
Security policy composition and Rollback

Recovery for Composite Web Services

Author: P.Karthi, P.Ganesh Assistant Professor, Department of Computer Technology

SNMV College of Arts & Science, Malumachampatti, Coimbatore -50, India

P.Ganesh Assistant Professor,

Department of Computer Technology, Ayya Nadar Janaki Ammal College

E-mail: karthi86ucan@gmail.com

ABSTRACT- Service Oriented Architectures

(SOA) promise a flexible approach to utilize

distributed capabilities that may be located in

independent trust domains. In this project we

propose a service-oriented reliability model that

dynamically calculates the reliability of composite

web services with rollback recovery based on the

real-time reliabilities of the atomic web services of

the composition. Securing an SOA application is an

important non functional requirement. However,

specifying a security policy for a composite service

is not easy because the policy should be consistent

with the policies of the external services invoked in

the composite process. Our model is a hybrid

reliability model based on both path-based and

state-based models. Many reliability models assume

that failure or error arrival times are exponentially

distributed. This is inappropriate for web services

as error arrival times are dependent on the operating

state including workload of servers where the web

service resides. In real-world applications, where

web services could contain quite a large number of

atomic services, the calculus as well as the

computing complexity increases greatly. We

evaluate and classify of different SOA-platforms

and security frameworks regarding secure cross-

organizational service invocation. We propose to

evaluate the performance implications of our

security infrastructure to the overall service

response time. We also propose a method for

composing and validating policies in composite

services according to rules that depend on the

variable assignments and their properties. Our

contribution is defining the process-independent

policy composition rules and providing a method

for semi automatically creating a security policy of

the composite service.

Keywords

 SOA application, Composite process, QoS of

web services, Rollback recovery, WSDL

document, BPEL process, Recovery block

technique, Cross-organizational service

1. INTRODUCTION

SOA is convenient for satisfying functional

requirements, but it is more difficult to satisfy the

non functional requirements such as security. The

security requirements are specified as security

policies for the composite service, but there is no

clear way to define the policies for the composite

service. Currently, a developer needs to define the

composite policies by hand by referring to the

policies of the invoked services in the composite

process. However, it is very hard to complete a

policy composition without any inconsistencies,

because the process definitions and security policies

are complex and it is not clear how to compose

policies to maintain consistency. In the next

generation of systems, web services represent the

most important computing paradigms for

configuring applications. A lot of work has

appeared on developing the middle-ware

framework for these web services including the

messaging structure, the typical composition of

nodes, workflow architectures, orchestration, and

choreography of these services. The service

composition and selection are central activities in

service-oriented computing, and the Quality of

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 32 Vol. 3, Special Issue 36, March 2017

Service QoS of a Service-Oriented Architecture

SOA plays a key role to appropriately drive these

activities. A key issue for the QoS analysis of SOA

is parameter estimation. The properties of basic

services are not easily made available from service

providers. For the domain of secured services we

propose a novel approach to automated composition

of services based on their security policies. Given a

community of services and a goal service, we

reduce the problem of composing the goal from

services in the community to a security problem

where an intruder should intercept and redirect

messages from both the community services and the

goal in such a way that the goal service reaches its

final state, defined as an insecure one.

The main objective is to minimize the maximum

time that may be spent in saving the states of the

system. The main objective is to develop service-

Oriented reliability model enhance the QoS of web

services’ compositions. Creating a consistent

composite policy from atomic policies applied to

atomic services that consist of a composite service.

We also address the problem of checking that the

composed service satisfies some security properties.

For the validation of the synthetised service we can

employ directly our cryptographic protocol

validation tools. In a service federation, however,

there might exist multiple models with different

semantics or expressiveness for each federation

member. In addition, access control decisions in

classical models are based on identities and

permissions assigned to them.

1.1 Service Level Agreements

To establish a federation with a new business

partner, the manufacturer and the new supplier have

to agree on IT-level and business process-level

service parameters. This agreement affects the

access control decision that is also based on

environment attributes, such as time and access

statistics.

1.2 Dynamic Adaptation of Security Policies

Once a federation is established, continuous

changes relating to permissions assigned within a

partner’s domain might be necessary. For example
changing personal, system evolution, and

administrative, or ad-hoc delegation of access

permissions might be a reason, but this information

must not be mediated to federation members in

order to prevent flooding and revocation of

authorization information. We analyse existing

security frameworks with respect to access control

for cross-organisational composite web services.

Although, these frameworks and platforms focus on

entirely different security and SOA aspects, they

can be categorized in different groups based on

their application to protect a service in a federated

environment. We propose a classification

depending on the distribution of authentication and

authorization information. For each category we

present existing example frameworks along with a

short description. Web service composition is about

the combination of web services from different

providers in order to create a more sophisticated,

value-added web service. Most proposed

composition languages follow the workflow

paradigm, whereby the composition is defined as a

workflow process that determines which web

services participate in the composition.

BPEL allows the specification of interactions

among the web services that participate in the

composition according to various control-flow

patterns. It provides three activities for web service

interaction: <invoke> for invoking an operation on

a partner web service, <reply> for sending a

response to a client, and <receive> for blocking

until a client request is received. These activities

produce a message-based interaction between the

composite web service and its partners, laying

down the functional logic of a composite web

service.

2. RELATED WORK

Architecting service-oriented systems is a complex

design activity. It involves making trade-offs

among a number of interdependent design decisions,

which are drawn from a range of concerns by

various software stakeholders. In order to achieve

effective and efficient SOC design we believe a

careful study of architectural styles that can form

the reference architecture is important. Hence, this

paper provides a study of architectural styles for the

reference architecture of SOC-based software

systems. The author proposes a classification

scheme for the architecture styles. These

architectural styles are extracted from existing

research projects and industry practices based on

our classification scheme. For all those identified

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 33 Vol. 3, Special Issue 36, March 2017

styles, author presents an evolution trend driven by

engineering principles for Internet-scale systems [1].

A recent survey on Web services adoption, for

example, shows that quality requirements such as

system security, scalability, reliability, flexibility,

and performance have become the most important

criteria for a company to choose Web services

solutions.

Web services represent an alternative basis for the

rapid development of application systems. Much of

the research on composition and orchestration of

web services centers around functional sufficiency

and performance. Non-functional characteristics

like reliability and security play an important role in

the selection of web services by system architects.

This paper provides a basis for measuring reliability

of an application system that is assembled using

web services. Assembling an application using web

services requires that the underlying business

process be clearly specified, appropriate web

services be selected for each task, and the set of

selected services integrated into a cohesive

application. Several factors need to be considered

when selecting appropriate web services to support

a specific task. At the outset, the requirements of

the task must be met by the functionality provided

by the web service [2]

The author observed that both the composite and

constituent Web services often constrain the

sequences of invoking their operations and,

therefore, author proposes using a finite state

machine to model the permitted invocation

sequences of Web service operations. We assign

each state of execution an aggregated reliability to

measure the probability that the given state will

lead to successful execution in the context where

each Web service may fail with some probability.

We show that the computation of aggregated

reliabilities is equivalent to eigenvector

computation and adopt the power method to

efficiently derive aggregated reliabilities. In

orchestrating a composite Web service, the author

proposes two strategies to select Web services that

are likely to successfully complete the execution of

a given sequence of operations [3].

The ability to automatically compose security

policies created by multiple organizations is

fundamental to the development of scalable security

systems. The diversity of policies leads to conflicts

and the need to resolve priorities between rules. In

this paper author explore the concept of defeasible

policy composition, wherein policies are

represented in defeasible logic and composition is

based on rules for non-monotonic inference. This

enables policy writers to assert rules tentatively;

when policies are composed the policy with the

firmest position takes precedence. In addition, the

structure of our policies allows for composition to

occur using a single operator; this allows for

entirely automated composition [4].

Automatic composition of web services is a

challenging task. Many works have considered

simplified automata models that abstract away from

the structure of messages exchanged by the services.

For the domain of secured services (using e.g.

digital signing or time stamping) the author

proposes a novel approach to automated

composition of services based on their security

policies. Given a community of services and a goal

service, we reduce the problem of composing the

goal from services in the community to a security

problem where an intruder should intercept and

redirect messages from the service community and

the goal in such a way that the goal service reaches

its final state, considered as insecure.

The approach amounts to collecting the constraints

on messages, parameters and control flow from the

components services and the goal service

requirements. A constraint solver checks the

feasibility of the composition, possibly adapting the

message structure, while preserving the semantics,

and displays the service composition as a message

sequence chart. Moreover the resulting composed

service can be verified automatically for ensuring

that it cannot be subject to active attacks from

intruders [5].

After the modelling stage, the fault tolerance and

execution error at the web service level were

introduced by using an adaption of the recovery

block technique. The broker is supposed to have a

built-in acceptance testing mechanism that

examines the results feedback from a particular web

service. If the returned results (the feedback results)

can be deemed acceptable, it proceeds with the

computation to the next web service. If they are

considered to be unacceptable, they can involve

rollback and another component web service to

carry out the same function previously required

from the faulty component web service. This can be

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 34 Vol. 3, Special Issue 36, March 2017

done by saving the states and creating checkpoints

[6].

Although a broker with such an acceptance testing

mechanism increases the trust in the composite web

services, it still constitutes a single point of failure.

A main issue for the QoS analysis of SOA is the

parameter estimation of the atomic web services

and their combination. Concerning the atomic web

services, we study in this section, many reliability

models assume that the failure or error arrival times

are exponentially distributed. This is inappropriate

for web services as the error arrival times will be

dependent on the operating state including

workload of the server where the web service

resides. Previous work [7] indicates that the

probability of errors occurring in computer system

is higher where the workload is higher [8].

To improve the overall reliability of composite web

service, one can use redundancy [9] and [10]. Here,

by redundancy we mean that the same kind of

functionality is available in the web service

provided by different service providers [11]. So in

this case, we can still provide the same functionality

even when some of the web services are not

available due to a failure or other reasons.

Also, the redundancy of web services often has a

high diversity. Web services delivered by different

service providers are often developed individually.

The diversity makes it much less likely that the

same failure would hit all redundant web services.

The author presented an access control model and

techniques for specifying and enforcing access

control rules for Web service compositions. They

introduced composite roles and principles and

specified access control policies using pure-past

linear temporal logic. The author proposed an

aspect-oriented approach to specify security

policies for Web service compositions. They

implement a set of aspect in AO4BPEL that is an

aspect-oriented extension to BPEL [12].

Finally, Existing method defines the security policy

composition rule that is independent of composite

processes. Existing method also addressed problem

of ours is not concrete definitions of policy

consistency. Existing approach is not a static

composition of policy representations. Existing

model for inserting rollback points in process

control type programs. Existing check pointing

technique is not suitable for systems where the

parameters of the program are time dependent

during the mission.

3.0 Description of Proposed Technique

We propose a service-oriented reliability model that

dynamically calculates the reliability of composite

web services with rollback recovery based on the

real-time reliabilities of the atomic web services of

the composition. Proposed methods are workflow

message consumed and produced by an operation is

defined in the WSDL document of the BPEL

process. We also propose a method for composing

and validating policies in composite services

according to rules that depend on the variable

assignments and their properties. We also propose

introducing fault tolerance for a fault or error at the

web service level by using an adaption of the

recovery block technique. Proposed method

introduces two languages for defining monitoring

and recovery and explains how to use them to

enrich BPEL processes with self-supervision

capabilities. We evaluate and classify of different

SOA-platforms and security frameworks regarding

secure cross-organizational service invocation. We

also evaluate the performance implications of our

security infrastructure to the overall service

response time.

3.1 Service-oriented reliability model

We develop the new model for the reliability of a

web service in order to include the influence of

different parameters of the environment. We focus

on the modeling and analysis of the reliability

attribute in Service-Oriented Architectures, with

particular emphasis on two aspects of this problem:

(i) the mathematical foundations of reliability

modelling of a Service-Oriented Architecture as a

function of the reliability characteristics of its basic

elements and (ii) the automatization of service

composition driven by reliability criteria. The

variance concerning the transitions among

environment states depends on the load of the

server where the web service resides and the type of

processing being conducted.

In an SOA environment, services are expected to

publish information needed to correctly invoke

them over the network. This information, expressed

by a suitable language like WSDL, includes the

name of the provided operations, and the name and

type of their input and output parameters. To

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 35 Vol. 3, Special Issue 36, March 2017

support predictive analysis of some QoS attribute

like the service reliability, each service must also

publish QoS-related information.

3.2 Hybrid reliability model

The hybrid reliability of a service shall be

associated to the service description at the time the

provider publishes the service on a registry. We

focus variable assignments in a composite process,

not a process flow itself. Therefore, a number of

variable assignments would have an impact on

performance of policy composition inference, and

complexity or length of composite process might

have a big impact on performance in our approach.

Here we had an experiment to evaluate how number

of assignments affects inference performance.

On the other hand, the hybrid reliability can be

estimated as the ratio between the number of

service invocations and the number of failures that

occur. We point out that, in the case of a composite

service, the failures that should be recorded at a

composite service site are those generated by the

internal segment of the service. Collecting failure

statistics about the used external services could not

be significant, as at different time instants we could

bind to different implementations of the same

abstract service and, given the autonomy principle

of the SOA environment, we are not generally

aware of these changes.

3.3 BPEL processes with self-supervision

BPEL is a workflow-based web service

composition language. It specifies the composition

as a process, which declares the web services

participating in the composition (partners), data

containers (variables), and a set of activities with

specific patterns of control and data flow. In fig 1.0

shown the building blocks of BPEL processes are

activities. There are primitive activities such as

<invoke> and <assign> and structured activities

such as <sequence> and <flow>. Structured

activities manage the order of execution of their

enclosed activities. BPEL processes can run on any

BPEL-compliant orchestration engine. The engine

orchestrates the invocations of the partner web

services according to the process specification.

Our approach separates service selection from the

process business logic, providing runtime

adaptability for the process through dynamic

binding, by automatically transforming the process

at deployment time. In this way, we achieve

transparency for the process developer, who does

not have to provide any special constructs, and full

compatibility with standard BPEL engines. Our

monitoring mechanism supports both complete

monitoring and sampling, allowing balancing

between monitoring overhead and the amount of

gathered service execution statistics that enable

self-supervision. The service selection mechanism

maintains pools of functionally equivalent services

and periodically (re-)assigns service selection

probabilities according to the monitored service

performance.

We introduce a new approach to transparent BPEL

process self-supervision. We provide a flexible

process monitoring mechanism that allows

balancing the amount of data collected and the

monitoring overhead. Furthermore, we present a

probabilistic service selection algorithm that takes

the monitored service performance into account.

Fig 1.0 BPEL workflow-based Web Service

3.4 The following methods will be used in this

paper:

Service type – Unique identifier of a group of

functionally equivalent services that can substitute

for each other

Selection probabilities – For each service type, a

tuple containing the probabilities of the

corresponding services to be selected. The selection

probabilities are periodically recomputed according

to the monitored service performance.

Monitoring probability – Probability of a service to

be monitored

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 36 Vol. 3, Special Issue 36, March 2017

Observing interval – Period of time in which

service performance is monitored, while the

selection probabilities tuples remain unchanged.

The adaptation engine is able to interpret and

execute instances of the presented model for

adaptations and to apply the adaptations to

deployed processes and its instances to any process

execution engine. The definition of a process

contains a set of global variables and the workflow

logic expressed as a composition of activities;

where implicit or explicit scopes help define

variables and activities at different visibility levels.

BPEL does not come with a standard graphical

representation.

The new BPEL process, which is obtained based on

the refactoring approach, has more (strictly, no

fewer) partners than the original one. Let us take a

look at the structure of a BPDG first because this is

helpful to understand our refactoring approach. An

important characteristic of a BPDG is that its

control dependence sub-graph is a tree with entry

node as the root. In the tree, the internal nodes

(except the entry) are the control nodes that

represent the predicate expressions of the BPEL

process, while the leaf nodes represent basic

communicating and non-communicating activities.

4.0 Implementation Process

Create an Empty BPEL process project (Using

Empty BPEL Process template). Add a new schema

MathOp.xsd to the BPEL process project. In this

project I used simple types for input and output.

You may have complex types depending on your

business use case. Also as all operations are binary

and all of them share the same input and output

signature, Request and Response elements are

reused in this project.

During this step also create two global variables

‘inputVariable’ and ‘outputVariable’ for the
Request and Response data using the Project

WSDL.

This activity waits for the occurrence of one event

in a set of events and performs the activity

associated with that event.

In our case an event translates to a web service

operation. If more than one of the events occurs,

then the selection of the activity to perform depends

on which event occurred first.

If the events occur nearly simultaneously, there is a

race and the choice of activity to be performed is

dependent on both timing and implementation. As

our implementation is going to be state-less atomic

services, we may not have a racing condition.

Although WSReL is built for maximum flexibility,

there are some constraints we must keep in mind

when building a recovery strategy. We must

consider: Whether the recovery is associated with a

pre or a post condition. Whether the recovery is

deal with stateful or conversational services.

In fact, recalling a service might not even be an

option, while actions rebind and change Partner link

could cause problems if used when the process is in

the middle of a conversation. Which actions

require that monitoring be re-enacted to discover if

they were successful in fixing the anomaly. Note

that some actions, ignore, notify, halt, and call, can

always be considered successful.

BPEL as a specification does not provide any

security concepts that we could leverage. All

security aspects are left to the BPEL engine or, in

other words, to the BPEL engine wrapper. BPEL

processes are implemented as SCA components. So

for BPEL processes, we can leverage all security

constructs that SCA architecture offers.

A security policy specifies integrity and

confidentiality requirements by the combination of

the multiple security policy assertions. The

signature and encryption predicates are not

corresponding to an element of the security policy

one to- one. BPEL processes can run on any BPEL-

compliant orchestration engine. The engine

orchestrates the invocations of the partner web

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 37 Vol. 3, Special Issue 36, March 2017

services according to the process specification. The

deployment descriptor for the BPEL process below

<bpel-dd>

<selectors>

<selector type="activity" id="1">

//invoke[portType="payWSPT" and

@operation ="pay"]

</selector>

</selectors>

<services>

<service name="security">

<propertyclass="authentication"

type="usernametoken"

selectorId="1" >

<propertydata>

<username>deptstore</username>

<password type="digest">edreoptts</password>

</propertydata>

</property>

</service>

…

</services>

</bpel-dd>

In the deployment descriptor, we specify the

<invoke> activities that require authentication and

the username and password to be used for that

purpose. The <selector> element is an XPath

expression that selects a set of activities with a

shared security requirement. The <service> element

contains the configuration of a specific middleware

service, here the security service; it can contain one

or more <property> elements which express

security requirements of some process activities.

For security, there are three possible values of the

attribute class of a property element: authentication,

integrity, and confidentiality. The <propertydata>

element contains the necessary.

5.0 Conclusion and Future Work

Service compositions provide unprecedented

levels of dynamism and flexibility. Using services

exposed by third parties, we construct systems

whose ownerships are intrinsically distributed,

making it hard to reason about the actual

functionality and quality of service we can ensure at

runtime. The challenge lies in providing composite

systems that are robust and dependable. To this end,

we blur the lines between design time and runtime

validation and provide self-supervision to identify

and autonomously react to anomalous situations

that may occur during execution. The project has

presented one of the few integrated frameworks for

both the monitoring and recovery of BPEL

processes. We also propose introducing fault

tolerance for a fault or error at the web service level

by using an adaption of the recovery block

technique.

Our proposed solution to the dynamic WS selection

problem consists of AR, a novel metric to measure

the reliability of each configuration in a WS

composition, and strategies to use the computed

aggregated reliabilities for dynamically selecting

atomic WSs for the operations to be performed on

the composite WS.

Aggregated reliability -based Selection Strategy.

The rationale behind the AR-based selection

strategy is to select an atomic WS for each

incoming operation of the composite WS so as to

achieve maximum reliability. At runtime, when an

incoming operation arrives at a configuration, we

first sort the candidate WS operations in non-

increasing order of the products of their reliabilities

and aggregated reliabilities of the destination

configurations

Finally our proposed method introduces two

languages for defining monitoring and recovery and

explains how to use them to enrich BPEL processes

with self-supervision capabilities. We evaluate and

classify of different SOA-platforms and security

frameworks regarding secure cross-organizational

service invocation. Our model is a hybrid reliability

model based on both path-based and state-based

models. By using the web services estimations of

the failure rates based on the doubly stochastic and

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 38 Vol. 3, Special Issue 36, March 2017

renewal processes, we determine the reliability of

composite web services using the bounded set

approach to manage the states explosion in the case

of complex systems. We further plan to evaluate the

performance implications of our security

infrastructure to the overall supporting a specific

access control representation for generating the

valid composite policies dynamic web service

activity response time.

6. REFERENCES

[1] T.S. Dillon, W. Chen, and E. Chang, “Reference
Architectural Styles for Service-Oriented

Computing,” Proc. IFIP Network and Parallel Conf.,

2008

[2] Measuring Reliability of Applications

Composed of Web Services Hangjung Zo, Derek L.

Nazareth, Hemant K. Jain, Proceedings of the 40th

Annual Hawaii International Conference on System

Sciences (HICSS'07).

[3] Dynamic Web Service Selection for Reliable

Web Service Composition IEEE TRANSACTIONS

ON SERVICES COMPUTING, VOL. 1, NO. 2,

APRIL-JUNE 2008

[4] A.J. Lee, J.P. Boyer, L.E. Olson, and C.A.

Gunter, “Defeasible Security Policy Composition
for Web Services,” Proc. Fourth ACM Workshop

Formal Methods in Security (FMSE ’06), pp. 45-54,

2006.

[5] Orchestration under Security Constraints

Turning Intruders into Mediators Yannick

Chevalier, Mohamed Anis Mekki, Micha¨el

Rusinowitch LORIA & INRIA Nancy Grand Est,

France 2007

[6] J. Cao and T. Dillon, “Checkpointing and
Rollback of Wide Area Distributed Applications

Using Mobile Agents,” Proc. 15th Int’l Parallel and
Distributed Processing Symp. (IPDPS ’01), 2001.

[7] R. Iyer and P. Velardi, “A Statistical Study of
Hardware Related Software Errors in MVS,” Proc.
IEEE Int’l Symp. Fault-Tolerant Computing

(FTCS ’84), pp. 192-197, 1984.

[8]D. Gaver, “Random Hazards in Reliability
Problems,” Technometrics, vol. 5, pp. 211-226,

1963.

[9] Reliability of Series-Parallel Systems,

http://www.mathpages.

com/home/kmath560/kmath560.htm, 2011.

[10] W. Abramowicz, M. Kaczmarek, and D.

Zyskowski, “Duality in Web Services Reliability,”
Proc. Advanced Int’l Conf. Telecomm. And Int’l
Conf. Internet and Web Applications and Services

(AICT/ICIW), 2006.

[11] Y. Pan, “Will Reliability Kill the Web Service
Composition?” technical report, Dept. of Computer
Science, Rutgers Univ., 2009.

[12] A.Charfi and M. Mezini, “Using Aspects for
Security Engineering of Web Service

Compositions,” Proc. IEEE Int’l Conf. Web
Services (ICWS ’05), pp. 59-66, 2005

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 39 Vol. 3, Special Issue 36, March 2017

