ANALYSIS OF PSYCHOLOGICAL STRESS USING MACHINE LEARNING

Dr. NAVANEETHA KRISHNAN M, M.E. Ph.D., Head of the Department,

Department of Computer Science and Engineering Mr.SACHIN RAJ G, B.E, Student of Computer Science Engineering Mr.SANTHOSHKUMAR A, B.E, Student of Computer science and Engineering

St. Joseph College of Engineering, Sriperumbudur, Chennai.

Abstract

Stress plays an integral role in influencing one's decision-making capability, attention span, learning, and problem-solving capacity. Stress detection and modeling have been active areas of research in the fields of psychology and computer science in recent times. Psychologists quantify stress using affective states, which is the experience of feeling the underlying emotional state. Most of the work in classifying human stress was achieved using user-dependent models, incapable of generalizing to a new user.

This causes new user to spend a significant amount of their time in training the model to predict their affective states. There is an urgent need to treat basic mental health problems that prevail among children which may lead to complicated problems, if not treated at an early stage. Machine learning Techniques are currently well suited for analyzing medical data and diagnosing the problem.

The attributes have been reduced by analysing Features over the full attribute data set. The accuracy over the selected attribute set on various machine learning algorithms have been compared.

Key Terms: BMI - Stress Prediction ,Stages ,Machine Learning ,Support Vector Machine algorithm ,Adaboost ,MLP classifier ,Decision tree algorithm ,Psychological Analysis.

Introduction

The stress-detection system is proposed based on physiological signals. Parameters like galvanic skin response (GSR), stress rate (HR), Body temperature, Muscle tension, Blood pressure are proposed to provide information on the state of mind of an individual, due to their non-intrusiveness and non invasiveness.

Machine learning is to predict the future from past data. Machine learning (ML) is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. Machine learning focuses on the development of Computer Programs that can change when exposed to new data and the basics of Machine Learning, implementation of a simple machine learning algorithm using python. Process of training and prediction involves use of specialized algorithms. It feed the training data to an algorithm, and the algorithm uses this training data to give predictions on a new test data. Machine learning can be roughly separated in to three categories. There are supervised learning, unsupervised learning and reinforcement learning. Supervised learning program is both given the input data and the corresponding labelling to learn data has to be labelled by a human being beforehand. Unsupervised learning is no labels. It provided to the learning algorithm. This algorithm has to figure out the clustering of the input data. Finally, Reinforcement learning dynamically interacts with its environment and it receives positive or negative feedback to improve its performance.

Literature Survey

The paper "Joint-Channel-Connectivity-Based Feature Selection and Classification on fNIRS for Stress Detection in Decision-Making" By Meiyan Huang, Xiaoling Zhang, Xiumei Chen, Yiling Mai, Xiaohua Wu, Jiubo Zhao, and Qianjin Feng in 2022, This approach integrates feature selection and classifier modeling into a sparse model, where intra- and inter-channel regularizers are designed to explore potential correlations among channels to obtain discriminating features.

The paper "Human stress classification during public speaking using physiological signals" By Aamir Arsalan, Muhammad Majid in 2021, The selected set of features from all modalities are fused to classify the stress into two classes. Classification is performed via a leave-one-out cross-validation scheme by using five different classifiers. The highest accuracy of 96.25% is achieved using a support vector machine classifier with radial basis function. Statistical analysis is performed to examine the significance of EEG

The paper "Unlocking stress and forecasting its consequences with digital technology" By Sarah M. Goodday and Stephen Friend in 2019 The growth and availability of digital technologies involving wearable devices and mobile phone apps afford the opportunity to dramatically improve measurement of the biological stress response in real time. In parallel, the advancement and capabilities of artificial intelligence (AI) and machine learning could discern heterogeneous, multidimensional information from individual signs of stress, and possibly inform how these signs forecast the downstream consequences of stress in the formofend - organdamage

System Design

The data set collected for predicting given data is split into Training set and Test set. Generally, 7:3 ratios are applied to split the Training set and Test set. The Data Model which was created using Random Forest, logistic, Decision tree algorithms and Support vector classifier (SVC) are applied on the Training set and based on the test result accuracy, Test set prediction is done.

The data which was collected might contain missing values that may lead to inconsistency. To gain better results data need to be preprocessed so as to improve the efficiency of the algorithm. The outliers have to be removed and also variable conversion need to be done.

The prediction of Human Stress, a high accuracy prediction model is effective because of the following reasons: It provides better results in classification problem.

It is strong in preprocessing outliers, irrelevant variables, and a mix of continuous, categorical and discrete variables. It produces out of bag estimate error which has proven to be unbiased in many tests and it is relatively easy to tune with.

SYSTEM ARCHITECTURE

Machine learning needs data gathering have lot of past data's. Data gathering have sufficient historical data and raw data. Before data pre-processing, raw data can't be used directly. It's used to pre-process then, what kind of algorithm with model. Training and testing this model working and predicting correctly with minimum errors. Tuned model involved by tuned time to time with improving the accuracy.

.

CODING

Module – 1

Pre-Processing

	In []:
import pandas as p import numpy as n	In []:
import warnings warnings.filterwarnings('ignore')	In []:
data=p.read_csv('human.csv')	In []:
data.head()	In []:
data.shape	In []:
data.size	In []:
data.isnull()	In []:
data.columns	In []:
data['sl'].unique()	In []:
data[data["sl"] == 2]	In []:

data[data["sl"] == 3]	In []:
<pre>a = data["bo"].unique() a.sort() print(a)</pre>	
	In []:
data["hr"].unique()	In []:
data["sr"].unique()	In []:
df = data.dropna()	In []:
df	In []:
df.isnull().sum()	In []:
df.shape	In []:
print("Maximum Age :",df["rem"].max()) print("Minimum Age :",df["rem"].min()) print("Mean of Age :","%.2f" % df["rem"].mean()) print("Median of Age :","%.2f" % df["rem"].median())	
	In []:
df.describe()	In []:
df.corr()	In []:
df.info()	In []:
p.crosstab(df["rem"], df["sl"])	In []:
df.groupby(["sr.1","sl"]).groups	In []:
df["sl"].value_counts()	In []:

df["hr"].value_counts()	In []:
p.Categorical(df["rr"]).describe()	In []:
p.Categorical(df["sr.1"]).describe()	In [].
df.duplicated()	ш [].
sum(df duplicated())	In []:
sum(undupreated())	In []:
Module - 2	
Visualization	In []:
import pandas as p import numpy as n import seaborn as s	
import matpionio.pypiot as pit	In []:
<pre>import warnings warnings.filterwarnings('ignore')</pre>	In []:
data=p.read_csv('human.csv')	In []:
data	In []:
df=data.dropna()	In []:
df.columns	In []:
p.crosstab(df.sl,df.rem)	In []:

<pre>h []: plt.figure(figsize=(16,4)) plt.subplot(1,2,1) plt.subplot(1,2,1) plt.subplot(1,2,2) plt.subplot(1,2,2) plt.subplot(1,2,2) plt.subplot(1,2,2) plt.subplot(1'P) plt.subplot(1'P) plt.subplot('Y'') plt.slabel('X') plt.show() In []: plt.figure(figsize=(9,6)) s.scatterplot(x=df['t],y=df["rr"]) plt.show() In []: plt.figure(figsize=(12,8)) plt.scatter(df["rem"],df["hr"],color="red") In []: import seaborn as s s.boxplot(df['sr], color='c') In []: import seaborn as s s.boxplot(df['sr], color='y') In []: #Density Subplot plt.subplot(3,3,1) df["sl"],plot(kind='density') plt.subplot(3,3,2) df["bo"],plot(kind='density')</pre>	#Histogram df['rem'].hist(figsize=(10,5), color='m', alpha=1) plt.xlabel('X') plt.ylabel('Y') plt.title('EYE MOVEMENT')	
plt.figure(figsize=(16,4)) plt.subplot(1,2,1) plt.subplot(1,2,1) plt.subplot(1,2,2) plt.subplot(1,2,2) plt.subplot(1,2,2) plt.subplot(1,2,2) plt.subplot(1,2,2) plt.subplot(1,2,2) plt.subplot(X) plt.subplot(X) plt.subplot(X) plt.figure(figsize=(9,6)) s.scatterplot(x=df['r],y=df["rr"]) plt.show() In []: plt.figure(figsize=(12,8)) plt.scatter(df["rem"],df["hr"],color="red") In []: import seaborn as s s.boxplot(df['sr], color='c') In []: #Density Subplot plt.figure(figsize=(18,12)) plt.subplot(3,3,1) df["sl"], plot(kind='density') plt.subplot(3,3,2) df["bo"],plot(kind='density')		In []:
<pre>pit.site(1) [1] pit.site(BODY TEMPERATURE') pit.show() In []: pit.figure(figsize=(9,6)) s.scatterplot(x=df['t],y=df["rr"]) pit.show() In []: pit.figure(figsize=(12,8)) pit.scatter(df["rem"],df["hr"],color="red") In []: import seaborn as s s.boxplot(df['sr'], color='c') In []: import seaborn as s s.boxplot(df['sr'], color='c') In []: #Density Subplot pit.figure(figsize=(18,12)) pit.subplot(3,3,1) df["sl"],plot(kind='density') pit.subplot(3,3,2) df["bo"],plot(kind='density') i intervention (intervention (interve</pre>	plt.figure(figsize=(16,4)) plt.subplot(1,2,1) plt.hist(df['rr']) plt.title("RESPIRATION RATE") plt.xlabel("X") plt.ylabel("Y") plt.subplot(1,2,2) plt.bist(df['t])	
plt.title('BODY TEMPERATURE') plt.ylabel('Y') plt.show() In []: plt.figure(figsize=(9,6)) s.scatterplot(x=df['t],y=df["rr"]) plt.show() In []: plt.figure(figsize=(12,8)) plt.scatter(df["rem"],df["hr"],color="red") In []: import seaborn as s s.boxplot(df['sr'], color='c') In []: import seaborn as s s.boxplot(df['lm'], color='y') In []: #Density Subplot plt.figure(figsize=(18,12)) plt.subplot(3,3,1) df["sl"],plot(kind='density') plt.subplot(3,3,2) df["bo"],plot(kind='density') itot"	plt.xlabel('X')	
plt.ylabel("Y") plt.show() In []: plt.figure(figsize=(9,6)) s.scatterplot(x=df['t],y=df["rr"]) plt.show() In []: plt.figure(figsize=(12,8)) plt.scatter(df["rem"],df["hr"],color="red") In []: import seaborn as s s.boxplot(df["sr"], color='c') In []: import seaborn as s s.boxplot(df["lm"], color='y') In []: #Density Subplot plt.figure(figsize=(18,12)) plt.figure(figsize=(18,12)) plt.figure(figsize=(18,12)) plt.subplot(3,3,1) df["sl"],plot(kind='density') plt.subplot(3,3,2) df["bo"],plot(kind='density')	plt.title('BODY TEMPERATURE')	
In []: plt.figure(figsize=(9,6)) s.scatterplot(x=df['t'],y=df["rr"]) plt.show() In []: plt.figure(figsize=(12,8)) plt.scatter(df["rem"],df["hr"],color="red") In []: import seaborn as s s.boxplot(df['sr'], color='c') In []: import seaborn as s s.boxplot(df['lm'], color='y') In []: #Density Subplot plt.figure(figsize=(18,12)) plt.figure(figsize=(18,12)) plt.subplot(3,3,1) df["sl"],plot(kind='density') plt.subplot(3,3,2) df["bo"],plot(kind='density') i	plt.ylabel("Y")	
<pre>plt.figure(figsize=(9,6)) s.scatterplot(x=df['t'],y=df["rr"]) plt.show() In []: plt.figure(figsize=(12,8)) plt.scatter(df["rem"],df["hr"],color="red") In []: import seaborn as s s.boxplot(df['sr'], color='c') In []: import seaborn as s s.boxplot(df['lm'], color='y') In []: #Density Subplot plt.figure(figsize=(18,12)) plt.figure(figsize=(18,12)) plt.subplot(3,3,1) df["sl"],plot(kind='density') plt.subplot(3,3,2) df["bo"],plot(kind='density') </pre>	pit.snow()	In []:
plt.figure(figsize=(9,6)) s.scatterplot(x=df['t'],y=df["rr"]) plt.show() In []: plt.figure(figsize=(12,8)) plt.scatter(df["rem"],df["hr"],color="red") In []: import seaborn as s s.boxplot(df['sr'], color='c') In []: import seaborn as s s.boxplot(df['lm'], color='y') In []: #Density Subplot plt.figure(figsize=(18,12)) plt.subplot(3,3,1) df["sl"],plot(kind='density') plt.subplot(3,3,2) df["bo"],plot(kind='density')		
<pre>substate pro(a of [2], y of [11]) plt.show() In []: plt.figure(figsize=(12,8)) plt.scatter(df["rem"],df["hr"],color="red") In []: import seaborn as s s.boxplot(df['sr'], color='c') In []: import seaborn as s s.boxplot(df['lm'], color='y') In []: #Density Subplot plt.figure(figsize=(18,12)) plt.subplot(3,3,1) df["sl"],plot(kind='density') plt.subplot(3,3,2) df["bo"],plot(kind='density') import seaborn as s import sea</pre>	plt.figure(figsize=(9,6)) s scatterplot(x=dfl't'] v=dfl"rr"])	
In []: plt.figure(figsize=(12,8)) plt.scatter(df["rem"],df["hr"],color="red") In []: import seaborn as s s.boxplot(df['sr'], color='c') In []: import seaborn as s s.boxplot(df['lm'], color='y') In []: #Density Subplot plt.figure(figsize=(18,12)) plt.subplot(3,3,1) df["sl"],plot(kind='density') plt.subplot(3,3,2) df["bo"],plot(kind='density') t. int ("sl")	plt.show()	
<pre>plt.figure(figsize=(12,8)) plt.scatter(df["rem"],df["hr"],color="red") In []: import seaborn as s s.boxplot(df['sr'], color='c') In []: import seaborn as s s.boxplot(df['lm'], color='y') In []: #Density Subplot plt.figure(figsize=(18,12)) plt.subplot(3,3,1) df["st"],eplot(kind='density') plt.subplot(3,3,2) df["bo"],plot(kind='density') i. i.i.t are in []: </pre>		In []:
<pre>import seaborn as s s.boxplot(df['sr'], color='c') In []: import seaborn as s s.boxplot(df['lm'], color='y') In []: #Density Subplot plt.figure(figsize=(18,12)) plt.subplot(3,3,1) df["sl"].plot(kind='density') plt.title("sl") plt.subplot(3,3,2) df["bo"].plot(kind='density') </pre>	plt.figure(figsize=(12,8)) plt.scatter(df["rem"],df["hr"],color="red")	Teo [].
<pre>import seaborn as s s.boxplot(df['sr'], color='c') In []: import seaborn as s s.boxplot(df['lm'], color='y') In []: #Density Subplot plt.figure(figsize= (18,12)) plt.subplot(3,3,1) df["sl"].plot(kind='density') plt.title("sl") plt.subplot(3,3,2) df["bo"].plot(kind='density') </pre>		ın []:
s.boxplot(df['sr'], color='c') import seaborn as s s.boxplot(df['lm'], color='y') In []: #Density Subplot plt.figure(figsize= (18,12)) plt.subplot(3,3,1) df["sl"].plot(kind='density') plt.subplot(3,3,2) df["bo"].plot(kind='density') b solution ("Density")	import seaborn as s	
<pre>import seaborn as s s.boxplot(df['lm'], color='y') In []: #Density Subplot plt.figure(figsize= (18,12)) plt.subplot(3,3,1) df["sl"].plot(kind='density') plt.subplot(3,3,2) df["bo"].plot(kind='density') </pre>	s.boxplot(df['sr'], color='c')	In []·
<pre>import seaborn as s s.boxplot(df['lm'], color='y') In []: #Density Subplot plt.figure(figsize= (18,12)) plt.subplot(3,3,1) df["sl"].plot(kind='density') plt.title("sl") plt.subplot(3,3,2) df["bo"].plot(kind='density') h.vit ("",")</pre>		ιι [].
In []: #Density Subplot plt.figure(figsize= (18,12)) plt.subplot(3,3,1) df["sl"].plot(kind='density') plt.subplot(3,3,2) df["bo"].plot(kind='density') heid ("bo"].plot(kind='density')	import seaborn as s	
#Density Subplot plt.figure(figsize= (18,12)) plt.subplot(3,3,1) df["sl"].plot(kind='density') plt.subplot(3,3,2) df["bo"].plot(kind='density') heid ("bo")	s.boxplot($di[111], color - y)$	In []:
<pre>#Density Subplot plt.figure(figsize= (18,12)) plt.subplot(3,3,1) df["sl"].plot(kind='density') plt.subplot(3,3,2) df["bo"].plot(kind='density') head (""")</pre>	#Danaity Sector lat	L J .
plt.subplot(3,3,1) df["sl"].plot(kind='density') plt.subplot(3,3,2) df["bo"].plot(kind='density')	#Density Subplot plt.figure(figsize=(18,12))	
df["sl"].plot(kind='density') plt.title("sl") plt.subplot(3,3,2) df["bo"].plot(kind='density')	plt.subplot(3,3,1)	
plt.title("sl") plt.subplot(3,3,2) df["bo"].plot(kind='density')	df["sl"].plot(kind='density')	
df["bo"].plot(kind='density')	pit.title("si") pit.subplot(3,3,2)	
1	df["bo"].plot(kind='density')	
plt.title("bo")	plt.title("bo")	
plt.subplot(3,3,3) df["lm"].plot(kind='density')	plt.subplot(3,3,3) df["lm"].plot(kind='density')	

```
plt.title("lm")
plt.subplot(3,3,4)
df["t"].plot(kind='density')
plt.title("t")
plt.subplot(3,3,5)
df["rr"].plot(kind='density')
plt.title("rr")
plt.subplot(3,3,6)
df["rem"].plot(kind='density')
plt.title("rem")
plt.subplot(3,3,7)
df["sr.1"].plot(kind='density')
plt.title("sr.1")
plt.subplot(3,3,8)
df["hr"].plot(kind='density')
plt.title("hr")
plt.subplot(3,3,9)
df["sr"].plot(kind='density')
plt.title("sr")
plt.show()
                                                                                                In [ ]:
df.hist(figsize=(15,55),layout=(15,4))
plt.show()
                                                                                                In [ ]:
fig, ax = plt.subplots(figsize=(10,5))
s.stripplot(y = df['sl'], x = df['lm'], ax=ax)
plt.title("HUMAN STRESS CLASSFICATION")
plt.show()
                                                                                                In [ ]:
s.pairplot(df)
plt.show()
                                                                                                In [ ]:
def sl(df, variable):
  dataframe pie = df[variable].value counts()
  ax = dataframe pie.plot.pie(figsize=(9,9), autopct='%1.2f%%', fontsize = 10)
  ax.set title(variable + ' n', fontsize = 10)
  return n.round(dataframe pie/df.shape[0]*100,2)
sl(df, 'sl')
                                                                                                In [ ]:
plt.plot(df["sl"], df["sr"], color='m')
```

plt.xlabel('sl') plt.ylabel('sr') plt.title('HUMAN STRESS CLASSFICATION') plt.show()	
Function ()	In []:
	In []:
	In []:
Module - 3 SUPPORT VECTOR MACHINE	In []:
<pre>import pandas as p import numpy as n import matplotlib.pyplot as plt import seaborn as s</pre>	
•	In []:
<pre>import warnings warnings.filterwarnings('ignore')</pre>	In []:
data=p.read_csv('human.csv') data.head()	In []:
data.columns	In []:
df=data.dropna()	In []:
df	In []:
df.columns	In []:
df.tail()	In []:
df.shape	In []:

df info()	
In	ı []:
dī	г 1.
	' L J.
#preprocessing, split test and dataset, split response variable	
X = df.drop(labels='sl', axis=1)	
$\frac{\#Response \ variable}{v = df \log[\cdot 's]']}$	
In	ı []:
import imblearn	
from collections import Counter	
ros =RandomOverSampler(random_state=42)	
x_ros,y_ros=ros.fit_resample(X,y)	
print("OUR DATASET COUNT : ", Counter(y)) print("OVER SAMPLING DATA COUNT : ", Counter(y, ros))	
In	ı []:
from sklearn.model_selection import train_test_split	1
X_train, X_test, y_train, y_test = train_test_split(x_ros, y_ros, test_size=0.20, random_state=. $stratify=y_ros$)	I,
print("Number of training dataset : ", len(X, train))	
print("Number of test dataset :", len(X test))	
print("Total number of dataset : ", $len(X_train)+len(X_test))$	
In	ı []:
from sklearn metrics import confusion matrix classification report accuracy score	
In the skied in the second storight the second storight the skied in t	ı []:
from sklearn.metrics import accuracy_score, confusion_matrix from sklearn sym import SVC	
from sklearn.model selection import cross val score	
s = SVC()	
a fit(V train v train)	
s.m(x_uam,y_uam)	
predictS = s.predict(X_test)	
print("")	
print Classification report of Support vector Machine Result 15:)	
print(classification report(y test, predictS))	
print("")	

```
cm=confusion matrix(y test, predictS)
print('Confusion Matrix result of Support Vector Machine is:\n',cm)
print("")
sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])
print('Sensitivity : ', sensitivity )
print("")
specificity = cm[1,1]/(cm[1,0]+cm[1,1])
print('Specificity : ', specificity)
print("")
accuracy = cross val score(s, x ros, y ros, scoring='accuracy')
print('Cross validation test results of accuracy:')
print(accuracy)
print("")
print("Accuracy Result of Support Vector Machine is:",accuracy.mean() * 100)
svc=accuracy.mean() * 100
TP = cm[0][0]
FP = cm[1][0]
FN = cm[0][1]
TN = cm[1][1]
print("True Positive :",TP)
print("True Negative :",TN)
print("False Positive :",FP)
print("False Negative :",FN)
print("")
TPR = TP/(TP+FN)
TNR = TN/(TN+FP)
FPR = FP/(FP+TN)
FNR = FN/(TP+FN)
print("True Positive Rate :",TPR)
print("True Negative Rate :",TNR)
print("False Positive Rate :",FPR)
print("False Negative Rate :",FNR)
print("")
PPV = TP/(TP+FP)
```

In []:

In []:

NPV = TN/(TN+FN)

print("Positive Predictive Value :",PPV)
print("Negative predictive value :",NPV)

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

def plot_confusion_matrix(cm, title='Confusion matrix-Support Vector Machine', cmap=plt.cm.cool): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar()

cm1=confusion_matrix(y_test, predictS)
print('Confusion matrix-Support Vector Machine:')
print(cm)
plot_confusion_matrix(cm)

Module - 4 ADABOOST CLASSIFIER

	In []:
import pandas as p import numpy as n import matplotlib.pyplot as plt import seaborn as s	
·	In []:
warnings.filterwarnings('ignore')	In []:
data=p.read_csv('human.csv')	In []:
data.columns	In []:
df=data.dropna()	In []:
dfss	In []:
df.columns	In []:
df.head()	In []:

In []:

df.shape	In []:
df.info()	
	In []:
df	
	In []:
#preprocessing, split test and dataset, split response variable X = df drop(labels='sl', avis=1)	
#Response variable	
y = df.loc[:,'sl']	
	In []:
imnort imblearn	
from imblearn.over sampling import RandomOverSampler	
from collections import Counter	
ros = RandomOverSampler(random_state=42) x ros y ros = ros fit resample(X y)	
print("OUR DATASET COUNT : ". Counter(v))	
print("OVER SAMPLING DATA COUNT : ", Counter(y_ros))	
	In []:
from sklearn model selection import train test split	
X train, X test, y train, y test = train test split(x ros, y ros, test size=0.20, random state	e=1,
stratify=y_ros)	,
print("Number of training dataset : ", len(X_train))	
print("Number of test dataset : ", len(X_test))	
print("Total number of dataset : ", len(X_train)+len(X_test))	In []·
	III [].
#According to the cross-validated MCC scores, the random forest is the best-performing m	odel,
so now let's evaluate its performance on the test set.	
from skieam.metrics import confusion_matrix, classification_report, accuracy_score	In []:
	[]·
from sklearn.metrics import accuracy_score, confusion_matrix	
from sklearn model selection import cross val score	
from skieam.model_selection import closs_val_score	
ADC = AdaBoostClassifier()	
ADC.fit(X_train,y_train)	
predictRF = ADC.predict(X_test)	

```
print("")
print('Classification report of AdaBoostClassifier Result is:')
print("")
print(classification report(y test,predictRF))
print("")
cm=confusion_matrix(y_test,predictRF)
print('Confusion Matrix result of AdaBoostClassifier is:\n',cm)
print("")
sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])
print('Sensitivity : ', sensitivity )
print("")
specificity = cm[1,1]/(cm[1,0]+cm[1,1])
print('Specificity : ', specificity)
print("")
accuracy = cross val score(ADC, x ros, y ros, scoring='accuracy')
print('Cross validation test results of accuracy:')
print(accuracy)
print("")
print("Accuracy Result of AdaBoostClassifier is:",accuracy.mean() * 100)
adc=accuracy.mean() * 100
                                                                                            In [ ]:
def Bar Chart():
  import matplotlib.pyplot as plt
  data=[adc]
  alg="AdaBoostClassifier"
  plt.figure(figsize=(5,5))
  b=plt.bar(alg,data,color=("Red"))
  plt.title("Accuracy Result of AdaBoostClassifier",fontsize=15)
  plt.legend(b,data,fontsize=9)
Bar_Chart()
                                                                                            In [ ]:
TP = cm[0][0]
FP = cm[1][0]
FN = cm[0][1]
TN = cm[1][1]
print("True Positive :",TP)
print("True Negative :",TN)
print("False Positive :",FP)
print("False Negative :",FN)
print("")
```

TPR = TP/(TP+FN) TNR = TN/(TN+FP) FPR = FP/(FP+TN) FNR = FN/(TP+FN) print("True Positive Rate :",TPR) print("True Negative Rate :",TNR) print("False Positive Rate :",FPR) print("False Negative Rate :",FNR) print("") PPV = TP/(TP+FP) NPV = TN/(TN+FN) print("Positive Predictive Value :",PPV) print("Negative predictive value :",NPV)	In [].
	In []:
<pre>def plot_confusion_matrix(cm, title='Confusion matrix-AdaBoostClassifier', cmap=plt.cm.Accent): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar()</pre>	
cm1=confusion_matrix(y_test, predictRF) print('Confusion matrix AdaBoostClassifier:') print(cm)	
plot_confusion_matrix(cm)	In []:

Module - 5 MLP CLASSIFIER

	In []:
import pandas as p	
import numpy as n	
import matplotlib.pyplot as plt	
import seaborn as s	
-	In []:
import warnings	
warnings.filterwarnings('ignore')	
	In []:

data=p.read_csv('human.csv')	In []:
data.columns	In []:
df=data.dropna()	In []:
df	In []:
df.columns	In []:
df.head()	In []:
df.shape	In []:
df.info()	In []:
df	In []:
#preprocessing, split test and dataset, split response variable X = df.drop(labels='sl', axis=1) #Response variable	
y = df.loc[:,'sl']	In []:
import imblearn from imblearn.over_sampling import RandomOverSampler from collections import Counter	
ros =RandomOverSampler(random_state=42) x_ros,y_ros=ros.fit_resample(X,y) print("OUR DATASET COUNT : ", Counter(y)) print("OVER SAMPLING DATA COUNT : ", Counter(y_ros))	In F J.
<pre>from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(x_ros, y_ros, test_size=0.20, random_state stratify=y_ros) print("Number of training dataset : ", len(X_train))</pre>	ın []: ≔1,

```
print("Total number of dataset : ", len(X train)+len(X test))
                                                                                            In [ ]:
from sklearn.metrics import confusion matrix, classification report, accuracy score
                                                                                            In [ ]:
from sklearn.metrics import accuracy score, confusion matrix
from sklearn.neural network import MLPClassifier
from sklearn.model_selection import cross val score
mlp = MLPClassifier()
mlp.fit(X train,y_train)
predictLR = mlp.predict(X test)
print("")
print('Classification report of MLPClassifier Result is:')
print("")
print(classification report(y_test,predictLR))
print("")
cm=confusion matrix(y test,predictLR)
print('Confusion Matrix result of MLPClassifier is:\n',cm)
print("")
sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])
print('Sensitivity : ', sensitivity )
print("")
specificity = cm[1,1]/(cm[1,0]+cm[1,1])
print('Specificity : ', specificity)
print("")
accuracy = cross val score(mlp, x ros, y ros, scoring='accuracy')
print('Cross validation test results of accuracy:')
print(accuracy)
print("")
print("Accuracy Result of MLPClassifier is:",accuracy.mean() * 100)
mlp=accuracy.mean() * 100
                                                                                           In [ ]:
def Bar Chart():
  import matplotlib.pyplot as plt
  data=[mlp]
  alg="MLPClassifier"
```

plt.figure(figsize=(5,5))

```
b=plt.bar(alg,data,color=("m"))
plt.title("Accuracy Result of MLPClassifier",fontsize=15)
plt.legend(b,data,fontsize=9)
Bar Chart()
```

In []:

TP = cm[0][0]FP = cm[1][0]FN = cm[0][1]TN = cm[1][1]print("True Positive :",TP) print("True Negative :",TN) print("False Positive :",FP) print("False Negative :",FN) print("") TPR = TP/(TP+FN)TNR = TN/(TN+FP)FPR = FP/(FP+TN)FNR = FN/(TP+FN)print("True Positive Rate :",TPR) print("True Negative Rate :",TNR) print("False Positive Rate :",FPR) print("False Negative Rate :",FNR) print("") PPV = TP/(TP+FP)NPV = TN/(TN+FN)print("Positive Predictive Value :",PPV) print("Negative predictive value :",NPV)

In []:

def plot_confusion_matrix(cm, title='Confusion matrix-MLPClassifier', cmap=plt.cm.autumn):
 plt.imshow(cm, interpolation='hermite', cmap=cmap)
 plt.title(title)
 plt.colorbar()

cm1=confusion_matrix(y_test, predictLR)
print('Confusion matrix-MLPClassifier:')
print(cm)
plot confusion matrix(cm)

In []:

Module - 6 DECISION TREE CLASSIFIER

import pandas as p	In []:
import manpy as n import matplotlib.pyplot as plt import seaborn as s	
<pre>import warnings warnings.filterwarnings('ignore')</pre>	In []:
data=p.read_csv('human.csv')	In []:
data.columns	In []:
df=data.dropna() df = df.rename({'sr.1':'srh'},axis=1)	In []:
df	In []:
df.columns	In []:
df.head()	In []:
df.shape	In []:
df.info()	In []:
df	In []:
<pre>#preprocessing, split test and dataset, split response variable X = df.drop(labels='sl', axis=1) #Response variable w = dflasts s </pre>	In []:
$y = di_1 dc[1, si]$	In []:
<pre>import imblearn from imblearn.over_sampling import RandomOverSampler from collections import Counter</pre>	
ros =RandomOverSampler(random_state=42) x_ros,y_ros=ros.fit_resample(X,y) print("OUR DATASET COUNT : ", Counter(y)) print("OVER SAMPLING DATA COUNT : " Counter(y, ros))	
prime (o + Ere of him En (o Ereff (o Correct (y _ 105))	In []:

from sklearn.model selection import train test split X_train, X_test, y_train, y_test = train test split(x ros, y ros, test size=0.20, random state=1, stratify=y ros) print("Number of training dataset : ", len(X train)) print("Number of test dataset : ", len(X test)) print("Total number of dataset : ", len(X train)+len(X test)) In []: from sklearn.metrics import confusion matrix, classification report, accuracy score In []: from sklearn.metrics import accuracy score, confusion matrix from sklearn.tree import DecisionTreeClassifier from sklearn.model selection import cross val score dt = DecisionTreeClassifier() dt.fit(X train,y train) predictDT = dt.predict(X test)print("") print('Classification report of Decision Tree Result is:') print("") print(classification report(y test,predictDT)) print("") cm=confusion matrix(y test,predictDT) print('Confusion Matrix result of Decision Tree is:\n',cm) print("") sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])print('Sensitivity : ', sensitivity) print("") specificity = cm[1,1]/(cm[1,0]+cm[1,1])print('Specificity : ', specificity) print("") accuracy = cross val score(dt, x ros, y ros, scoring='accuracy') print('Cross validation test results of accuracy:') print(accuracy) print("") print("Accuracy Result of Decision Tree is:",accuracy.mean() * 100) DTC=accuracy.mean() * 100 In []: def Bar Chart():

```
import matplotlib.pyplot as plt
  data=[DTC]
  alg="Decision Tree"
  plt.figure(figsize=(5,5))
  b=plt.bar(alg,data,color=("Violet"))
  plt.title("Accuracy Result of Decision Tree", fontsize=15)
  plt.legend(b,data,fontsize=9)
Bar Chart()
                                                                                         In [ ]:
TP = cm[0][0]
FP = cm[1][0]
FN = cm[0][1]
TN = cm[1][1]
print("True Positive :",TP)
print("True Negative :",TN)
print("False Positive :",FP)
print("False Negative :",FN)
print("")
TPR = TP/(TP+FN)
TNR = TN/(TN+FP)
FPR = FP/(FP+TN)
FNR = FN/(TP+FN)
print("True Positive Rate :",TPR)
print("True Negative Rate :",TNR)
print("False Positive Rate :",FPR)
print("False Negative Rate :",FNR)
print("")
PPV = TP/(TP+FP)
NPV = TN/(TN+FN)
print("Positive Predictive Value :",PPV)
print("Negative predictive value :",NPV)
                                                                                         In [ ]:
def plot confusion matrix(cm, title='Confusion matrix-Decision Tree', cmap=plt.cm.BuPu):
  plt.imshow(cm, interpolation='nearest', cmap=cmap)
  plt.title(title)
  plt.colorbar()
cm1=confusion matrix(y test, predictDT)
print('Confusion matrix-Decision Tree:')
print(cm)
plot confusion matrix(cm)
                                                                                         In [ ]:
import joblib
joblib.dump(dt,'model.pkl')
                                                                                         In [ ]:
```

In []:

Deploy

from django.shortcuts import render

from django.shortcuts import render, redirect

import numpy as np

import joblib

```
model =
```

joblib.load('C:/Users/SPIRO15/Desktop/boo/Project/ML/ITPML27/deploy/app/model.pkl')

Create your views here.

def home(request):

```
return render(request, "index.html")
```

def predict(request):

```
if request.method == "POST":
```

int_features = [x for x in request.POST.values()]

int_features = int_features[1:]

print(int_features)

final_features = [np.array(int_features, dtype=object)]

print(final_features)

prediction = model.predict(final_features)

print(prediction)

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

output = prediction[0]

print(foutput{output}')

if output == 0:

return render(request, 'index.html', {"prediction_text":"VERY LESS STRESS AFFECTED"})

elif output == 1:

return render(request, 'index.html', {"prediction_text":"LESS STRESS AFFECTED"})

elif output == 2:

return render(request, 'index.html', {"prediction_text":"NORMAL OR MODERATE STRESS AFFECTED"})

elif output == 3:

return render(request, 'index.html', {"prediction_text":"MILD STRESS AFFECTED"}))

else:

return render(request, 'index.html', {"prediction_text":"VERY HIGH STRESS AFFECTED"})

print(output)

SNAPSHOTS

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

🗖 🗅 TITLE 🛛 🗙 🕂		-	o x
← C ① 127.0.0.1:8000/%2Fprediction	A Q G 2	@ • ·	0 🕩
TOWAR			1 Q
			100
		111	
	bo		-
snoring rate	blood oxygen	1	11
			0
			a
respiration rate	eye movement		
	sh		
body temperature	sleeping hours		
			•
			+
limb movement	heart rate	/	
		///	
		///	
	Predict	//	
		/	
		/	
	VERY LESS STRESS AFFECTED		
			ې ۲
			4044

CONCLUSION

The analytical process started from data cleaning and processing, missing value, exploratory analysis and finally model building and evaluation. The best accuracy on public test set of higher accuracy score algorithm will be find out. The founded one is used in the application which can help to find the Human Stress of the patient.

FUTURE ENHANCEMENTS

- Deploying the project in the cloud.
- ✤ To optimize the work to implement in the IOT system.

REFERENCES:

[1] Meiyan Huang, Xiaoling Zhang, Xiumei Chen, Yiling Mai, Xiaohua Wu, Jiubo Zhao, and Qianjin Feng, "Joint-Channel-Connectivity-Based Feature Selection and Classification on fNIRS for Stress Detection in Decision-Making" IEEE(2022)

[2] Aamir Arsalan, Muhammad Majid, " Human stress classification during public speaking using physiological signals"

[3] Sarah M.Goodday and Stephen Friend, "Unlocking stress and forecasting its consequences with digital technology"

[4] Hatoon AlSagri, Mourad Ykhlef, "Machine Learning-based Approach for Depression Detection in Twitter Using Content and Activity Features."

[5] Meera Sharma, Sonok Mahapatra, "Predicting the Utilization of Mental Health Treatment with Various Machine Learning Algorithms"

[6] Ms. Sumathi M.R, Dr. B. Poorna, "Prediction of Mental Health Problems Among Children Using Machine Learning Techniques"

[7] Sandhya P, Mahek Kantesaria, "Prediction of Mental Disorder for employees in IT Industry"

AUTHOR 1

Dr.M.Navaneethakrishnan M.E., PhD is a Head of the Department in the Department of Computer Science and Engineering at St. Joseph College of Engineering, Sriperumbudur, Chennai, Tamil Nadu. He has completed his Ph.D, in Cyber Security - Computer Science and Engineering in 2017 from Manonmaniam Sundaranar University (MSU) Tirunelveli, Tamilnadu. He has done his M.E, CSE in Anna University Chennai in the year 2008. Dr.M.Navaneethakrishnan has 15 years of teaching experience and has 58 publications in International Journals and Conferences. His research interests include network security, Computer Networks, data science and Machine Learning. He is an active member of ISTE, CSI, IEANG and IEI

AUTHOR 2

Mr.Sachin Raj G B.E., Student Of Computer Science and Engineering At St.Joseph College Of Engineering, Sriperumbudur, Chennai, Tamilnadu. I had Attended Many Workshops, Seminars in Python, Machine Learning. I Completed Python Full Stack Course In Besant Technologies.

AUTHOR 3

Mr. Santhoshkumar A B.E., Student Of Computer Science and Engineering At St.Joseph College Of Engineering, Sriperumbudur, Chennai, Tamilnadu. I had Attended Many Workshops and Seminars in The Area Of Python and Machine Learning. I Got Placed in Qspider Technologies