
 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

5

Abstract

We have entered the big data age. Knowledge

extraction from massive data is becoming more and

more urgent. MapReduce provides a feasible

framework for programming machine learning

algorithms in Map and Reduce functions. The

relatively simple programming interface has helped

to solve machine learning algorithms’ scalability

problems. However, this framework suffers from an

obvious weakness: it does not support iterations. This

makes it difficult for algorithms requiring iterations

to fully explore the efficiency of MapReduce. In this

paper, we propose to apply Meta-learning

programmed with MapReduce to avoid parallelizing

machine learning algorithms while also improving

their scalability to big datasets. The experiments

conducted on Hadoop’s fully distributed mode on

Amazon EC2 demonstrate that our algorithm Meta-

MapReduce (MMR) reduces the training

computational complexity significantly when the

number of computing nodes increases while

obtaining smaller error rates than those on a single

node. The comparison of MMR with the

contemporary parallelized Ad a B oost algorithm,

Introduction

We have been rapidly moving from the Terabytes to

the Petabytes age as a result of the explosion of data.

The potential value and insights which could be

derived from massive data sets have attracted

tremendous interest in a wide range of business and

scientific applications. It is becoming more and more

important to organize and utilize the massive

amounts of data currently being generated. However,

when it comes to massive data, it is difficult for

current data mining algorithms to build classification

models with serial algorithm running on single

machines, not to mention accurate models. Therefore,

the need for efficient and effective models of parallel

computing is apparent.

Fortunately, with the help of the MapReduce

infrastructure, researchers now have a simple

programming interface for parallel scaling up of

many data mining algorithms on larger data sets. It

was shown that algorithms which fit the Statistical

Query model can be written in a certain “summation

form”. They illustrated 10 different algorithms that

can be easily parallelized on multi-core computers

applying the MapReduce paradigm.

An industrial example of implementing MapReduce

comes from Google. In 2009, Google proposed

PLANET: a framework for large-scale tree learning

using a MapReduce cluster . Their intention in

building PLANET was to develop a scalable tree

learner which could achieve comparable accuracy

performance as the traditional in-memory algorithms

and also be able to deal with bigger datasets.

PLANET is used to construct scalable classification

and regression trees, as well as ensembles of these

models. It realizes parallelization by dividing tree

learning into many distributed computations, each

implemented with MapReduce.

http://www.ijartet.com/

 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

6

Although MapReduce handles large scale

computation, it doesn’t support iteration. Since there

are no loop steps available in Hadoop, in order to

implement loops, an external driver is needed to

repeatedly submit MapReduce jobs. Since each

MapReduce job works independently, in order to

reuse data between MapReduce jobs, the results

generated by a former MapReduce job are written to

the Hadoop Distributed File System (HDFS) and the

next MapReduce job which needs this information as

inputs reads these messages from HDFS. Obviously,

this operation doesn’t have the benefits that the

caching system can bring for the in-memory

computation. Moreover, owing to data replication,

disk I/O, and serialization, the approach for creating

loops inside the original version of Hadoop causes

huge overheads. The time spent in this process may

sometimes occupy a major part in the total execution

time.

The inefficient creation of loops is a critical

weakness of Hadoop. For instance, boosting and

genetic algorithms naturally fit into an iterative style

and thus cannot be exactly expressed with

MapReduce. Realizing these algorithms’

parallelization requires special techniques. However,

even if the computations can be modeled by

MapReduce when there are iterations in a machine

learning algorithm, the execution overheads are

substantial as was explained before.

Currently, there are some approaches which deal with

the problem of lacking iterations in MapReduce.

However, they either require substantial change of

the original MapReduce framework or need

designing new systems.

In contrast,we overcome this difficulty by applying

the concept of Meta-learning. Meta-learning is

loosely defined as learning from information

generated by learner(s) and it is applied to coalesce

the results of multiple learners to improve accuracy.

One of the advantages of meta-learning is that

individual classifiers can be treated as black boxes

and in order to achieve a final system, little or no

modifications are required on the base classifiers.

The structure of meta-learning makes it easily

adapted to distributed learning.

The method we propose in this paper is much simpler

in that it eliminates the necessity of considering new

models and the complexity of implementing them.

Moreover, our approach requires a one time

configuration and unlimited times of repetitive usage,

which is much more advantageous than approaches

which have to alter their design for different

algorithms.

In this paper, we harness the power of meta-learning

to avoid modifying individual machine learning

algorithms with MapReduce. Hence, algorithms

which require iterations in their model can be more

easily parallelized utilizing the meta-learning schema

than by altering their own internal algorithms directly

with MapReduce. Although we focuse on an

individual machine learning algorithm: Adaboost in

this paper, the idea and our system can be easily

extended to other algorithms.

This paper is organized as follows: section

“Literature review” introduces work that has

previously been proposed for solving the iterations

problem in Hadoop MapReduce; section

“Background" provides background knowledge about

MapReduce and Hadoop; section “Framework"

presents the meta-learning framework and our

proposed algorithm: Meta-MapReduce (MMR);

section “Results and discussion" demonstrates the

performance of MMR in terms of error rates and

speedup; section “Conclusion" concludes the paper.

Literature review

Hadoop the concept similar to MapReduce. The

difference is that it provides a natural API for

distributed programming framework aimed at graph

algorithms. It also supports iterative computations

over the graph. This is an attribute which MapReduce

lacks. In Pregel computations,supersteps, a sequence

of iterations is adopted. With supersteps, a vertex can

receive information from the previous iteration and

http://www.ijartet.com/

 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

7

also send information to other vertices that will be

received at a next superstep. However, Pregel focuses

on graph mining algorithms, while we are interested

in more general applications.

As a modified version to iterative programs which is

absent in the original MapReduce framework. It was

mentioned that iterative computations were needed

for Page Rank, recursive relational queries, clustering

such as k-means, neural network analysis, social

network analysis and so on. When doing these

analyses, many iterations are necessary until some

convergence or abort conditions are met. It was also

mentioned that manually implementing iterative

programs by multiple MapReduce jobs utilizing a

driver program can be problematic.

Therefore, proposes to automatically run a series of

MapReduce jobs in loops by adding a loop control

module to the Hadoop master node. However,

HaLoop only supports specific computation patterns.

Twister is also an enhanced version of MapReduce

which supports iterative MapReduce computations.

In the original MapRedcue, in order to realize

iterations a set of Map and Reduce tasks are called.

To communicate between each round of a

MapReduce job, a lot of loading and accessing

activities are repetitively required. This causes

considerable performance overheads for many

iterative applications. In Twister, to reduce these

overheads and achieve iterative computation, a

publish/subscribe messaging infrastructure is

proposed for communication and data transfers.

Moreover, there are long running map/reduce tasks

with distributed memory caches. Basically, it is a

stream-based MapReduce framework. However, this

streaming architecture between map and reduce tasks

suffers from failures. Besides, long running

map/reduce tasks with distributed memory caches is

not a good scalable approach for each node in the

cluster having limited memory resources.

As a scalable machine learning system, Vowpal

Wabbit (VW) is implemented with the All Reduce

function (which originates in MPI) in the sake of

accurate prediction and short training time in an easy

programming style. By eliminating re-scheduling

between iterations and communicating through

network connections directly, fast iterations are

optimized. Moreover, the map and reduce tasks are

sped up via a cache aware data format and a binary

aggregation tree respectively.

Resilient Distributed Datasets (RDDs) is a

distributed memory abstraction intended for in-

memory computations on large clusters. It is

implemented in the system Spark. RDDs addresses

the problem of data reuse of intermediate results

among multiple computations, which cannot be

handled efficiently by current proposed cluster

computing frameworks such as MapReduce and

Dryad. The advantage of RDDs compared to an

abstraction is proposed for more general use such as

the application of running ad-hoc queries across

several datasets which are loaded into memory.

RDDs also absorb the merits from other frameworks.

These include in-memory storage of specific data,

control of data partitions to reduce communications

and recovery from failures efficiently. However, the

optimization of RDDs is specialized for in-memory

computation only.

Iterative MapReduce is an extension of the

MapReduce programming paradigm, which claims to

be the most advanced framework for supporting

iterative computations. In Spark, the programmer has

to make systems level decisions to recognize what

data to cache in the distributed main memory.

However, sometimes the programmer may lose track

of performance-related parameters in large public

clusters where these parameters keep changing. To

tackle this problem which happens in Spark, Iterative

MapReduce applies the ideas from database systems

to eliminate the low-level systems considerations via

the abstraction brought by the relational model.

Furthermore, it also provides a way for DBMS-

driven optimization.

Background

Hadoop

Large scale data has brought both benefits and

challenges to the field of machine learning. One of

the benefits is that we can extract lots of useful

http://www.ijartet.com/

 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

8

information by analyzing such big data. Extracting

knowledge from massive data sets has attracted

tremendous interest in the data mining community. In

the field of natural language processing, it was

concluded that more data leads to better accuracy.

That means, no matter how sophisticated the

algorithm is, a relatively simple algorithm will beat

the complicated algorithm with more data. One

practical example is recommending movies or music

based on past preferences.

One of the challenges of large scale computing is that

storing and analyzing massive data is becoming more

and more difficult. Although the storage capacities of

hard drives have increased greatly over the years, the

speeds of reading and writing data have not kept up

the pace. Reading all the data from a single drive

takes a long time and writing is even slower. Reading

from multiple disks at once may reduce the total time

needed, but this solution causes two problems.

The first one is hardware failure. Once many pieces

of hardware are used, the probability that one of them

will fail is fairly high. To overcome this

disadvantage, redundant copies of the data are kept,

in case of data loss. This is how Hadoop’s file

system: Hadoop Distributed File System (HDFS)

works. The second problem is how to combine data

from different disks. Although various distributed

systems have provided ways to combine data from

multiples sources, it is very challenging to combine

them correctly. The MapReduce framework provides

a programming model that transforms the disk reads

and writes into computations over sets of keys and

values.

Hadoop is an open source Java implementation of

Google’s MapReduce algorithm along with an

infrastructure to support distribution over multiple

machines. This includes its own filesystem HDFS

(based on the Google File System) which is

specifically tailored for dealing with large files.

MapReduce was first invented by engineers at

Google as an abstraction to tackle the challenges

brought about by large input data. There are many

algorithms that can be expressed in MapReduce:

from image analysis, to graph-based problems, to

machine learning algorithms.

In sum, Hadoop provides a reliable shared storage

and analysis systems. The storage is provided by

HDFS and the analysis by MapReduce. Although

there are other parts of Hadoop, HDFS and

MapReduce are its kernel components.

MapReduce

MapReduce simplifies many of the difficulties

encountered in parallelizing data management

operations across a cluster of individual machines,

thus becoming a simple model for distributed

computing. Applying MapReduce, many

complexities, such as data partition, tasks scheduling

across many machines, machine failures handling,

and inter-machine communications are reduced.

MapReduce framework

As a programming model to process big data, there

are two phases included in the MapReduce programs:

the Map phase and the Reduce phase [30].

Programmers are required to program their

computations into Map and Reduce functions. Each

of these functions has key-value pairs at their inputs

and outputs. The input is application-specific while

the output is a set of 〈k e y,v a l u e〉 pairs, which are

produced by the Map function. The key and value

pairs are expressed as follows:

(1)

Here k i represents the key for the ith input

and v i denotes the value associated with the ith

input.K is the key domain and V is the domain of

values. Using the Map function, these key-value pairs

of the input are split into subsets and distributed to

different nodes in the cluster for processing. The

processed intermediate results are key-value pairs.

Therefore, the map function can be obtained as

(2)

http://www.ijartet.com/
http://www.journalofbigdata.com/content/2/1/14#B30
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i1.gif
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i2.gif

 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

9

(3)

Here L and W are key and value domains again,

which represent the intermediate key-value pair

results.In the map process, each single key-value

input pairs: (k,v) is mapped into many key-value

pairs: [(l1 ,x1),…,(l1 ,x r)] with the same key, but

different values. These key-value pairs are the inputs

for the reduce functions. The reduce phase is defined

as

(4)

(5)

The first step in the reduce function is to group all

intermediate results with the same key together. The

reason to perform this aggregation is that although

the input key-value pairs have different key values,

they may generate the intermediate results with the

same key values. Therefore, there is a need to sort

these results and put them together for processing.

This process is achieved when (L×W) ∗ is processed

to generate L×W∗ . And these are the inputs for the

reduce functions. The Reduce process can be

parallelized like the Map process. And the result is

that all the intermediate results with the same

keys: L×W∗ are mapped into a new result list: W∗ .

In sum, the whole MapReduce process can be

expressed as

(6)

As was mentioned before, to realize parallelization

many map and reduce functions are performed

simultaneously on various individual machines (or

nodes in the context of cluster) with each of them

processing just a subset of the original dataset.

MapReduce workflow

In order to do cloud computing, the original data is

di-vided into the desired number of subsets (each

subset has a fixed-size) for the MapReduce jobs to

proceed. And these subsets are sent to the distributed

file system HDFS so that each node in the cloud can

access a subset of the data and do the Map and

Reduce tasks. Basically, one map task processes one

data subset.

Since the intermediate results output by the map tasks

are to be handled by the reduce task, these results are

stored in each individual machines’ local disk instead

of HDFS. To perform fault tolerance, another

machine is automatically started by Hadoop to

perform the map task again, if one of the machines

which runs the map functions fails before it produces

the intermediate results.

The number of reduce tasks is not determined by the

size of the input, but specified by the user. If there is

more than one reduce task, the outputs from the map

tasks are divided into pieces to feed into the reduce

functions. Although there are many keys in a map

tasks’ output, the piece sent to the reduce task

contains only one key and its values. As each reduce

task will have the inputs from multiple map tasks,

this data flow between map tasks and reduce tasks is

called “the shuffle”.

Figure 1 depicts the work flow of a generalized

MapReduce job. To execute such a job the following

preparation information is need: the input data, the

MapReduce program and the configuration

information. As we have discussed before, there are

two types of tasks involved in a MapReduce job: the

map tasks and the reduce tasks. To control the job

execution process, a jobtracker and some tasktrackers

are configured. The tasks are scheduled by the job

tracker to run on tasktrackers. And the tasktrackers

report to the jobtracker about the situations of the

tasks running. By doing this, if some tasks fail, the

jobtracker would know it and reschedule new tasks.

http://www.ijartet.com/
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i3.gif
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i4.gif
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i5.gif
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i6.gif
http://www.journalofbigdata.com/content/2/1/14/figure/F1

 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

10

Fig. 1. Work flow of MapReduce framework

A simple word count example

In order to illustrate the work flow of MapReduce

and the procedure of how the 〈k e y,v a l u e〉 pairs are

processed, here we show a simple word count

program which count the number of consonant and

vowel letters in the string “MACHINELEARNING”.

This example is shown in Fig. 2. In the first step,

each letter is assigned a unique identification number

picked from 1 to 15. This identification number is the

“key” and the letter itself is the “value”. Therefore,

the input has fifteen 〈k e y,v a l u e〉 pairs. Then these

pairs are split into three partitions and each partition

is processed by a mapper to generate the intermediate

〈k e y,v a l u e〉 pairs. Here, the key is either

“consonant” or “vowel” and the value is still the

letter itself. The next very important step is that these

intermediate 〈k e y,v a l u e〉 pairs are sorted and

merged so that the values which belong to the same

key are grouped together to form two categories:

consonant and vowel. In the final step, the reducer

calculates the number of consonant and vowel letters

and output the results.

Fig. 2. A word count example with MapReduce

Hadoop Distributed File System (HDFS)

As we have seen in the work flow of MapReduce, the

user’s MapReduce program first needs to be copied

to the nodes in the cluster in order to perform

computations. Here the action of copy is to move the

user’s program to the HDFS so that every node in the

cluster can access it. In addition to this, every split

data subset is also stored in HDFS. Thus, the HDFS

manages the storage across a cluster, and also

provides fault tolerance. Preventing the data loss

caused by possible node failure is a very challenging

task. Therefore, the programming of HDFS is more

complex than that of regular disk filesystems.

An HDFS cluster works following the master and

slave model. The master is called the namenode

while the slave is called the data node. The

filesystem’s namespace is managed by the namenode.

The filesystem’s tree and the metadata for all the files

and directories are maintained in it. This information

is stored in the form of two files: the namespace

image and the edit log. The datanodes are the ones

that do the real jobs: they store and retrieve blocks

when they are required to do so by clients or the

namenode. They also need to transfer back the

information of the lists of blocks they are storing into

the name nodes periodically. The reason is that the

namenode doesn’t store block locations persistently

and the information is reconstructed from the

datanodes. Figure 3 illustrates the case when the

block replication is three and two files

“/user/aaron/foo”&“/user/aaron/bar” are divided into

pieces.

Fig.3. Information stored in namenode and datanodes

By communicating with the namenode and the data-

nodes a client can access the filesystem representing

the user. The user code doesn’t need to know the

details of the namenode and datanode as a filesystem

interface similar to a portable operating system

http://www.ijartet.com/
http://www.journalofbigdata.com/content/2/1/14/figure/F1
http://www.journalofbigdata.com/content/2/1/14/figure/F1
http://www.journalofbigdata.com/content/2/1/14/figure/F1
http://www.journalofbigdata.com/content/2/1/14/figure/F1
http://www.journalofbigdata.com/content/2/1/14/figure/F2
http://www.journalofbigdata.com/content/2/1/14/figure/F2
http://www.journalofbigdata.com/content/2/1/14/figure/F2
http://www.journalofbigdata.com/content/2/1/14/figure/F2
http://www.journalofbigdata.com/content/2/1/14/figure/F2
http://www.journalofbigdata.com/content/2/1/14/figure/F3
http://www.journalofbigdata.com/content/2/1/14/figure/F3
http://www.journalofbigdata.com/content/2/1/14/figure/F3
http://www.journalofbigdata.com/content/2/1/14/figure/F3
http://www.journalofbigdata.com/content/2/1/14/figure/F3

 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

11

interface (POSIX) is presented to the user by the

client. The data flow for a file read is demonstrated in

Fig. 4. When the client wants to read a file in step 1,

it opens an instance of DistributedFileSystem which

will communicate with the namenode to obtain the

locations for the blocks of files in step 2. The

namenode provides the addresses for all datanodes

which hold replications of the blocks. These

addresses are then sorted according to their distance

to the client and the closest datanode’s address is

chosen. In step 3, the client reads the data block

through the FSDataInputStream which is returned by

the DistributedFileSystem. In step 4, it reads the first

data block from the closest datanode. After finishing

reading the block in step 4, the datanode is closed and

it continues to read the next block which also comes

from the closest datanode in step 5. This continues

for a number of cycles until the client has finished

reading all the blocks it needs. In the final step: step

6, the FSDataInputStream is closed.

Fig. 4. Client reads data from datanodes through

HDFS

In the namenode and datanodes style, there is a risk

for namenode failure. Once the namenode fails there

would be no information available to retrieve the files

from blocks on the datanodes and all files on the

filesystem would also be lost. In order to handle

potential namenode failures, Hadoop provides two

choices. The first one consists of allowing the

namenode to write its persistent state to multiple

filesystems. Usually, this is accomplished by writing

to both the local disk and a remote NFS mount. The

second option is to run a secondary namenode which

keeps a copy of the merged namespace image to be

used in case of namenode failure.

Research design and methodology

In this section, we first take the AdaBoost.M1

algorithm as an example to explain why it is

inefficient for the original MapReduce configuration

in Hadoop to do iterations for machine learning

algorithms. Then we review the Meta-learning

algorithm and propose our framework MMR which is

implemented with the programming model of

MapReduce on Hadoop. As will be introduced in the

following section, the process of building and testing

the base classifiers of meta-learning can be executed

in parallel, which makes meta-learning easily

adaptable to distributed computation.

Problems with MapReduce for Iterations

The AdaBoost algorithm generates a set of

hypotheses and they are combined through weighted

majority voting of the classes predicted by the

individual hypotheses. To generate the hypotheses by

training a weak classifier, instances drawn from an

iteratively updated distribution of the training data

are used. This distribution is updated so that instances

misclassified by the previous hypothesis are more

likely to be included in the training data of the next

classifier. Consequently, consecutive hypotheses’

training data are organized toward increasingly hard-

to-classify instances. AdaBoost.M1 was designed to

extend AdaBoost from handling the original two

classes case to the multiple classes case. The detailed

algorithm is shown in Algorithm 1.

In order to implement this algorithm using

MapReduce, for T iterations T MapReduce jobs need

to be submitted by the a driver program. This driver

program also needs to determine for each iteration t

whether this abortion condition ε t >1/2 is met. In this

case, the number of MapReduce jobs is smaller than

T.

There are many problems with this implementation.

First, the training data sent to each MapReduce job is

dependent on each other as each taining data

subset S t is drawn from the

distribution D t (Algorithm 1, line 4) and this

distribution is updated based on the results of the

previous MapReduce job. This means these

http://www.ijartet.com/
http://www.journalofbigdata.com/content/2/1/14/figure/F4
http://www.journalofbigdata.com/content/2/1/14/figure/F4
http://www.journalofbigdata.com/content/2/1/14/figure/F4
http://www.journalofbigdata.com/content/2/1/14/figure/F4
http://www.journalofbigdata.com/content/2/1/14/figure/F4

 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

12

MapReduce jobs cannot be executed in parallel as

they have to wait for the distribution D t from the

previous MapReduce job.

Second, every time a MapReduce job starts it needs

to read data from the HDFS where the previous

MapReduce job has stored the distribution D t which

will help select the training subset S t. After this

MapReduce job finishes, it again writes its results

into the HDFS. For T iterations, the communication

overhead is substaintial as data are re-loaded, re-

saved and re-processed for Ttimes. Consequently, a

lot of CPU resources, network bandwidth and I/O are

wasted. For smaller datasets, it becomes a major

factor which reduces the performances.

Third, as we mentioned before, a driver program is

required for each MapReduce job to check the

termination condition: ε t >1/2. This driver progam is

an extra MapReduce job and causes overheads as

extra tasks need to be scheduled, extra data need to

read and save to HDFS, extra networks resources are

demanded to move these data.

Meta-learning Algorithm

Every learning algorithm is subject to inductive bias.

This means that every algorithm will search for a

solution in a specific way which may or may not be

appropriate for the problem at hand. In the No Free

Lunch (NFL) theorems, it was stated that there is no

universally best algorithm for a broad problem

domain. Therefore, it is beneficial to build a

framework to integrate different learning algorithms

to be used in diverse situations. Here we present the

structure of meta-learning.

Meta-learning is usually referred to as a two level

learning process. The classifiers in the first level are

called base classifiers and the classifier in the second

level is the meta-learner. This meta-learner is a

machine learning algorithm which learns the

relationships between the predictions of the base

classifiers and the true class. One advantage of this

schema is that adding or deleting the base classifiers

can be performed relatively easily since no

communications are required between them in the

first level.

Three meta-learning strategies: combiner, arbiter and

hybrid are proposed in to combine the predictions

generated by the first level base learners. Here we are

focusing on the combiner strategy. For this strategy,

depending on how we generate the meta-level

training data, there are three schemes as follows:

Class-attribute-combiner:a meta-level training

instance includes the training features, the predictions

by each of the base classifiers and the true class for

test instance;

Binary-class-combiner: for this rule, the meta-level

instance consists of all the base classifiers’

predictions for all the classes and the true class for

the test instance;

Class-combiner: it is similar to the binary-class-

combiner except that this rule only contains the

predictions for the predicted class from all the base

classifiers and the true class.

In the case of three base classifiers, we represent the

predictions of these classifiers on a training

instance X as {P1 (X),P2 (X),P3 (X)}, the attribute

vector for X is 〈x1 ,x2 ,⋯,x n 〉 if the number of

attributes is n, the number of classes is m, the true

class for X is expressed as l a b l e(X). Then the meta-

level training instance for X can be expressed as: (7)

for the class-attribute-combiner, (8) for the binary-

class-combiner and (9) for the class-combiner.

(7)

(8)

(9)

In the methodology we will propose in section Meta-

MapReduce (MMR), the third rule: the class-

combiner rule is applied. This combiner rule is not

only employed in the training process but also in the

testing process to generate the meta-level test data

http://www.ijartet.com/
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i7.gif
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i8.gif
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i9.gif

 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

13

based on the new test instance. The procedure for

meta-learning applying the combiner rule is

described as follows: for a

dataset S={(y n ,x n),n=1,⋯,N} with y n as the nth

class and x n as the nth feature values for instance n.

Then for J-fold cross validation, this dataset is

randomly split into J data subsets: S1 ,⋯,S j ,⋯,S J .

For the jth fold, the test dataset is denoted as S j and

the training dataset is expressed as S−j =S−S j . Then

each of the training datasets is again split randomly

into two almost equal folds. For instance, S−j is split

into T j1 ,T j2 . We assume that there are L level-0 base

learners.

Therefore, for the jth round of cross validation, in the

training process, first T j1 is used to train each of the

base learners to

generate L models: M j11 ,⋯,M j1l ,⋯,M j1L .

Then, T j2 is applied to test each of the generated

models to generate the predictions. These predictions

are used to form the first part of the meta-level

training data. The second part of these data is

produced by generating the base models on T j2 and

testing the models on T j1 . If there are G instances

in S−jand the prediction generated by model M j1L is

denoted as Z Lg for instance x g , then the generated

meta-level training data can be expressed as

(10)

This meta-level training data is the combination of

the first and second parts’ predictions. Based on these

data, the level-1 model is generated as . The last

step in the training process is to train all the base

learners on S−j to generate the final level-0

models: M1 ,⋯,M l ,⋯,M L . The whole training

process is also shown in Fig. 4.

In the test process, to generate the meta-level test

data, S j is used to test the level-0 base

models M1 ,⋯,M l ,⋯,M L generated in the training

process. For instance, for the instance x test in Sj , the

meta-level test instance can be obtained as

(Z1 ,⋯,Z l ,⋯,Z L)). All the meta-level test data are

feed into the meta-level model to generate the

predictions for these test data. We also present the

pseudo code for the meta-learning training algorithm

for the jth cross validation training process in

Algorithm 2.

Meta-MapReduce (MMR)

The in-memory meta-learning presented in section

Meta-learning Algorithm and the distributed meta-

learning which we are going to provide in this section

differ as follows. In in-memory meta-learning, the

last step in the training process is to generate the final

base classifiers by training all the base classifiers on

the same whole training data. In contrast, the

distributed meta-learning has training and validation

datasets. Since each training data is very big and split

across a set of computing nodes, there is no way that

the final base classifiers can be trained on the whole

training datasets. In the end, each computing node

retains their own base classifiers obtained through

training on their share of training data.

Our MMR algorithm includes three stages: Training,

Validation and Test. For the base learning algorithms,

we used the same machine learning algorithm. The

number of base learning algorithms is equal to that of

the mappers. We applied map functions without

reduce functions as the map functions already

generates the base classifiers we need in the training

process and no further procedures are required.

It is also possible to use different base learning

algorithms. But in order to compare our results with

the parallel Adaboost algorithm: AdaBoost.PL

in [10], we used the same base learning algorithm.

MMR and AdaBoost.PL is very similar at the

beginning of the training process in that they both

split the original data into multiple partitions and

train each part on different computing node with the

AdaBoost.M1 algorithm with the same base learner.

The difference is that: MMR uses the validation

dataset to get the predictions from these base

classifiers and then use these predictions to train a

meta-learner algorithm; Adaboost.PL sorts the

hypotheses generated from all the iterations from

each computing node and then by merging them

together a final classifier is generated.

http://www.ijartet.com/
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i10.gif
http://www.journalofbigdata.com/content/2/1/14/mathml/M11
http://www.journalofbigdata.com/content/2/1/14/figure/F4
http://www.journalofbigdata.com/content/2/1/14/mathml/M12
http://www.journalofbigdata.com/content/2/1/14#B10

 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

14

MMR Training: in the training process, a number of

base classifiers are trained on the training data. This

task requires a number of mappers. The pseudo code

is given in Algorithm 3 and the detailed procedure is

described as follows.

Let

 be the training data assigned to the mth mapper

where m∈{1,⋯,M} and n m is the number of instances

in the mth mapper’s training data. The map function

trains the base classifier on their respective split data

sets (line 3). Each base classifier is built in parallel on

idle computing nodes selected by the system. The

trained model is then written to the output path (line

4). Finally, all the trained base models are collected

and stored in the output file (i.e., the HDFS) (line 6).

MMR Validation: in the validation process, the meta-

level training data is obtained and the meta-learner is

trained based on these data. The pseudo code is

shown in Algorithm 4 and the steps are described as

follows:

Generate meta-level training data: the validation data

is split across P mappers. Each mapper will execute

the process of testing all the base classifiers (line 4).

Instead of generating the predicted labels, the

predicted probabilities P D m for each of the classes

from all the base classifiers are collected and put

together (line 6). Then, the meta-level training

instances M I p are made up by all the base

classifiers’ prediction distributions PD (as attributes)

and true labels of the validation data (as

labels) (line 8). The next step is that each map

function outputs the 〈key,value〉

pairs . Here,the key is the true

labels of the validation data: while value is

the meta-instances M I p (line 9). At this point, the

map tasks are finished and the total meta-

instances MI are organized together from all the

outputs of the mappers (line 13).

Train meta-learner: let the total number of classes

be NC. For each class, new meta-instances: f i l t e

r n c (M I) are generated by selecting the prediction

probabilities corresponding to this class from MI (as

attributes) and setting the class label to be 1 if it

belongs to this class, or 0 if not. The meta-classifier

is then trained on these new instances and the trained

model for each class is set as h n c (line 16). As a

result, each class will have its own built meta-

classifier. The number of meta-classifiers equals to

the number of classes. In the end, all the trained

meta-classifiers are sorted together according to the

classes and saved (line 18).

MMR Test: in the test process, the meta-level test

data are generated and the meta-classifiers

(h1,⋯,h N C) are tested. The pseudo code is shown in

Algorithm 5.

The following explains the processes:

meta-level test data: this part is similar to the part of

generating meta-level training data in the validation

process. The only difference is that the input data are

the test data. This part is shown through lines 2-14.

Test (h1 ,⋯,h N C): for each instance M I∗ [i] in the

meta-instances M I∗ , the probability p r o b n cfor

each class is obtained by classifying the

corresponding meta-classifier h n c on a new meta-

instance f i l t e r n c (M I∗ [i]) (line 17). This instance

is generated the same way as f i l t e r(M I) in the

validation process. The probabilities for all classes

are then summed (line 18) and normalized (line 21).

The predicted label l i is found by seeking the

class ID of the calculated normalized highest

probabilities (line 23). Finally, the predicted labels

for all the test instances are returned (line 25).

Results and discussion

In this section, we compare the error rates of our

PML algorithm with the meta-learning method on

one single node to figure out if there would be an

http://www.ijartet.com/
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i13.gif
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i13.gif
http://www.journalofbigdata.com/content/2/1/14/mathml/M14
http://www.journalofbigdata.com/content/2/1/14/mathml/M15
http://www.journalofbigdata.com/content/2/1/14/mathml/M16

 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

15

impact on the accuracy performance when we

increase the number of computing nodes. We also

compare our algorithm’s performance with the

parallel Adaboost algorithm proposed. The

comparison is worthwhile as this parallel Adaboost

algorithm directly makes Adaboost scalable using

MapReduce with complicated procedures which we

will introduce in the following sub-section. Finally,

to demonstrate the efficiency of this MapReduce

framework: PML, we also show the speedup

performance when we increase the number of

computer nodes.

Experiment Settings

The experiments are deployed on Amazon EC2 with

the instance type: m1.small. Each instance’s

configuration is as follows: 1.7 GHz 2006 Intel Xeon

processor, 1.7 GB memory, 160 GB storage. We

employed 20 instances and each of them is

configured with a maximum of 2 map tasks and 1

reduce task (we don’t have reduce tasks for PML) for

task trackers.

For the accuracy experiments, we used 11 real-world

data sets with different disk sizes. For the speed up

performance, we applied 2 synthetic datasets and 4

real-world datasets. The details of the data sets can be

found in Table 1. These data sets can be downloaded

from the UCI repository and other resources. The

first 8 datasets are the same as in Datasets S1 and S2

are synthetic datasets which we generated applying

the RDG1 data generator in WEKA data mining tool

with default parameter settings.

Table 1. Datasets used in our experiments

Performance Results

We applied stratified sampling on each of the

datasets in order to form training, validation and test

partitions assuring that the number of instances for

each of them, respectively, are 36/50, 9/50 and 5/50

of the original data and the classes are uniformly

distributed. The accuracy results we obtained are 10-

fold cross validation results. In the experiments, the

number of mappers in the training process is

determined by the number of splits of the training

data. To evenly distribute the classes, the training

data is split equally among the mappers using the

stratification technique. The base learning algorithm

we used is Adaboost with decision stumps (decision

trees with only one non-leaf node) as weak learners.

This configuration is the same as that of the

Adaboost.PL algorithm. The meta-learner we applied

is Linear Regression.

Accuracy Performance: The error rates of PML when

the number of computing nodes changes from 1 to 20

are shown in Table 2. It can be seen from this table

that compared to the one mapper case our PML

algorithm has lower or equivalent error rates in 9 out

of 11 datasets. Although the error rates increased in

datasets “yeast” and “musk”, the behavior of yeast is

mainly due to the fact that it has the smallest data

size. When the data is split among different mappers,

the more mappers there are, the smaller the partition

each mapper has, which leads to inaccurate base

models. This eventually produces higher error rates

in the final ensemble model.

Table 2. Error rates for different number of nodes

Comparison with Adaboost.PL: We also compared

the error rates obtained by our MMR and the

parallelized Adaboost algorithm Ada-Boost.PL. The

comparison is based on 8 of the datasets in as we

could not find the datasets “swsequence” and

“biogrid” which they also tested. The comparison

results are shown in Table 3. It can be seen that our

PML algorithm has the lowest error rates in 7 out 8

datasets. The reduction of error rates compared to

AdaBoost.PL is due to the fact that meta-learning is

an ensemble scheme which improves the

performance of base learners (here the base learner is

Adaboost). The reason why we got higher error rates

on the “yeast” dataset is because the dataset’s size is

too small to build accurate base models with large

split numbers (number of mappers), which is the

same reason as we have explained in the accuracy

performance experiments. As we don’t have the

source code for the AdaBoost.PL algorithm, it is

difficult for us to do the statistical significance test on

the performance results.

http://www.ijartet.com/
http://www.journalofbigdata.com/content/2/1/14/table/T1
http://www.journalofbigdata.com/content/2/1/14/table/T1
http://www.journalofbigdata.com/content/2/1/14/table/T2
http://www.journalofbigdata.com/content/2/1/14/table/T2
http://www.journalofbigdata.com/content/2/1/14/table/T3

 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

16

Table 3. Error rates comparison between

AdaBoost.PL and MMR

Speedup: to demonstrate the effectiveness of the

MapReduce framework of MMR, we tested the

speedup performance of the datasets: “kdd”, “isolet”,

“org”, “census”, “S1” and “S2”. We calculate

speedup as the ratio of the training time for a single

computing node over that of a number of computing

nodes processing in parallel (we vary this number

from 5, 10, 15 to 20). The detailed results of speedup

for different datasets are shown in Table 4. To

illustrate the speedup performance of different

datasets, we plot their speedup results in Fig. 5. As

can be seen from this figure, the larger the dataset

size, the higher speedup the program achieves. The

reason is that the communication cost between

different computing nodes dominates small datasets,

while the computation cost dominates large datasets.

Fig. 5. Speedup results for 6 data sets

Table 4. Speedup results for different computing

nodes

It should be noted that the values of speedup

sometimes are higher than the number of nodes. For

instance, for dataset S1, when the number of nodes is

10, the speedup value is 14.6584. This nonlinear

performance can be explained in terms of

computational complexity as follows.

The computation complexity of the AdaBoost

algorithm f1 depends on the number of iterations T,

the number of instances N, the number of

attributes D. Since we set the base learner of the

AdaBoost algorithm as decision stump, f1 can be

expressed as

(11)

First sorting of the data attributes has a computationl

complexity of Θ(D N l o g N), this is done before the

iteration starts. After the iteration starts, in each

iteration the time complexity of the decision stump

is Θ(D N). As there are T iterations, the

computational comlexity for the iterations part is Θ(D

N T). Therefore, the total computational complexity

is Θ(D N(l o g N+T)).

For the training process of the MMR algorithm,

assume the number of computing nodes is M, the

computational complexity f2 is

(12)

Based on f1 and f2 , speedup can be derived as

(13)

Thus, theoretically it can be inferred that the value of

speedup is expected to be larger than M: the number

of computing nodes.

Conclusion

We proposed a Meta-MapReduce algorithm MMR

implemented with MapReduce. This algorithm

tackles the difficulties for supporting iterations in

Hadoop. The experimental results show that the error

rates of MMR are smaller than the results of a single

node on 9 out of 11 datasets. The comparison

between MMR and the parallelized Adaboost

algorithm AdaBoost.PL shows that PML has lower

error rates than AdaBoost.PL on 7 out of 8 datasets.

http://www.ijartet.com/
http://www.journalofbigdata.com/content/2/1/14/table/T3
http://www.journalofbigdata.com/content/2/1/14/table/T4
http://www.journalofbigdata.com/content/2/1/14/figure/F5
http://www.journalofbigdata.com/content/2/1/14/figure/F5
http://www.journalofbigdata.com/content/2/1/14/figure/F5
http://www.journalofbigdata.com/content/2/1/14/figure/F5
http://www.journalofbigdata.com/content/2/1/14/figure/F5
http://www.journalofbigdata.com/content/2/1/14/table/T4
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i17.gif
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i18.gif
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i19.gif

 ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 Available online at www.ijarbest.com

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST)
Vol. 2, Special Issue I, January 2016 in association with

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016

17

The speedup performance of MMR proves that

MapReduce improves the computation complexity

substantially on big datasets. In summary, our MMR

algorithm has the ability to reduce computational

complexity significantly, while producing smaller

error rates.

For the MMR algorithm, since the base learners

which process part of the original datasets work in

one single machine sequentially, in the next step, we

plan to parallelize this step and distribute the

computation to more computing nodes for the sake of

increasing the computational efficiency. Moreover,

we used the same algorithm: AdaBoost.M1 for all the

computing nodes in this work. We intend to use

different algorithms on different computing nodes to

increase the accuracy further. The reason is that

Meta-learning belongs to the ensemble learning

paradigm of machine learning and the more diverse

the base learners are, the higher accuracy could be

expected.

References

1. Rajaraman A, Ullman JD (2011) Mining of

Massive Datasets. Cambridge University

Press, Cambridge.

2. White T (2012) Hadoop: The Definitive

Guide. " O’Reilly Media, Inc.", California.

3. Venner J, Cyrus S (2009) Pro Hadoop. vol.

1. Springer, New York.

4. Lam C (2010) Hadoop in Action. Manning

Publications Co., New York.

5. Panda B, Herbach JS, Basu S, Bayardo RJ

(2013) Planet: massively parallel learning of

tree ensembles with mapreduce. Proc.

VLDB Endowment 2(2):1426-1437

6. Palit I, Reddy CK (2012) Scalable and

parallel boosting with mapreduce. IEEE

Trans Knowl Data Eng 24(10):1904-1916

7. Weimer M, Rao S, Zinkevich M (2010) A

convenient framework for efficient parallel

multipass algorithms In: LCCC: NIPS 2010

Workshop on Learning on Cores, Clusters

and Clouds.

8. Agarwal A, Chapelle O, Dudík M, Langford

J (2014) A reliable effective terascale linear

learning system. J Mach Learn Res 15:1111-

1133

9. Bancilhon F, Ramakrishnan R (1986) An

Amateur’s Introduction to Recursive Query

Processing Strategies. vol. 15. ACM, New

York, NY, USA.

a.
10. Amazon Elastic Compute Cloud:Amazon

EC2..

a. http://aws.amazon.com/ec2/ webcit

e

b.

http://www.ijartet.com/
http://www.journalofbigdata.com/sfx_links?ui=s40537-015-0021-4&bibl=B30
http://www.journalofbigdata.com/sfx_links?ui=s40537-015-0021-4&bibl=B4
http://www.journalofbigdata.com/sfx_links?ui=s40537-015-0021-4&bibl=B5
http://www.journalofbigdata.com/sfx_links?ui=s40537-015-0021-4&bibl=B6
http://www.journalofbigdata.com/sfx_links?ui=s40537-015-0021-4&bibl=B10
http://www.journalofbigdata.com/sfx_links?ui=s40537-015-0021-4&bibl=B17
http://www.journalofbigdata.com/sfx_links?ui=s40537-015-0021-4&bibl=B23
http://www.journalofbigdata.com/sfx_links?ui=s40537-015-0021-4&bibl=B27
http://aws.amazon.com/ec2/
http://www.webcitation.org/query.php?url=http://aws.amazon.com/ec2/&refdoi=10.1186/s40537-015-0021-4
http://www.webcitation.org/query.php?url=http://aws.amazon.com/ec2/&refdoi=10.1186/s40537-015-0021-4
http://www.journalofbigdata.com/sfx_links?ui=s40537-015-0021-4&bibl=B28

