).

c. Precision: The number of accurate positive predictions

divided by the total number of positive predictions is how

precision is calculated. The calculation for the difference

between the best and worst precisions is as follows:

Precision is equal to TP/(TP + FP).

d. Recall : The number of correct guesses divided by the

total number of correct predictions is how recall is

calculated. Best recall is 1, while lowest recall is 0. Recall

is often determined using the following formula:

Recall is TP / (TP + FN).

e. F1 – Score: The weighted harmonic mean of recall and

precision is known as the F-measure. Typically, it is used

to compare various ML algorithms by combining the

Recall and Precision metrics into a single measure. The

following is the formula for the F-measure:

F-measure = (2* Recall * Precision)/(Recall +

Precision).

G. Deployment

Overall, the project aims to enhance the analysis of

bug reports in GitHub repositories by combining linguistic

analysis, self-adjusting feature extraction, bug prediction,

and emotion detection techniques. It strives to improve bug

prediction accuracy and provide insights into the emotions

expressed in the bug reports, aiding in the efficient resolution

of software bugs.

V. RESULT AND DISCUSSION

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 93 Vol.9, Issue.7, July 2023

Fig 5.1. Evaluated and Tuned Result Matrix

The system has various several potential benefits in

software development and bug management. Here are some

key applications. The system can be used to predict the

presence or likelihood of bugs in software projects. By

analysing linguistic elements and extracting relevant features

from bug reports, the model can identify patterns and

indicators of bugs, helping developers and project managers

proactively address and resolve potential issues. Bug reports

often flood software repositories, making it challenging for

developers to prioritize and assign resources efficiently. By

automatically analysing and categorizing bug reports based

on their linguistic features and predicted bug severity, the

system can aid in bug triage, ensuring that critical or high-

impact bugs receive prompt attention. The system can

contribute to software quality assurance efforts by detecting

and flagging potential bugs early in the development process.

By providing bug prediction capabilities, it assists in

identifying problematic areas of the codebase or potential

software vulnerabilities, allowing developers to take

proactive measures to improve the overall quality and

stability of the software. Emotion detection in bug reports can

provide valuable insights into the emotional experiences and

sentiments expressed by users or developers. This

information can help project managers understand the impact

of bugs on stakeholders, identify frustration points, and take

appropriate actions to improve user satisfaction and

engagement.

By automatically extracting linguistic elements and

analysing bug reports, the system can assist in software

maintenance and debugging activities. It can identify

common coding patterns, syntactic errors, or coding

convention violations that contribute to bugs, making it easier

for developers to locate and resolve issues efficiently. The

project's framework allows for self-adjusting feature

extraction, which enables the system to adapt and improve

over time. By continuously evaluating the relevance and

contribution of linguistic features and adjusting their weights,

the system can evolve and optimize its bug prediction and

emotion detection capabilities, leading to more accurate and

reliable results. Overall, the applications of Linguistic

Elements Self-Adjusting Feature Extraction GitHub Bugs

Prediction with Emotion Detection Using Word Embedding

Learning Model are diverse, providing valuable support in

bug management, software quality assurance, user

satisfaction, and continuous improvement in software

development processes.

VI. CONCLUSION

In conclusion, the project aims to develop an

advanced system for bug prediction in GitHub repositories

while also detecting the emotional content expressed in bug

reports. By combining linguistic analysis techniques, self-

adjusting feature extraction methods, and word embedding

learning models, the project aims to enhance bug prediction

accuracy and provide insights into the affective aspects

associated with bug reports. The system leverages linguistic

analysis to extract relevant features from bug reports,

considering linguistic elements such as word choice, sentence

structure, and syntactic patterns. This enables the system to

capture essential information indicative of the presence of

bugs. To improve bug prediction accuracy, self-adjusting

feature extraction techniques are employed. These techniques

adaptively identify and prioritize the most informative

linguistic elements for bug prediction. By dynamically

adjusting the importance of different features based on their

relevance and contribution, the system focuses on the most

influential linguistic features, thereby improving the accuracy

of bug prediction.

Additionally, the system incorporates emotion

detection capabilities using word embedding learning models.

By capturing the semantic meaning of words in bug reports,

the system can identify and analyse the emotional content

expressed within the text. This information provides insights

into the affective aspects associated with reported bugs,

helping project managers and developers understand user

sentiments, assess user experiences, and prioritize bug fixes

accordingly. The project's overall objective is to develop a

comprehensive system that combines linguistic analysis, self-

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 94 Vol.9, Issue.7, July 2023

adjusting feature extraction techniques, and emotion detection

using word embeddings. By achieving this goal, the system

can assist software developers and project managers in

efficiently identifying and resolving bugs, enhancing software

quality, and improving the overall user experience.

VII. FUTURE WORKS

There are several potential avenues for future work and

improvements for the project, some are possible works

include:

A. Enhanced emotion detection:

Further research can focus on improving the

accuracy and granularity of emotion detection in bug

reports. This could involve exploring more advanced

sentiment analysis techniques, emotion classification

models, or even incorporating multimodal approaches

that consider textual, visual, and auditory cues.

B. Multi-task learning:

Investigate the possibility of jointly training the bug

prediction and emotion detection tasks using a multi-task

learning framework. By sharing and leveraging

information across these related tasks, the

system could benefit from improved generalization and

enhanced performance on both bug prediction and

emotion detection.

C. Explainability and interpretability:

Explore methods to enhance the explainability and

interpretability of the system's predictions. By providing

insights into the linguistic elements or word embeddings

that contribute most significantly to bug prediction and

emotion detection, developers and project managers can

better understand and trust the system's results.

D. Real-time bug prediction and emotion detection:

Develop mechanisms to enable real-time bug

prediction and emotion detection as bug reports are

submitted in GitHub repositories. This would involve

efficient processing and analysis of incoming bug

reports, allowing for immediate feedback and proactive

bug resolution.

E. Domain adaptation and transfer learning:

Investigate techniques to adapt the bug prediction

and emotion detection models to different software

development domains or repositories. This could involve

leveraging transfer learning approaches or fine-tuning

the models on domain-specific data to improve

performance in specific contexts.

F. User feedback integration:

Incorporate user feedback and validation

mechanisms to continuously improve the system's bug

prediction and emotion detection capabilities. User input

can serve as a valuable source of ground truth data and

help identify areas where the system may need

refinement or adjustment.

G. Integration with bug tracking systems:

Explore ways to integrate the system directly into

existing bug-tracking systems or software development

workflows. This would enable seamless adoption and

utilization of bug prediction and emotion detection

capabilities within the software development ecosystem.

These future works can further enhance the

effectiveness, accuracy, and practicality of the system,

making it a valuable tool for bug prediction and emotion

detection in GitHub repositories and beyond.

VIII. REFERENCES

[1] L. Ma, Y. P. Zheng, and C. W. Zhang, ‘‘The big data
empowering effect of government hotlines on city governance

innovation: Values, status and issues,’’ Document., Inf.
Knowl., vol. 38, no. 2, pp. 4–12, 2021.

[2] X. Peng, Y. Liang, and L. Y. Xu, ‘‘An approach for
discovering urban public management problem and

optimizing urban governance based on 12345 citizen service

hotline,’’ Acta Scientiarum Naturalium Universitatis

Pekinensis., vol. 56, no. 4, pp. 721–731, 2020.

[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient
estimation of word representations in vector space,’’ in Proc.
ICLR, 2013, pp. 1–12.

[4] J. Pennington, R. Socher, and C. Manning, ‘‘Glove:
Global vectors for word representation,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process. (EMNLP), 2014,

pp. 1532–1543.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

‘‘BERT: Pre-training of deep bidirectional transformers for

language understanding,’’ 2018, arXiv:1810.04805.

[6] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R.

Salakhutdinov, and Q. V. Le, ‘‘XLNet: Generalized
autoregressive pretraining for language understanding,’’ in
Proc. 31th Conf. Adv. Neural Inf. Process. Syst., 2019, pp.

5754–5764.

[7] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O.

Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 95 Vol.9, Issue.7, July 2023

‘‘RoBERTa: A robustly optimized BERT pretraining
approach,’’ 2019, arXiv:1907.11692.

[8] T. N. Kipf and M. Welling, ‘‘Semi-supervised

classification with graph convolutional networks,’’ 2016,
arXiv:1609.02907. VOLUME 10, 2022 27039 X. She et al.:

Joint Learning With BERT-GCN and Multi-Attention for

Event Text Classification and Event Assignment

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, L. Kaiser, and I. Polosukhin, ‘‘Attention is all
you need,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst.,
2017, pp. 6000–6010.

[10] H. Cai, V. W. Zheng, and K. C.-C. Chang, ‘‘A
comprehensive survey of graph embedding: Problems,

techniques and applications,’’ IEEE Trans. Knowl. Data Eng.,
vol. 30, no. 9, pp. 1616–1637, Sep. 2017.

[11] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-

Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti, D.

Raposo, A. Santoro, R. Faulkner, and C. Gulcehre,

‘‘Relational inductive biases, deep learning, and graph
networks,’’ 2018, arXiv:1806.01261.

[12] M. Henaff, J. Bruna, and Y. LeCun, ‘‘Deep
convolutional networks on graph-structured data,’’ 2015,
arXiv:1506.05163.

[13] M. Defferrard, X. Bresson, and P. Vandergheynst,

‘‘Convolutional neural networks on graphs with fast localized
spectral filtering,’’ in Proc. NIPS, 2016, pp. 3844–3852.

[14] J. Bruna, W. Zaremba, A. Szlam, and Y. and LeCun,

‘‘Spectral networks and locally connected networks on
graphs,’’ in Proc. ICLR, 2014, pp. 1–14.

[15] A. Grover and J. Leskovec, ‘‘Node2vec: Scalable feature
learning for networks,’’ in Proc. 22nd ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, San Francisco, CA,

USA, Aug. 2016, pp. 855–864.

[16] D. Marcheggiani and I. Titov, ‘‘Encoding sentences with
graph convolutional networks for

semantic role labeling,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process., 2017, pp. 1506–1515.

[17] Y. Li, R. Jin, and Y. Luo, ‘‘Classifying relations in
clinical narratives using segment graph convolutional and

recurrent neural networks (Seg- GCRNs),’’ J. Amer. Med.
Inform. Assoc., vol. 26, no. 3, pp. 262–268, Mar. 2019, doi:

10.1093/jamia/ocy157.

[18] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K.

Simaan, ‘‘Graph convolutional encoders for syntax-aware

neural machine translation,’’ in Proc. Conf. Empirical
Methods Natural Lang. Process., 2017, pp. 1957–1967.

[19] H. Peng, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, Y. Song,

and Q. Yang, ‘‘Large-scale hierarchical text classification

with recursively regularized deep graph-CNN,’’ in Proc.
World Wide Web Conf. World Wide Web (WWW), 2018, pp.

1063–1072.

[20] Y. Zhang, Q. Liu, and L. Song, ‘‘Sentence-state LSTM

for text representation,’’ in Proc. 56th Annu. Meeting Assoc.
Comput. Linguistics, 2018, pp. 317–327.

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 96 Vol.9, Issue.7, July 2023

