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Abstract 

We have entered the big data age. Knowledge 

extraction from massive data is becoming more and 

more urgent. MapReduce provides a feasible 

framework for programming machine learning 

algorithms in Map and Reduce functions. The 

relatively simple programming interface has helped 

to solve machine learning algorithms’ scalability 

problems. However, this framework suffers from an 

obvious weakness: it does not support iterations. This 

makes it difficult for algorithms requiring iterations 

to fully explore the efficiency of MapReduce. In this 

paper, we propose to apply Meta-learning 

programmed with MapReduce to avoid parallelizing 

machine learning algorithms while also improving 

their scalability to big datasets. The experiments 

conducted on Hadoop’s fully distributed mode on 

Amazon EC2 demonstrate that our algorithm Meta-

MapReduce (MMR) reduces the training 

computational complexity significantly when the 

number of computing nodes increases while 

obtaining smaller error rates than those on a single 

node. The comparison of MMR with the 

contemporary parallelized Ad a B oost algorithm,  

 

 

 

Introduction 

We have been rapidly moving from the Terabytes to 

the Petabytes age as a result of the explosion of data. 

The potential value and insights which could be 

derived from massive data sets have attracted 

tremendous interest in a wide range of business and 

scientific applications. It is becoming more and more 

important to organize and utilize the massive 

amounts of data currently being generated. However, 

when it comes to massive data, it is difficult for 

current data mining algorithms to build classification 

models with serial algorithm running on single 

machines, not to mention accurate models. Therefore, 

the need for efficient and effective models of parallel 

computing is apparent. 

Fortunately, with the help of the MapReduce  

infrastructure, researchers now have a simple 

programming interface for parallel scaling up of 

many data mining algorithms on larger data sets. It 

was shown that algorithms which fit the Statistical 

Query model can be written in a certain “summation 

form”. They illustrated 10 different algorithms that 

can be easily parallelized on multi-core computers 

applying the MapReduce paradigm. 

An industrial example of implementing MapReduce 

comes from Google. In 2009, Google proposed 

PLANET: a framework for large-scale tree learning 

using a MapReduce cluster . Their intention in 

building PLANET was to develop a scalable tree 

learner which could achieve comparable accuracy 

performance as the traditional in-memory algorithms 

and also be able to deal with bigger datasets. 

PLANET is used to construct scalable classification 

and regression trees, as well as ensembles of these 

models. It realizes parallelization by dividing tree 

learning into many distributed computations, each 

implemented with MapReduce. 

http://www.ijartet.com/
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Although MapReduce handles large scale 

computation, it doesn’t support iteration. Since there 

are no loop steps available in Hadoop, in order to 

implement loops, an external driver is needed to  

repeatedly submit MapReduce jobs. Since each 

MapReduce job works independently, in order to 

reuse data between MapReduce jobs, the results 

generated by a former MapReduce job are written to 

the Hadoop Distributed File System (HDFS) and the 

next MapReduce job which needs this information as 

inputs reads these messages from HDFS. Obviously, 

this operation doesn’t have the benefits that the 

caching system can bring for the in-memory 

computation. Moreover, owing to data replication, 

disk I/O, and serialization, the approach for creating 

loops inside the original version of Hadoop causes 

huge overheads. The time spent in this process may 

sometimes occupy a major part in the total execution 

time. 

The inefficient creation of loops is a critical 

weakness of Hadoop. For instance, boosting and 

genetic algorithms naturally fit into an iterative style 

and thus cannot be exactly expressed with 

MapReduce. Realizing these algorithms’ 

parallelization requires special techniques. However, 

even if the computations can be modeled by 

MapReduce when there are iterations in a machine 

learning algorithm, the execution overheads are 

substantial as was explained before. 

Currently, there are some approaches which deal with 

the problem of lacking iterations in MapReduce. 

However, they either require substantial change of 

the original MapReduce framework or need 

designing new systems. 

In contrast,we overcome this difficulty by applying 

the concept of Meta-learning. Meta-learning is 

loosely defined as learning from information 

generated by learner(s) and it is applied to coalesce 

the results of multiple learners to improve accuracy. 

One of the advantages of meta-learning is that 

individual classifiers can be treated as black boxes 

and in order to achieve a final system, little or no 

modifications are required on the base classifiers. 

The structure of meta-learning makes it easily 

adapted to distributed learning. 

The method we propose in this paper is much simpler 

in that it eliminates the necessity of considering new 

models and the complexity of implementing them. 

Moreover, our approach requires a one time 

configuration and unlimited times of repetitive usage, 

which is much more advantageous than approaches 

which have to alter their design for different 

algorithms. 

In this paper, we harness the power of meta-learning 

to avoid modifying individual machine learning 

algorithms with MapReduce. Hence, algorithms 

which require iterations in their model can be more 

easily parallelized utilizing the meta-learning schema 

than by altering their own internal algorithms directly 

with MapReduce. Although we focuse on an 

individual machine learning algorithm: Adaboost in 

this paper, the idea and our system can be easily 

extended to other algorithms. 

This paper is organized as follows: section 

“Literature review” introduces work that has 

previously been proposed for solving the iterations 

problem in Hadoop MapReduce; section 

“Background" provides background knowledge about 

MapReduce and Hadoop; section “Framework" 

presents the meta-learning framework and our 

proposed algorithm: Meta-MapReduce (MMR); 

section “Results and discussion" demonstrates the 

performance of MMR in terms of error rates and 

speedup; section “Conclusion" concludes the paper. 

Literature review 

Hadoop the concept similar to MapReduce. The 

difference is that it provides a natural API for 

distributed programming framework aimed at graph 

algorithms. It also supports iterative computations 

over the graph. This is an attribute which MapReduce 

lacks. In Pregel computations,supersteps, a sequence 

of iterations is adopted. With supersteps, a vertex can 

receive information from the previous iteration and 

http://www.ijartet.com/
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also send information to other vertices that will be 

received at a next superstep. However, Pregel focuses 

on graph mining algorithms, while we are interested 

in more general applications. 

As a modified version to iterative programs which is 

absent in the original MapReduce framework. It was 

mentioned that iterative computations were needed 

for Page Rank, recursive relational queries, clustering 

such as k-means, neural network analysis, social 

network analysis and so on. When doing these 

analyses, many iterations are necessary until some 

convergence or abort conditions are met. It was also 

mentioned that manually implementing iterative 

programs by multiple MapReduce jobs utilizing a 

driver program can be problematic. 

Therefore, proposes to automatically run a series of 

MapReduce jobs in loops by adding a loop control 

module to the Hadoop master node. However, 

HaLoop only supports specific computation patterns. 

Twister  is also an enhanced version of MapReduce 

which supports iterative MapReduce computations. 

In the original MapRedcue, in order to realize 

iterations a set of Map and Reduce tasks are called. 

To communicate between each round of a 

MapReduce job, a lot of loading and accessing 

activities are repetitively required. This causes 

considerable performance overheads for many 

iterative applications. In Twister, to reduce these 

overheads and achieve iterative computation, a 

publish/subscribe messaging infrastructure is 

proposed for communication and data transfers. 

Moreover, there are long running map/reduce tasks 

with distributed memory caches. Basically, it is a 

stream-based MapReduce framework. However, this 

streaming architecture between map and reduce tasks 

suffers from failures. Besides, long running 

map/reduce tasks with distributed memory caches is 

not a good scalable approach for each node in the 

cluster having limited memory resources. 

As a scalable machine learning system, Vowpal 

Wabbit (VW) is implemented with the All Reduce 

function (which originates in MPI) in the sake of 

accurate prediction and short training time in an easy 

programming style. By eliminating re-scheduling 

between iterations and communicating through 

network connections directly, fast iterations are 

optimized. Moreover, the map and reduce tasks are 

sped up via a cache aware data format and a binary 

aggregation tree respectively. 

Resilient Distributed Datasets (RDDs) is a 

distributed memory abstraction intended for in-

memory computations on large clusters. It is 

implemented in the system Spark. RDDs addresses 

the problem of data reuse of intermediate results 

among multiple computations, which cannot be 

handled efficiently by current proposed cluster 

computing frameworks such as MapReduce and 

Dryad. The advantage of RDDs compared to an 

abstraction is proposed for more general use such as 

the application of running ad-hoc queries across 

several datasets which are loaded into memory. 

RDDs also absorb the merits from other frameworks. 

These include in-memory storage of specific data, 

control of data partitions to reduce communications 

and recovery from failures efficiently. However, the 

optimization of RDDs is specialized for in-memory 

computation only. 

Iterative MapReduce is an extension of the 

MapReduce programming paradigm, which claims to 

be the most advanced framework for supporting 

iterative computations. In Spark, the programmer has 

to make systems level decisions to recognize what 

data to cache in the distributed main memory. 

However, sometimes the programmer may lose track 

of performance-related parameters in large public 

clusters where these parameters keep changing. To 

tackle this problem which happens in Spark, Iterative 

MapReduce applies the ideas from database systems 

to eliminate the low-level systems considerations via 

the abstraction brought by the relational model. 

Furthermore, it also provides a way for DBMS-

driven optimization. 

Background 

Hadoop 

Large scale data has brought both benefits and 

challenges to the field of machine learning. One of 

the benefits is that we can extract lots of useful 

http://www.ijartet.com/
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information by analyzing such big data. Extracting 

knowledge from massive data sets has attracted 

tremendous interest in the data mining community. In 

the field of natural language processing, it was 

concluded that more data leads to better accuracy. 

That means, no matter how sophisticated the 

algorithm is, a relatively simple algorithm will beat 

the complicated algorithm with more data. One 

practical example is recommending movies or music 

based on past preferences. 

One of the challenges of large scale computing is that 

storing and analyzing massive data is becoming more 

and more difficult. Although the storage capacities of 

hard drives have increased greatly over the years, the 

speeds of reading and writing data have not kept up 

the pace. Reading all the data from a single drive 

takes a long time and writing is even slower. Reading 

from multiple disks at once may reduce the total time 

needed, but this solution causes two problems. 

The first one is hardware failure. Once many pieces 

of hardware are used, the probability that one of them 

will fail is fairly high. To overcome this 

disadvantage, redundant copies of the data are kept, 

in case of data loss. This is how Hadoop’s file 

system: Hadoop Distributed File System (HDFS) 

works. The second problem is how to combine data 

from different disks. Although various distributed 

systems have provided ways to combine data from 

multiples sources, it is very challenging to combine 

them correctly. The MapReduce framework provides 

a programming model that transforms the disk reads 

and writes into computations over sets of keys and 

values. 

Hadoop is an open source Java implementation of 

Google’s MapReduce algorithm along with an 

infrastructure to support distribution over multiple 

machines. This includes its own filesystem HDFS 

(based on the Google File System) which is 

specifically tailored for dealing with large files. 

MapReduce was first invented by engineers at 

Google as an abstraction to tackle the challenges 

brought about by large input data. There are many 

algorithms that can be expressed in MapReduce: 

from image analysis, to graph-based problems, to 

machine learning algorithms. 

In sum, Hadoop provides a reliable shared storage 

and analysis systems. The storage is provided by 

HDFS and the analysis by MapReduce. Although 

there are other parts of Hadoop, HDFS and 

MapReduce are its kernel components. 

MapReduce 

MapReduce simplifies many of the difficulties 

encountered in parallelizing data management 

operations across a cluster of individual machines, 

thus becoming a simple model for distributed 

computing. Applying MapReduce, many 

complexities, such as data partition, tasks scheduling 

across many machines, machine failures handling, 

and inter-machine communications are reduced. 

MapReduce framework 

As a programming model to process big data, there 

are two phases included in the MapReduce programs: 

the Map phase and the Reduce phase [30]. 

Programmers are required to program their 

computations into Map and Reduce functions. Each 

of these functions has key-value pairs at their inputs 

and outputs. The input is application-specific while 

the output is a set of 〈k e y,v a l u e〉 pairs, which are 

produced by the Map function. The key and value 

pairs are expressed as follows: 

 
(1) 

Here k i represents the key for the ith input 

and v i denotes the value associated with the ith 

input.K is the key domain and V is the domain of 

values. Using the Map function, these key-value pairs 

of the input are split into subsets and distributed to 

different nodes in the cluster for processing. The 

processed intermediate results are key-value pairs. 

Therefore, the map function can be obtained as 

 
 

 

(2) 

http://www.ijartet.com/
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(3) 

Here L and W are key and value domains again, 

which represent the intermediate key-value pair 

results.In the map process, each single key-value 

input pairs: (k,v) is mapped into many key-value 

pairs: [(l1 ,x1 ),…,(l1 ,x r )] with the same key, but 

different values. These key-value pairs are the inputs 

for the reduce functions. The reduce phase is defined 

as 

 
(4) 

 
(5) 

The first step in the reduce function is to group all 

intermediate results with the same key together. The 

reason to perform this aggregation is that although 

the input key-value pairs have different key values, 

they may generate the intermediate results with the 

same key values. Therefore, there is a need to sort 

these results and put them together for processing. 

This process is achieved when (L×W) ∗ is processed 

to generate L×W∗ . And these are the inputs for the 

reduce functions. The Reduce process can be 

parallelized like the Map process. And the result is 

that all the intermediate results with the same 

keys: L×W∗ are mapped into a new result list: W∗ . 

In sum, the whole MapReduce process can be 

expressed as 

 
(6) 

As was mentioned before, to realize parallelization 

many map and reduce functions are performed 

simultaneously on various individual machines (or 

nodes in the context of cluster) with each of them 

processing just a subset of the original dataset. 

MapReduce workflow 

In order to do cloud computing, the original data is 

di-vided into the desired number of subsets (each 

subset has a fixed-size) for the MapReduce jobs to 

proceed. And these subsets are sent to the distributed 

file system HDFS so that each node in the cloud can 

access a subset of the data and do the Map and 

Reduce tasks. Basically, one map task processes one 

data subset. 

Since the intermediate results output by the map tasks 

are to be handled by the reduce task, these results are 

stored in each individual machines’ local disk instead 

of HDFS. To perform fault tolerance, another 

machine is automatically started by Hadoop to 

perform the map task again, if one of the machines 

which runs the map functions fails before it produces 

the intermediate results. 

The number of reduce tasks is not determined by the 

size of the input, but specified by the user. If there is 

more than one reduce task, the outputs from the map 

tasks are divided into pieces to feed into the reduce 

functions. Although there are many keys in a map 

tasks’ output, the piece sent to the reduce task 

contains only one key and its values. As each reduce 

task will have the inputs from multiple map tasks, 

this data flow between map tasks and reduce tasks is 

called “the shuffle”. 

Figure 1 depicts the work flow of a generalized 

MapReduce job. To execute such a job the following 

preparation information is need: the input data, the 

MapReduce program and the configuration 

information. As we have discussed before, there are 

two types of tasks involved in a MapReduce job: the 

map tasks and the reduce tasks. To control the job 

execution process, a jobtracker and some tasktrackers 

are configured. The tasks are scheduled by the job 

tracker to run on tasktrackers. And the tasktrackers 

report to the jobtracker about the situations of the 

tasks running. By doing this, if some tasks fail, the 

jobtracker would know it and reschedule new tasks. 

http://www.ijartet.com/
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i3.gif
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Fig. 1. Work flow of MapReduce framework 

A simple word count example 

In order to illustrate the work flow of MapReduce 

and the procedure of how the 〈k e y,v a l u e〉 pairs are 

processed, here we show a simple word count 

program which count the number of consonant and 

vowel letters in the string “MACHINELEARNING”. 

This example is shown in Fig. 2. In the first step, 

each letter is assigned a unique identification number 

picked from 1 to 15. This identification number is the 

“key” and the letter itself is the “value”. Therefore, 

the input has fifteen 〈k e y,v a l u e〉 pairs. Then these 

pairs are split into three partitions and each partition 

is processed by a mapper to generate the intermediate 

〈k e y,v a l u e〉 pairs. Here, the key is either 

“consonant” or “vowel” and the value is still the 

letter itself. The next very important step is that these 

intermediate 〈k e y,v a l u e〉 pairs are sorted and 

merged so that the values which belong to the same 

key are grouped together to form two categories: 

consonant and vowel. In the final step, the reducer 

calculates the number of consonant and vowel letters 

and output the results. 

           

Fig. 2. A word count example with MapReduce 

Hadoop Distributed File System (HDFS) 

As we have seen in the work flow of MapReduce, the 

user’s MapReduce program first needs to be copied 

to the nodes in the cluster in order to perform 

computations. Here the action of copy is to move the 

user’s program to the HDFS so that every node in the 

cluster can access it. In addition to this, every split 

data subset is also stored in HDFS. Thus, the HDFS 

manages the storage across a cluster, and also 

provides fault tolerance. Preventing the data loss 

caused by possible node failure is a very challenging 

task. Therefore, the programming of HDFS is more 

complex than that of regular disk filesystems. 

An HDFS cluster works following the master and 

slave model. The master is called the namenode 

while the slave is called the data node. The 

filesystem’s namespace is managed by the namenode. 

The filesystem’s tree and the metadata for all the files 

and directories are maintained in it. This information 

is stored in the form of two files: the namespace 

image and the edit log. The datanodes are the ones 

that do the real jobs: they store and retrieve blocks 

when they are required to do so by clients or the 

namenode. They also need to transfer back the 

information of the lists of blocks they are storing into 

the name nodes periodically. The reason is that the 

namenode doesn’t store block locations persistently 

and the information is reconstructed from the 

datanodes. Figure 3 illustrates the case when the 

block replication is three and two files 

“/user/aaron/foo”&“/user/aaron/bar” are divided into 

pieces. 

  

Fig.3. Information stored in namenode and datanodes 

By communicating with the namenode and the data-

nodes a client can access the filesystem representing 

the user. The user code doesn’t need to know the 

details of the namenode and datanode as a filesystem 

interface similar to a portable operating system 

http://www.ijartet.com/
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interface (POSIX) is presented to the user by the 

client. The data flow for a file read is demonstrated in 

Fig. 4. When the client wants to read a file in step 1, 

it opens an instance of DistributedFileSystem which 

will communicate with the namenode to obtain the 

locations for the blocks of files in step 2. The 

namenode provides the addresses for all datanodes 

which hold replications of the blocks. These 

addresses are then sorted according to their distance 

to the client and the closest datanode’s address is 

chosen. In step 3, the client reads the data block 

through the FSDataInputStream which is returned by 

the DistributedFileSystem. In step 4, it reads the first 

data block from the closest datanode. After finishing 

reading the block in step 4, the datanode is closed and 

it continues to read the next block which also comes 

from the closest datanode in step 5. This continues 

for a number of cycles until the client has finished 

reading all the blocks it needs. In the final step: step 

6, the FSDataInputStream is closed. 

            

Fig. 4. Client reads data from datanodes through 

HDFS 

In the namenode and datanodes style, there is a risk 

for namenode failure. Once the namenode fails there 

would be no information available to retrieve the files 

from blocks on the datanodes and all files on the 

filesystem would also be lost. In order to handle 

potential namenode failures, Hadoop provides two 

choices. The first one consists of allowing the 

namenode to write its persistent state to multiple 

filesystems. Usually, this is accomplished by writing 

to both the local disk and a remote NFS mount. The 

second option is to run a secondary namenode which 

keeps a copy of the merged namespace image to be 

used in case of namenode failure. 

Research design and methodology 

In this section, we first take the AdaBoost.M1 

algorithm as an example to explain why it is 

inefficient for the original MapReduce configuration 

in Hadoop to do iterations for machine learning 

algorithms. Then we review the Meta-learning 

algorithm and propose our framework MMR which is 

implemented with the programming model of 

MapReduce on Hadoop. As will be introduced in the 

following section, the process of building and testing 

the base classifiers of meta-learning can be executed 

in parallel, which makes meta-learning easily 

adaptable to distributed computation. 

Problems with MapReduce for Iterations 

The AdaBoost algorithm generates a set of 

hypotheses and they are combined through weighted 

majority voting of the classes predicted by the 

individual hypotheses. To generate the hypotheses by 

training a weak classifier, instances drawn from an 

iteratively updated distribution of the training data 

are used. This distribution is updated so that instances 

misclassified by the previous hypothesis are more 

likely to be included in the training data of the next 

classifier. Consequently, consecutive hypotheses’ 

training data are organized toward increasingly hard-

to-classify instances. AdaBoost.M1 was designed to 

extend AdaBoost from handling the original two 

classes case to the multiple classes case. The detailed 

algorithm is shown in Algorithm 1. 

In order to implement this algorithm using 

MapReduce, for T iterations T MapReduce jobs need 

to be submitted by the a driver program. This driver 

program also needs to determine for each iteration t 

whether this abortion condition ε t >1/2 is met. In this 

case, the number of MapReduce jobs is smaller than 

T. 

There are many problems with this implementation. 

First, the training data sent to each MapReduce job is 

dependent on each other as each taining data 

subset S t is drawn from the 

distribution D t (Algorithm 1, line 4) and this 

distribution is updated based on the results of the 

previous MapReduce job. This means these 

http://www.ijartet.com/
http://www.journalofbigdata.com/content/2/1/14/figure/F4
http://www.journalofbigdata.com/content/2/1/14/figure/F4
http://www.journalofbigdata.com/content/2/1/14/figure/F4
http://www.journalofbigdata.com/content/2/1/14/figure/F4
http://www.journalofbigdata.com/content/2/1/14/figure/F4


                                                                                                                                   ISSN 2395-695X (Print) 

                                                                                                                                                                     ISSN 2395-695X (Online)    

                                                                                                                                                 Available online at www.ijarbest.com  

 

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST) 
Vol. 2, Special Issue I, January 2016 in association with 

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR 

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016 

 

12 

 

MapReduce jobs cannot be executed in parallel as 

they have to wait for the distribution D t from the 

previous MapReduce job. 

Second, every time a MapReduce job starts it needs 

to read data from the HDFS where the previous 

MapReduce job has stored the distribution D t which 

will help select the training subset S t. After this 

MapReduce job finishes, it again writes its results 

into the HDFS. For T iterations, the communication 

overhead is substaintial as data are re-loaded, re-

saved and re-processed for Ttimes. Consequently, a 

lot of CPU resources, network bandwidth and I/O are 

wasted. For smaller datasets, it becomes a major 

factor which reduces the performances. 

Third, as we mentioned before, a driver program is 

required for each MapReduce job to check the 

termination condition: ε t >1/2. This driver progam is 

an extra MapReduce job and causes overheads as 

extra tasks need to be scheduled, extra data need to 

read and save to HDFS, extra networks resources are 

demanded to move these data. 

Meta-learning Algorithm 

Every learning algorithm is subject to inductive bias. 

This means that every algorithm will search for a 

solution in a specific way which may or may not be 

appropriate for the problem at hand. In the No Free 

Lunch (NFL) theorems, it was stated that there is no 

universally best algorithm for a broad problem 

domain. Therefore, it is beneficial to build a 

framework to integrate different learning algorithms 

to be used in diverse situations. Here we present the 

structure of meta-learning. 

Meta-learning is usually referred to as a two level 

learning process. The classifiers in the first level are 

called base classifiers and the classifier in the second 

level is the meta-learner. This meta-learner is a 

machine learning algorithm which learns the 

relationships between the predictions of the base 

classifiers and the true class. One advantage of this 

schema is that adding or deleting the base classifiers 

can be performed relatively easily since no 

communications are required between them in the 

first level. 

Three meta-learning strategies: combiner, arbiter and 

hybrid are proposed in to combine the predictions 

generated by the first level base learners. Here we are 

focusing on the combiner strategy. For this strategy, 

depending on how we generate the meta-level 

training data, there are three schemes as follows: 

Class-attribute-combiner:a meta-level training 

instance includes the training features, the predictions 

by each of the base classifiers and the true class for 

test instance; 

Binary-class-combiner: for this rule, the meta-level 

instance consists of all the base classifiers’ 

predictions for all the classes and the true class for 

the test instance; 

Class-combiner: it is similar to the binary-class-

combiner except that this rule only contains the 

predictions for the predicted class from all the base 

classifiers and the true class. 

In the case of three base classifiers, we represent the 

predictions of these classifiers on a training 

instance X as {P1 (X),P2 (X),P3 (X)}, the attribute 

vector for X is 〈x1 ,x2 ,⋯,x n 〉 if the number of 

attributes is n, the number of classes is m, the true 

class for X is expressed as l a b l e(X). Then the meta-

level training instance for X can be expressed as: (7) 

for the class-attribute-combiner, (8) for the binary-

class-combiner and (9) for the class-combiner. 

 
(7) 

 
(8) 

 
(9) 

In the methodology we will propose in section Meta-

MapReduce (MMR), the third rule: the class-

combiner rule is applied. This combiner rule is not 

only employed in the training process but also in the 

testing process to generate the meta-level test data 

http://www.ijartet.com/
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i7.gif
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i8.gif
http://www.journalofbigdata.com/content/inline/s40537-015-0021-4-i9.gif


                                                                                                                                   ISSN 2395-695X (Print) 

                                                                                                                                                                     ISSN 2395-695X (Online)    

                                                                                                                                                 Available online at www.ijarbest.com  

 

International Journal of Advanced Research in Biology Ecology Science and Technology (IJARBEST) 
Vol. 2, Special Issue I, January 2016 in association with 

KARUR VELALAR COLLEGE OF ARTS AND SCIENCE FOR WOMEN, KARUR 

Conference on Emerging Trends and Functional Applications of Computer Technology - 12th January 2016 

 

13 

 

based on the new test instance. The procedure for 

meta-learning applying the combiner rule is 

described as follows: for a 

dataset S={(y n ,x n ),n=1,⋯,N} with y n as the nth 

class and x n as the nth feature values for instance n. 

Then for J-fold cross validation, this dataset is 

randomly split into J data subsets: S1 ,⋯,S j ,⋯,S J . 

For the jth fold, the test dataset is denoted as S j and 

the training dataset is expressed as S−j =S−S j . Then 

each of the training datasets is again split randomly 

into two almost equal folds. For instance, S−j is split 

into T j1 ,T j2 . We assume that there are L level-0 base 

learners. 

Therefore, for the jth round of cross validation, in the 

training process, first T j1 is used to train each of the 

base learners to 

generate L models: M j11 ,⋯,M j1l ,⋯,M j1L . 

Then, T j2 is applied to test each of the generated 

models to generate the predictions. These predictions 

are used to form the first part of the meta-level 

training data. The second part of these data is 

produced by generating the base models on T j2 and 

testing the models on T j1 . If there are G instances 

in S−jand the prediction generated by model M j1L is 

denoted as Z Lg for instance x g , then the generated 

meta-level training data can be expressed as 

 
(10) 

This meta-level training data is the combination of 

the first and second parts’ predictions. Based on these 

data, the level-1 model is generated as . The last 

step in the training process is to train all the base 

learners on S−j to generate the final level-0 

models: M1 ,⋯,M l ,⋯,M L . The whole training 

process is also shown in Fig. 4. 

In the test process, to generate the meta-level test 

data, S j is used to test the level-0 base 

models M1 ,⋯,M l ,⋯,M L generated in the training 

process. For instance, for the instance x test in Sj , the 

meta-level test instance can be obtained as 

(Z1 ,⋯,Z l ,⋯,Z L )). All the meta-level test data are 

feed into the meta-level model  to generate the 

predictions for these test data. We also present the 

pseudo code for the meta-learning training algorithm 

for the jth cross validation training process in 

Algorithm 2. 

 

Meta-MapReduce (MMR) 

The in-memory meta-learning presented in section 

Meta-learning Algorithm and the distributed meta-

learning which we are going to provide in this section 

differ as follows. In in-memory meta-learning, the 

last step in the training process is to generate the final 

base classifiers by training all the base classifiers on 

the same whole training data. In contrast, the 

distributed meta-learning has training and validation 

datasets. Since each training data is very big and split 

across a set of computing nodes, there is no way that 

the final base classifiers can be trained on the whole 

training datasets. In the end, each computing node 

retains their own base classifiers obtained through 

training on their share of training data. 

Our MMR algorithm includes three stages: Training, 

Validation and Test. For the base learning algorithms, 

we used the same machine learning algorithm. The 

number of base learning algorithms is equal to that of 

the mappers. We applied map functions without 

reduce functions as the map functions already 

generates the base classifiers we need in the training 

process and no further procedures are required. 

It is also possible to use different base learning 

algorithms. But in order to compare our results with 

the parallel Adaboost algorithm: AdaBoost.PL 

in [10], we used the same base learning algorithm. 

MMR and AdaBoost.PL is very similar at the 

beginning of the training process in that they both 

split the original data into multiple partitions and 

train each part on different computing node with the 

AdaBoost.M1 algorithm with the same base learner. 

The difference is that: MMR uses the validation 

dataset to get the predictions from these base 

classifiers and then use these predictions to train a 

meta-learner algorithm; Adaboost.PL sorts the 

hypotheses generated from all the iterations from 

each computing node and then by merging them 

together a final classifier is generated. 
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MMR Training: in the training process, a number of 

base classifiers are trained on the training data. This 

task requires a number of mappers. The pseudo code 

is given in Algorithm 3 and the detailed procedure is 

described as follows. 

Let 

 be the training data assigned to the mth mapper 

where m∈{1,⋯,M} and n m is the number of instances 

in the mth mapper’s training data. The map function 

trains the base classifier on their respective split data 

sets (line 3). Each base classifier is built in parallel on 

idle computing nodes selected by the system. The 

trained model is then written to the output path (line 

4). Finally, all the trained base models are collected 

and stored in the output file (i.e., the HDFS) (line 6). 

MMR Validation: in the validation process, the meta-

level training data is obtained and the meta-learner is 

trained based on these data. The pseudo code is 

shown in Algorithm 4 and the steps are described as 

follows: 

Generate meta-level training data: the validation data 

is split across P mappers. Each mapper will execute 

the process of testing all the base classifiers (line 4). 

Instead of generating the predicted labels, the 

predicted probabilities P D m for each of the classes 

from all the base classifiers are collected and put 

together (line 6). Then, the meta-level training 

instances M I p are made up by all the base 

classifiers’ prediction distributions PD (as attributes) 

and true labels of the validation data  (as 

labels) (line 8). The next step is that each map 

function outputs the 〈key,value〉 

pairs . Here,the key is the true 

labels of the validation data:  while value is 

the meta-instances M I p (line 9). At this point, the 

map tasks are finished and the total meta-

instances MI are organized together from all the 

outputs of the mappers (line 13). 

Train meta-learner: let the total number of classes 

be NC. For each class, new meta-instances: f i l t e 

r n c (M I) are generated by selecting the prediction 

probabilities corresponding to this class from MI (as 

attributes) and setting the class label to be 1 if it 

belongs to this class, or 0 if not. The meta-classifier 

is then trained on these new instances and the trained 

model for each class is set as h n c (line 16). As a 

result, each class will have its own built meta-

classifier. The number of meta-classifiers equals to 

the number of classes. In the end, all the trained 

meta-classifiers are sorted together according to the 

classes and saved (line 18). 

MMR Test: in the test process, the meta-level test 

data are generated and the meta-classifiers 

(h1,⋯,h N C ) are tested. The pseudo code is shown in 

Algorithm 5. 

 

The following explains the processes: 

meta-level test data: this part is similar to the part of 

generating meta-level training data in the validation 

process. The only difference is that the input data are 

the test data. This part is shown through lines 2-14. 

Test (h1 ,⋯,h N C ): for each instance M I∗ [i] in the 

meta-instances M I∗ , the probability p r o b n cfor 

each class is obtained by classifying the 

corresponding meta-classifier h n c on a new meta-

instance f i l t e r n c (M I∗ [i]) (line 17). This instance 

is generated the same way as f i l t e r(M I) in the 

validation process. The probabilities for all classes 

are then summed (line 18) and normalized (line 21). 

The predicted label l i is found by seeking the 

class ID of the calculated normalized highest 

probabilities (line 23). Finally, the predicted labels 

for all the test instances are returned (line 25). 

Results and discussion 

In this section, we compare the error rates of our 

PML algorithm with the meta-learning method on 

one single node to figure out if there would be an 
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impact on the accuracy performance when we 

increase the number of computing nodes. We also 

compare our algorithm’s performance with the 

parallel Adaboost algorithm proposed. The 

comparison is worthwhile as this parallel Adaboost 

algorithm directly makes Adaboost scalable using 

MapReduce with complicated procedures which we 

will introduce in the following sub-section. Finally, 

to demonstrate the efficiency of this MapReduce 

framework: PML, we also show the speedup  

performance when we increase the number of 

computer nodes. 

Experiment Settings 

The experiments are deployed on Amazon EC2 with 

the instance type: m1.small. Each instance’s 

configuration is as follows: 1.7 GHz 2006 Intel Xeon 

processor, 1.7 GB memory, 160 GB storage. We 

employed 20 instances and each of them is 

configured with a maximum of 2 map tasks and 1 

reduce task (we don’t have reduce tasks for PML) for 

task trackers. 

For the accuracy experiments, we used 11 real-world 

data sets with different disk sizes. For the speed up 

performance, we applied 2 synthetic datasets and 4 

real-world datasets. The details of the data sets can be 

found in Table 1. These data sets can be downloaded 

from the UCI repository and other resources. The 

first 8 datasets are the same as in  Datasets S1 and S2 

are synthetic datasets which we generated applying 

the RDG1 data generator in WEKA  data mining tool 

with default parameter settings. 

Table 1. Datasets used in our experiments 

Performance Results 

We applied stratified sampling on each of the 

datasets in order to form training, validation and test 

partitions assuring that the number of instances for 

each of them, respectively, are 36/50, 9/50 and 5/50 

of the original data and the classes are uniformly 

distributed. The accuracy results we obtained are 10-

fold cross validation results. In the experiments, the 

number of mappers in the training process is 

determined by the number of splits of the training 

data. To evenly distribute the classes, the training 

data is split equally among the mappers using the 

stratification technique. The base learning algorithm 

we used is Adaboost with decision stumps (decision 

trees with only one non-leaf node) as weak learners. 

This configuration is the same as that of the 

Adaboost.PL algorithm. The meta-learner we applied 

is Linear Regression. 

Accuracy Performance: The error rates of PML when 

the number of computing nodes changes from 1 to 20 

are shown in Table 2. It can be seen from this table 

that compared to the one mapper case our PML 

algorithm has lower or equivalent error rates in 9 out 

of 11 datasets. Although the error rates increased in 

datasets “yeast” and “musk”, the behavior of yeast is 

mainly due to the fact that it has the smallest data 

size. When the data is split among different mappers, 

the more mappers there are, the smaller the partition 

each mapper has, which leads to inaccurate base 

models. This eventually produces higher error rates 

in the final ensemble model. 

Table 2. Error rates for different number of nodes 

Comparison with Adaboost.PL: We also compared 

the error rates obtained by our MMR and the 

parallelized Adaboost algorithm Ada-Boost.PL. The 

comparison is based on 8 of the datasets in as we 

could not find the datasets “swsequence” and 

“biogrid” which they also tested. The comparison 

results are shown in Table 3. It can be seen that our 

PML algorithm has the lowest error rates in 7 out 8 

datasets. The reduction of error rates compared to 

AdaBoost.PL is due to the fact that meta-learning is 

an ensemble scheme which improves the 

performance of base learners (here the base learner is 

Adaboost). The reason why we got higher error rates 

on the “yeast” dataset is because the dataset’s size is 

too small to build accurate base models with large 

split numbers (number of mappers), which is the 

same reason as we have explained in the accuracy 

performance experiments. As we don’t have the 

source code for the AdaBoost.PL algorithm, it is 

difficult for us to do the statistical significance test on 

the performance results. 
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Table 3. Error rates comparison between 

AdaBoost.PL and MMR 

Speedup: to demonstrate the effectiveness of the 

MapReduce framework of MMR, we tested the 

speedup  performance of the datasets: “kdd”, “isolet”, 

“org”, “census”, “S1” and “S2”. We calculate 

speedup as the ratio of the training time for a single 

computing node over that of a number of computing 

nodes processing in parallel (we vary this number 

from 5, 10, 15 to 20). The detailed results of speedup 

for different datasets are shown in Table 4. To 

illustrate the speedup performance of different 

datasets, we plot their speedup results in Fig. 5. As 

can be seen from this figure, the larger the dataset 

size, the higher speedup the program achieves. The 

reason is that the communication cost between 

different computing nodes dominates small datasets, 

while the computation cost dominates large datasets. 

     

Fig. 5. Speedup results for 6 data sets 

Table 4. Speedup results for different computing 

nodes 

It should be noted that the values of speedup 

sometimes are higher than the number of nodes. For 

instance, for dataset S1, when the number of nodes is 

10, the speedup value is 14.6584. This nonlinear 

performance can be explained in terms of 

computational complexity as follows. 

The computation complexity of the AdaBoost 

algorithm f1 depends on the number of iterations T, 

the number of instances N, the number of 

attributes D. Since we set the base learner of the 

AdaBoost algorithm as decision stump, f1 can be 

expressed as  

 
(11) 

First sorting of the data attributes has a computationl 

complexity of Θ(D N l o g N), this is done before the 

iteration starts. After the iteration starts, in each 

iteration the time complexity of the decision stump 

is Θ(D N). As there are T iterations, the 

computational comlexity for the iterations part is Θ(D 

N T). Therefore, the total computational complexity 

is Θ(D N(l o g N+T)). 

For the training process of the MMR algorithm, 

assume the number of computing nodes is M, the 

computational complexity f2 is 

 
(12) 

Based on f1 and f2 , speedup can be derived as 

 
(13) 

Thus, theoretically it can be inferred that the value of 

speedup is expected to be larger than M: the number 

of computing nodes. 

Conclusion 

We proposed a Meta-MapReduce algorithm MMR 

implemented with MapReduce. This algorithm 

tackles the difficulties for supporting iterations in 

Hadoop. The experimental results show that the error 

rates of MMR are smaller than the results of a single 

node on 9 out of 11 datasets. The comparison 

between MMR and the parallelized Adaboost 

algorithm AdaBoost.PL shows that PML has lower 

error rates than AdaBoost.PL on 7 out of 8 datasets. 
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The speedup performance of MMR proves that 

MapReduce improves the computation complexity 

substantially on big datasets. In summary, our MMR 

algorithm has the ability to reduce computational 

complexity significantly, while producing smaller 

error rates. 

For the MMR algorithm, since the base learners 

which process part of the original datasets work in 

one single machine sequentially, in the next step, we 

plan to parallelize this step and distribute the 

computation to more computing nodes for the sake of 

increasing the computational efficiency. Moreover, 

we used the same algorithm: AdaBoost.M1 for all the 

computing nodes in this work. We intend to use 

different algorithms on different computing nodes to 

increase the accuracy further. The reason is that 

Meta-learning belongs to the ensemble learning 

paradigm of machine learning and the more diverse 

the base learners are, the higher accuracy could be 

expected. 
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