

Abstract Due to the rapid increase in population, there is a need for efficient transportation management system. There is an

increased burden on public transportation, like buses, because of the increase in population. To curb this, educational institutions

have begun extending their own transportation facilities to their students. This paper presents an efficient, technology-driven

solution to create an Android-based and Web-based, data-driven, non-device and non-browser specific tracking tool that

facilitates transport tracking in an institution. The system uses various technologies like GPS (Global Positioning System), GSM

(Global Standard for Mobile Communication), Geolocation, Geofencing, and so forth to implement such a system. Once

deployed, this system has the potential to create a positive effect in students’ lives by helping them track buses to/from college,

manage wait times at their bus stops, and provide feedback about the system. The proposed system can also benefit the college

management by

helping them manage their bus fleet, drivers, and routes more efficiently.

Index Terms—Bus tracking, real-time, geolocation, android, firebase, web, transport, software, suite, geofencing

INTRODUCTION

The rapid development and changes in technology over

the last decade has had a propounding impact on the

transportation sector. Mobile technology, coupled with

higher Internet bandwidth, and improved Global

Positioning System (GPS) functionalities has led to the

emergence of new approaches to vehicular tracking. With

the recent flood of new tracking products in the marker, end

users are faced with an extensive array of products that

have been developed without the features that they actually

seek. The challenge for transportation tracking and

management is to ensure that real-time positioning is of the

highest accuracy and help serve the customer base in a

more efficient manner.

In present-day world, vehicles are increasing in cities

around the globe. Be it working class people, students,

medical professionals or common public, a majority of

them own at least one vehicle today. Educational

institutions with an aim of helping students commute easily

to and from college provide them with transportation

system. But not many students and other college-goers

utilize this transport facility for many reasons; to name a

few —

• They are unable to track the exact whereabouts of their

daily bus (real-time position)

• They are unable to know if their bus has crossed their

stop in cases where they arrive late

• They are unable to provide feedback/complaints

regarding the transport service to the concerned

authority due to hierarchy of officials

Considering these factors motivated us to build a system

that overcomes all of these complexities with the sole

purpose to create an efficient application that helps not only

the students, but also the bus drivers and transport

REAL-TIME TRANSPORTATION TRACKING AND

MANAGEMENT SUITE
Prof. Theja Narayan

Assistant Professor,

Department of Computer Science and Engineering,

Vidya Vikas Institute of Engineering and Technology, Mysuru - 28.

thejan.cse.vviet@gmail.com

Mr. Ujwal V Urs, Mr. Shreyas D S, Mr. Darshan K S, Mr. Shreenidhi Sharma B K

Final Year UG Students, Department of Computer Science and Engineering,

Vidya Vikas Institute of Engineering and Technology, Mysuru - 28.

ujwalvurs@gmail.com, shreyasds96@gmail.com, darshanks678@gmail.com,

shrinidhi.sharma97@gmail.com

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 226 Vol.4, Issue.8, August 2018

mailto:thejan.cse.vviet@gmail.com
mailto:ujwalvurs@gmail.com
mailto:shreyasds96@gmail.com
mailto:darshanks678@gmail.com
mailto:shrinidhi.sharma97@gmail.com

management personnel. Increase in the usage of

smartphones and an exponential growth in the Android

market drove us to build an Android application that will

enable students to register and bus drivers to access and use

the system securely.

This suite of software applications is a sub-system of an

organization, concerned with organisational activity aimed

at bettering the management of their bus fleet and

encouraging students and faculty to use college transport as

opposed to private vehicles. Given the present-day

environmental conditions prevailing around us, as

responsible citizens, we are required to use collective

transport options rather than private vehicles. Real Time

Transportation Tracking System offers the institutions a

robust set of features that will promote accurate location

tracking, integrated feedback service from end-users, along

with multiple other features that will benefit all classes of

end users greatly.

LITERATURE REVIEW

In existing transportation management and tracking

systems, each system incorporates a unique set of features,

but many fails to cater to the actual needs of the end users.

Many a times, the tracking is not accurate enough to predict

the arrival time of the bus at a stop which depends on a

multitude of factors with traffic congestion being the most

dominant of them all.

In a country like India, although bus tracking systems are

rarely in existence for colleges or educational institutions,

there are public transportation tracking and management

systems like Bengaluru City’s BMTC and Mysuru’s Mitra

applications. With an aim to overcome the disadvantages of

applications like our proposed system prevalent in the

marker today, we conducted a study and reviewed a few

applications. We found several shortcomings, such as —

• The applications do not provide real-time tracking of

buses; they show only the designated bus stops and the

time a bus on that route last crossed the stop

• The applications are not user friendly; the User

Interface (UI) is unresponsive and faulty at times

• Too many errors and bugs in the code which lead to

frequentapplication crashes and unresponsive device

state

SYSTEM ARCHITECTURE

• Driver’s android phone will be used as an on-board

GPS device for the bus. Most Android phones are fitted

with an Assisted GPS (AGPS) chips. The GPS

transmitter on the Android device, with the help of

network towers and nearby Wi-Fi Hotspots,

communicates with the system of GPS satellites around

the world to get the “world” address. Geocoding

scheme is used to translate this “world” address into

coordinates (latitude and longitude).

• Using GSM (Cellular Data), the driver’s android

device connects to the Internet and relays the

coordinates of its current position to the cloud

(database). The end users can access this real-time

position of the bus from the cloud database on their

Android devices.

• Transportation Management personnel at the institution

can access the cloud database either through a web

application developed exclusively for them.

FEATURES

• Real-time positioning: Location of the bus is shown in

real-time on the map with a refresh rate of 2 seconds.

Technology Used:Google Location Services.

• ‘Wait for Me!’: A feature that helps students alert the

driver that they are in close proximity to the bus stop

and will reach in a few seconds.

Technology Used:Geofencing.

• Notifications: Inform student when his/her bus is

about a kilometre away from their respective stop

Technology Used:Android Notifications.

Fig. 1. System architecture of the proposed system

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 227 Vol.4, Issue.8, August 2018

• ‘Back Up’: A feature that allows the driver of a bus to

alert the transportation officials at college and other

buses on active duty in case of emergencies or

technical problems.

Technology Used:Publisher-Subscriber Scheme.

• ‘Optimizer’: When creating new routes, the transport

management personnel can enter the bus stops

randomly and the system will optimize them for

creating the best-route possible.

Technology Used:Travelling Salesperson Algorithm.

• ‘Analyzer’: Collect data about routes, students, drivers

and their reviews. Send the data to the college

transportation management system for them to run

data and feedback analytics in order to improve their

application and service.

• Guest travel: A feature that allows people not

associated to the institute, such as external examiners

visiting the college for examination duty, to avail the

college’s transportation.

• Parental Access: Parents can access the application

and track the whereabouts of their wards in cases of

emergency or for being informed about their

children’s location.

IMPLEMENTATION

A. Real-time Positioning

Real-time tracking for fetching the geolocation is a core

feature of our proposed web and mobile application. Real-

time tracking aims at detecting and streaming location data

to a live-updating map to smoothly show the movement of

buses as they travel in the real world. In our system, the

driver-side application (Android) is the only application

that can transmit and storing geolocation to the database.

The student-side application (Android) and the transport

management personnel console (Web) can only fetch the

stored geolocation and display it on the map.

Before implementing this feature, we need to add

permissions in the application’s AndroidManifest.xml file

to for accessing the GPS location services on the device, i.e.

android.permission.ACCESS_FINE_LOCATION.

We have implemented real-time positioning using Google

Play Services location APIs. Location updates are retrieved

by requesting the same from a method of the class

FusedLocationProviderClient - requestLocationUpdates().

We then call the method getLastLocation() to get the

device’s last known position. The interval at which new

location data must be fetched is set using the method

setInterval() of the class LocationRequest. Since real-time

tracking must be of high accuracy, we must set this using

the method setPriority(PRIORITY_HIGH_ACCURACY)

of class LocationRequest.

FusedLocationProviderClient does not provide only the

coordinates rather, it gives a collection of values which

includes speed, altitude, bearing, timestamp, accuracy,

elapsedRealTimeNano, latitude, longitude, and more. These

data are stored in the database. At the time of displaying the

location of a bus on the map, we need to extract only the

latitude and longitude of each bus from the database.

Location data in the Firebase database is stored as

JavaScript Object Notation (JSON) and synchronised in

real-time to every connected client [5]. The data in Firebase

is structured as shown below:

rootNode:

locationUpdates:

 busRoute1:

 accuracy:

 bearing:

 speed:

 provider:

 latitude:

 longitude:

 time:

 elapsedRealTimeNano:

 busRoute2:

 .

 .

 busRouteN:

To display the location of each bus as an object of Marker

class on the map of the Android application, we use

HashMap<String, Object> where, String is the key of the

root’s child node viz. busRouteN (in our case) and Object

will contain all the data under a child node. Each key-value

pair within the Object can be obtained using —

objectOfHashMap.get(“key”)

B. Wait for me

A geofence is a virtual perimeter set on a real geographic

area. Combining a user position with a geofence perimeter

enables us to know if the user is inside or outside the

geofence as well as if he is exiting or entering the area.

A geofence can be marked by specifying the latitude and

longitude of the location of interest. The perimeter around

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 228 Vol.4, Issue.8, August 2018

the marked geofence can be set by specifying the radius.

The latitude, longitude, and radius together define a

geofence around a location of interest. LocationServices

send entrance and exit events (also known as transitions)

for each active geofence to trigger a certain event.

The active period of geofences can be limited by specifying

an expiration duration in milliseconds. Any geofence that

has an expiration duration is automatically removed by

LocationServices on expiring. Multiple geofences can be

active at any given point of time, with a limit of 100 per

device user [7].

To use geofencing, we must request the permission

android.permission.ACCESS_FINE_LOCATION in the

AndroidManifest.xml file.

We create an instance of Google API Client and use

GoogleApiClient.Builder to add LocationServices.

private GoogleApiClientgApiClient;

……….
gApiClient = new GoogleApiClient.Builder(this)

 .addApi(LocationServies.API),

 .addConnectionCallbacks(this),

 .addOnConnectionFailedListener(this)

 .build();

Next, we implement the callback interfaces that adds to

Google API Client i.e.

GoogleApiClient.ConnectionCallbacks and

GoogleApiClient.OnConnectionFailedListener

We start listening for location updates to check if the

device/user has entered the geofence or not.

We use a HashMap<String, LatLng> data structure to store

the geofences; String contains the ID for the geofence and

LatLng data structure packs the latitude and longitude of

the geofence. For building geofences and adding them to

the Location API’s builder class, we use —

private Geofence buildGeofence() {

 return new Geofence.Builder()

 .setRequestId(GEOFENCE_ID)

 .setExpirationDuration(Geofence.NEVER_EXPIRE)

 .setCircularRegion(latitude, longitude,

GEOFENCE_RADIUS)

 .setNotificationResponsiveness(1000)

.setTransitionTypes(Geofence.GEOFENCE_TRANSITION_

ENTER | Geofence.GEOFENCE_TRANSITION_EXIT)

 .build();

}

We must start monitoring the geofence and set how

geofence events must be triggered by using the class

GeofencingRequest along with its nested class

GeofencingRequestBuilder.

private GeofencingRequestgetGeofencingRequest() {

GeofencingRequest.BuildergeoBuilder=

new GeofencingRequest.Builder();

 geoBuilder.setInitialTrigger(

 GeofencingRequest.INITIAL_TRIGGER_ENTER);

 geoBuilder.addGeofences(getGeofence());

 return geoBuilder.build();

}

On triggering of a geofence transition, an Intent is sent by

the LocationServices API which can further trigger various

events. In our proposed system, we use an IntentService to

handle the Intent generated by the geofence transition.

private PendingIntentpendingIntent;

…….
private PendingIntentgetGeoPendingIntent() {

 if (pendingIntent != null) {

 return pendingIntent;

 }

 Intent intent = new Intent(

 this, GFenceBusStopService.class);

 return PendingIntent.getService(this, 0, intent, P

}

In the GFenceBusStopService class, we trigger a

notification to the student that he/she is within the radius of

their bus stop. Also, we increment a variable count on the

database that enables the driver to know how many students

are waiting at a stop on the current route the driver is active

on.

Before we can start monitoring the geofences, we have to

add them using the method addGeofences() of the class

GeofencingClient. The parameters to this method are a

GeofencingRequest object and the PendingIntent object.

To help save battery power and CPU cycles on the end-

users’ devices, we can stop geofence monitoring when it is

no longer needed. Geofence monitoring can be stopped in

the main activity used to add and remove geofences;

removing a geofence stops it instantly.

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 229 Vol.4, Issue.8, August 2018

C. BackUp

BackUp is a feature to send alert messages in cases of

emergencies, such as accidents, vehicle breakdowns and

others. This is the kind of service that will make other

drivers who are on active duty and the transport

management personnel at the institution receive alerts on

their phones and web application respectively. This feature

can be used only when the bus experiences problems while

on duty. Even when the display of the phone of other bus

drivers are turned off or the Android application is not in

the foreground, a service will constantly be running that

will listen for alerts and emergency messages. On arrival of

an alert, it will trigger a notification sound and the device

will vibrate. On clicking the notification message, other

drivers can see the route ID of the bus that has problems

and can also view the location of that bus.

Even the transport management personnel can see the alerts

raised by any bus driver on his/her web console with the

faulty bus’s location of where it broke down. To raise an

emergency request, a bus driver must just press a button

and choose the type of problem he/she is facing.

Using the Publisher-Subscriber scheme, all the buses

(subscribers) are constantly listening to some data trigger

event in the database through means of a silently running

background service on their Android devices. All the bus

drivers’ phones also have publisher rights by which they

can update some data in the database that will trigger a data

change event, thereby notifying the subscribers.

D. Optimizer

Optimizer focuses on providing the best route by

rearranging bus stops in a given route. This optimization is

a classic implementation of the Travelling Salesperson

problem. When creating a new route, the transport

management personnel can enter a routeID and randomly

add the bus stops to the database. Optimizer facilitates the

creation of best-route, consistent with the distance and

duration (in terms of traffic model) and displays it to the

transport personnel.

In our system, we have selected a pessimistic traffic model

for calculating the total duration of a route. The pessimistic

model calculates duration by considering a time period

longer than the actual travel time. The total duration and

total distance of a route are calculated using the Google

Directions Service API.

To find the shortest (best) path from origin to bus stop A

(leg 1), from bus stop A to bus stop B (leg 2), and so on, till

bus stop N to destination (leg N), the Travelling

Salesperson algorithm takes the latitude and longitude of

each bus stop and the distance between two stops and

returns the most efficient route from the origin to the

destination through all the mentioned waypoints (bus

stops).

E. Analyzer

Analyzer feature focuses on extensive feedback collection

and data analysis for timely updates to the application(s)

and betterment of the software suite as well as the transport

service itself. Data can be collected from bus drivers and

students in the form of profile data as well as feedback

given by them about the transport system and the

application itself. The data stored in the database is plotted

into different forms of graphs using the ChartJS graph

plotting library for JavaScript. Some of the data that we can

collect and use to run analysis are —

• Number of students using the transportation

system (semester, branch, route and locality-wise)

• Increase/decrease in the number of users

• Sentiment analysis on the feedbacks obtained from

students using Google Cloud NLP API

• Daily reports of effective transport system

utilization

 Fig. 4. Real-time tracking of buses with bus and driver details

Fig. 5. Optimizer

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 230 Vol.4, Issue.8, August 2018

Fig. 12. Analyzer (Department-wise)

RESULTS

These are screenshots of the proposed system —

Fig. 6. BackUp - Emergency Messages and Alerts

Fig. 8. Route Creation

Fig. 10. Driver Profile Creation

Fig. 9. Linking new bus with a route

Fig. 11. DriverConnect - Real-time Intrasystem Chat

Fig. 3. Login Interface for system administrators

Fig. 7. Analyzer (Route-wise)

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 231 Vol.4, Issue.8, August 2018

CONCLUSION

One of the main reasons for why many of the

students in an educational institution do not use the

option of college transport is because of the

additional travel and wait times. But, if users had an

easy way to track the proximity of the bus to their

bus stop in real time they can utilise time more

efficiently by not waiting in their stops for a long

duration of time.

Also, an increase in the usage of smartphones,

advanced technologies and an exponential growth in

the Android market can ensure that our proposed

system can be used by a large percent of the targeted

end-users. It will help them to use the college

transport whilst providing solutions to their

problems mentioned above. Meanwhile, the current

users can be benefited by increased satisfaction of

service. New users can be motivated to use this with

a collective goal of reducing air and noise pollution

levels around the city.

FUTURE ENHANCEMENTS

• The proposed system can be further developed for iOS

devices to support inter-operability among cross-

platform devices.

• Payment gateways can be incorporated into the system

to enable the payment of bus transport fee online.

• ‘Count me in’: An automatic attendance system that

tracks inflow/outflow of students and also, how many

students climb onboard the bus at a particular stop.

REFERENCES

[1] ThunyasitPholprasit, SupornPongnumkul,

ChalermpolSaiprasert,SarinthonMangkorn-ngam,

LalidaJaritsup, “LiveBusTrack: Highfrequency location update

information system for shuttle/bus riders”,Communications and

Information Technologies (ISCIT), 2013 13thInternational

Symposium on, 2013.

[2] Benjamin Y.O. Low, SamsulHaimiDahlan, Mohd Helmy Abd

Wahab,“Real-time bus location and arrival information

system”, Wireless Sensors (ICWiSE), 2016 IEEE Conference

on, 2016.

[3] B. Janarthanan, T. Santhanakrishnan, “Real time metropolitan

bus positioning system design using GPS and GSM”, Green

Computing Communication and Electrical Engineering

(ICGCCEE), 2014 International Conference on, 2014

[4] Manini Kumbhar, Meghana Survase, Pratibha Mastud,

Avdhut\Salunke, “Real Time Web Based Bus Tracking

System”, International ___Research Journal of Engineering and

Technology (IRJET), vol. 03, no. ___02, Feb., pp. 632-635,

2016.

[5] https://firebase.google.com/docs/

[6] https://developers.google.com/maps/

[7] https://developer.android.com/training/location/geofencing

Fig. 13. Driver

Application

(Android)

Fig. 14. Student

Application (Android)

Fig. 15. Geofence

transition on entering bus

stop radius

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 232 Vol.4, Issue.8, August 2018

https://firebase.google.com/docs/
https://developers.google.com/maps/

	Introduction
	Literature Review
	System Architecture
	Implementation
	A. Real-time Positioning
	B. Wait for me
	Next, we implement the callback interfaces that adds to Google API Client i.e.
	GoogleApiClient.ConnectionCallbacks and GoogleApiClient.OnConnectionFailedListener
	We start listening for location updates to check if the device/user has entered the geofence or not.
	We use a HashMap<String, LatLng> data structure to store the geofences; String contains the ID for the geofence and LatLng data structure packs the latitude and longitude of the geofence. For building geofences and adding them to the Location API’s bu...
	private Geofence buildGeofence() { return new Geofence.Builder() .setRequestId(GEOFENCE_ID) .setExpirationDuration(Geofence.NEVER_EXPIRE) .setCircularRegion(latitude, longitude, GEOFENCE_RADIUS)
	We must start monitoring the geofence and set how geofence events must be triggered by using the class GeofencingRequest along with its nested class GeofencingRequestBuilder.
	private GeofencingRequestgetGeofencingRequest() {
	GeofencingRequest.BuildergeoBuilder=
	new GeofencingRequest.Builder(); geoBuilder.setInitialTrigger(GeofencingRequest.INITIAL_TRIGGER_ENTER); geoBuilder.addGeofences(getGeofence()); return geoBuilder.build(); }
	C. BackUp
	D. Optimizer
	E. Analyzer

	RESULTS
	Conclusion
	One of the main reasons for why many of the students in an educational institution do not use the option of college transport is because of the additional travel and wait times. But, if users had an easy way to track the proximity of the bus to their ...
	Also, an increase in the usage of smartphones, advanced technologies and an exponential growth in the Android market can ensure that our proposed system can be used by a large percent of the targeted end-users. It will help them to use the college tra...
	Future Enhancements
	References

