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ABSTRACT 
      Unlike multispectral (MSI) and panchromatic (PAN) images, generally the spatial resolution of 

hyperspectral images (HSI) is limited, due to sensor limitations. In many application HIS with a high spectral 

as well as spatial resolutions are required. In this paper’ a new method for spatial resolution enhancement of 
a HSI using spectral unmixing and sparse coding (SUSC) is introduced. The proposed method fuses high 

spectral resolution  features from the HSI with high spatial resolution features from an MSI of the same 

scene.Endmembers are extracted from the HSI by spectral unmixing, and the exact location of the 

endmembers is obtained fom the MSI. This fusion process by using spectral unmixing is formulated as an ill-

posed inverse problem which requires the regularization term in order to convert it into a well-posed inverse 

problem. As  aregularizer, we employ sparse coding (SC), for which a dictionary is constructed using high 

spatial resolution MSI or PAN images from unrelated scenes. The proposed algorithm is applied to real 

hyperion and ROSIS data sets. Sharpening,spectral unmixing and SC methods, the proposed method is 

shown to significantly increase the spatial resolution while preserving the spectral content of the HSI. 

 

         Index terms-Fusion, Hyperspectral images (HIS), Multispectral (MSI), sparse coding(SC),spectral 

unmixing. 

 

I.INTRODUCTION 

Remote sensing images have been widely used 

in different practical applications such as 

agriculture, forestmonitoring environmental 

studies, and military application [1}.The main 

types of remote sensing images are 

Panchromatic (PAN), Multispectral (MSI), and 

Hperspectral images (HSI). PAN images have a 

high spatial resolution and spatial structures are 

well defined,but they are limited to one gray –
scale image band.MSI have low spatial 

resolution than PAN images and contain a 

limited number of spectral bands. HIS usually 

have lower spatial resolution than MSI and PAN 

images but have a high spatial resolution [2]. 

     HSI have been used in many different 

practical applications. In various applications, 

HSI spectral and spatial resolutions are required 

[2]. 

 

In this paper, a new method for spatial resolution 

enhancement of HIS is proposed, based on the 

fusion of HSI and MSI using the LMM. In the 

proposed method, the HRHSI reconstruction 

problem is formulated as a linear inverse 

problem (LIP). An LIP is generally ill- posted 

and does not have a unique solution. A 

regularization term needs to be included to 

convert it into a well-posed inverse problem. In 

the proposed method, the regularization term is 

constructed based on SC, for which dictionary is 

constructed by several high spatial resolution 

MSI or PAN images which are unrelated to the 

HSI. In this way, a method is obtained, which 

simultaneously makes use of the LMM to avoid 

spectral distortion and SC to optimize the spatial 

resolution improvement. 

    The proposed spectral unmixing and SC 

(SCSU) algorithm is applied to real datasets and 
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compared with state-of-the-art algorithms using 

pansharpening  [6],[7],[23], SC [13], LSU [20], 

and CNMF [21]. The results obtained by SUSC 

or superior to these methods from the state of the 

art.  

II. PROPOSED METHOD  

We assume that a HSI and an MSI or PAN 

image of the same scene are available. As a first  

step, before the introduction of proposed 

method, preprocessing is performed to reduce 

the noise in the HSI. For this, we apply a 

recently a proposed method, presented in [24]. 

Then, LMM is applied. In this model, the 

endmembersare  extracted using the spectral 

properties of the low-resolution HSI 

(LRHSI,which is observed HSI).After that the 

initial abundance fractions are calculated using 

the spatial properties from the MSI. From this, 

an initial estimate of the HRHSI is obtained. The 

proposed fusion method then iteratively updates 

the abundance fractions. At the end, the spectral 

of each HRHSI pixel is reconstructed based on 

the LRHSI endmembers. 

    The fusion process of the HSI and MSI is 

formulated as an ill-posed inverse problem. A 

regularization term is used to convert it into a 

well-posed inverse problem. The regularization 

term is constructed based on SC. We construct a 

proper dictionary with several high spatial MSI 

or PAN images from unrelated scenes. Based on 

this dictionary and the initial HRHSI obtained 

from LMM, the SC is estimated. By using the 

SC as the regularization term, the abundance 

fractions are calculated by solving the well-

posed inverse problem. The final HRHSI is 

obtained from the obtained abundance fractions 

and the endmembers. In the following, we will 

explain the different steps of the procedure in 

more  detail.  

 

 

III. NSCT DECOMPOSITION 

NSCT decomposition is to compute the multi 

scale and different direction components of the 

discrete images. It involves the two stages such 

as non-sub sampled pyramid(NSP) and non-sub 

sampled directional filter bank(NSDFB) to 

extract the texture, contours and detailed 

coefficients. NSP decomposes the image into 

low and high frequency subbands at each 

decomposition level and it produces n+1 sub 

images if decomposition level is n.NSDFB 

extracts the detailed coefficients from direction 

decomposition of high frequency subbands 

obtained from NSP. It generates m power of 2 

direction sub images if number of stages be m. 

IV. UP SAMPLING 

It is a method of constructing new data points 

within the range of a discrete set of known data 

points. It increases the samples of each multi 

spectral bands twice at frequency domain to 

make better fusion process. Here, upsampling 

will be done using Bicubic interpolation method. 

It is an extension of cubic interpolation for 

interpolating data points on a two dimensional 

regular grid.Bicubic interpolation can be 

accomplished using either Lagrange 

polynomials, cubic splines, or cubic convolution 

algorithm. 

V. IMAGE FUSION 

The high frequency subbands of two source 

images obtained from NSCT are utilized for 

morphing process to get the enhanced 

information. Here, the pixel level fusion method 

is approached for this process. It will be 

implemented based on maximum rule and 

energy measurement for coefficient selection.At 

fusion stage, The low frequency subband of 

multi spectral image remain unchanged and high 

frequency subbands will be fused by energy and 

WAMM to select desired coefficients.Finally, 

fused frequency subbands are inverse 
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transformed to reconstruct the fused image and 

parameters will be evaluated between input and 

fused image. 

Continues…… 

PSNR (Peak Signal to Noise Ratio) 

PSNR = ͳͲ log 10 255/MSE      

RMSE (Root Mean Square Error) 

MSE = (1/M*N) ∑ ∑ (aij –bij)^2 

RMSE = sqrt (MSE) 

Where, 

M,N are Number of Rows and Columns 

aij –  Original Image and bij – Fused Image 

Continues.. 

Correlation Coefficient: It is used to find the 

similarity between two different images with 

their intensities. It will be described by, 

Cor_coef = [sum(sum(u1.*u2))] / 

[sqrt(sum(sum(u1.*u1))*sum(sum(u2.*u2)))]; 

 Where,  u1 = aij – mean of aij,  u2 = bij – mean 

of bij.  

Percentage Residual Difference(PRD): It is 

used to measure the difference between original 

Image and Restored Image.                     

PRD = sqrt(sum((F1 – F2).^2)/sum(F1)) 

Where, F1 – Original Image and F2 – Fused 

Image. 

VI. OBSERVATION MODEL 

Let us first define the observation models. In 
general, HSI and MSI have three dimensions, 

two spatial dimensions, and one spectral. For 

notational convenience, these images are con- 

verted to two dimensions [12]. If we define Z as 
the HRHSI (desired image), Yh as the low 

spatial resolution HSI (LRHSI), and Ym as the 

MSI from the same scene, their relationship can 

be expressed as [21] 

Yh= ZBM + Nh; Z∈R Lh×nm,B∈R nm×nm, 

M∈R nm×nh,Y h ∈R Lh×nh,N H ∈R Lh×nh (1) 

Ym = RZ + Nm; Ym∈R Lm×nm,  

R∈R Lm ×Lh ,Nm∈nm. 

 (2) Equation (1) models the relationship 

between the HRHSI Z (with Lh bands and nm 

pixels) and the LRHSI Yh. 

VII. OPTIMIZATION PROBLEM 

The fusion of the HSI and the MSI is formulated 

as an LIP 

argmin X 1/ 2 Yh−EXBM2 F + Ȝm 2Ym−REX2 
F+Ȝ 2ϕ(x)…….. (6) 

where ϕ(x) is a regularization term. The inverse 

problem of (6) can be ill-posed or well posed, 

depending on the reduced dimension of the 

images and the number of spectral bands [28]. If 

the product of the matrices R and E has a full 

column rank, the LIP problem is well posed. 

However, if there are fewer bands in the MSI 

than the number of endmembers, the matrix 

(RE) cannot have full column rank, which turns 

the LIP prob- lem in an ill-posed one. In this 

paper, (6) is assumed to be an ill-posed LIP. 

Therefore, a regularization term is required. The 

first two terms are the fidelity terms, describing 
that the esti- mated image is able to explain the 

observed data according to the models defined in 
(4) and (5). The last term is the regular- izer. 

The parametersȜm and Ȝ control the relative 
importance of the various terms [12]. 

VIII. SPECTRAL UNMIXING MODEL 

AND DIMENSION REDUCTION 
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The first step is the use of the LMM                                

Z = EX + N.. (3)  

where E ∈RLh×P (P represents the number of 

endmembers) is the endmember signature matrix 

that can be, e.g.,extracted by vertex component 

analysis (VCA) [25] or N- FINDR [26], 

 X ∈R P×nm is the abundance fraction matrix, 

and N ∈R Lh×nm represents the noise matrix. 

By substituting (3) into the observation models 

defined by (1) and (2), we have 
approximatelyYh ≈ EXh,Xh = XBM (4) Ym ≈ 
EmX,Em = RE. (5) According to (3), the 

construction of Z requires the endmembers and 

abundance fractions. 

 From (4), we deduce that the HRHSI has the 

same endmembers as the HSI, and the abun- 

dance fractions of the HSI are obtained from the 

spatially degraded abundance fractions of the 

HRHSI. Therefore, the required endmembers 

can be extracted from the original HSI. A supe r 

resolution method then only requires the 

determination of the abundance fractions. An 

initial estimate of these fractions is obtained 

from the MSI by using (5). In this work, we use 

the variable splitting and augmented (SUNSAL) 

algorithm [27] to do so. That the endmembers 

can be directly obtained from the HSI, not only 

means a reduction in the computational load, but 

the final HRHSI is also expected to have low 
spectral distortion.The first step is the use of the 
LMM, 

Z = EX + N (3) where E ∈RLh×P (P represents 

the number of endmem- bers) is the endmember 

signature matrix that can be, e.g., 

extracted by vertex component analysis (VCA) 

[25] or N- FINDR [26], X ∈ 

R P×nm is the abundance fraction matrix, 

and N ∈R Lh×nm represents the noise matrix. 

 By substituting (3) into the observation models 

defined by (1) and (2), we have approximately 

Yh ≈ EXh,Xh = XBM (4) Ym ≈ EmX,Em = RE. 
(5) According to (3), the construction of Z 

requires the endmembers and abundance 

fractions. 

 From (4), we deduce that the HRHSI has the 

same endmembers as the HSI, and the abun- 

dance fractions of the HSI are obtained from the 

spatially degraded abundance fractions of the 

HRHSI. Therefore, the required endmembers 

can be extracted from the original HSI. A super 

resolution method then only requires the 

determination of the abundance fractions. An 

initial estimate of these fractions is obtained 

from the MSI by using (5). 

 In this work, we use the variable splitting and 

augmented (SUNSAL) algorithm [27] to do so. 

That the endmembers can be directly obtained 

from the HSI, not only means a reduction in the 

computational load, but the final HRHSI is also 
expected to have low spectral distortion. 

IX. SPARSE CODING 

Although image content can vary greatly from 

image to image, the microstructures of images 

can be represented by a small number of 

structural primitives (e.g., edges, line seg- 

ments, and other elementary features). These 

microstructures are the same for all images [2]. 

SC relies on this observation by constructing a 

dictionary of such primitives from a number of 

images and uses this dictionary to reconstruct a 

specific image from the smallest number of 
dictionary atoms. In the proposed method, we 

use the concept of SC for the regularization. A 

dictionary (φ) is constructed with 
microstructures of unrelated MSI or PAN 

images of high spatial resolution. Then, a sparse 

code (S) for the HRHSI is calculated from the 

smallest number of dictionary atoms, where each 
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pixel is represented by a linear combination of a 

few atoms. The optimization problem becomes 

argmin X,S 1/ 2 Yh −EXBM2 F+Ȝm 2 Ym 
−REX2 F +Ȝ 2 φS −EX2 F ….. (7) 

 

 

 

Usually, to generate the dictionary, the images 

are divided into several patches. Also, in order 

to construct the image with this dictionary, it is 

divided into several patches which are separately 

reconstructed by the dictionary atoms. In recent 

lit- erature, overcomplete dictionaries with 

dimensions larger than the image dimensions 

have been considered. Different methods such as 

online dictionary learning (ODL) [29] and K-

means singular value decomposition (K-SVD) 

[30] have been devel- oped for constructing an 

overcomplete dictionary. There is no unique rule 

to select the dictionary size and the number of 

atoms. Generally, the smaller the patches, the 

more atoms can be determined. However, too 

small patches are not efficient to properly 
capture the textures, edges, etc. With larger 

patch sizes, a larger number of atoms are 

required to guarantee the overcompleteness 

(which requires a larger computational cost). In 

general, the size of the patches is empirically 

selected [28]. In the proposed method, the 

dictionary was produced by the K- SVD 

algorithm, trained on a dataset of 10 000 patches 

with size 8×8. Those patches are taken from an 

arbitrary set of natural images (unrelated to the 

test images). In fact, the res- olution of these 

images should be sufficiently high to capture the 

image details. As an example, MSI from the 

advanced land imager (ALI) sensor . The con- 

structed dictionary by using the K-SVD 

algorithm is shown . 

After constructing the proper dictionary, the 

HRHSI can be obtained from a linear 

combination of a small number of atoms from 

the dictionary. The matrix with the obtained 

coefficients is called the sparse code [31]. It is 
obtained by ˆ 

S  argmin S 1/2 Z initial −φSSubject toS0 ≤ 
K…………… (8) 

where K is the number of atoms needed for 

reconstructing Z initial patches. Z initial can be 

estimated by interpolation [16], but in the 

proposed method, it is obtained from (3). For 

intro- ducing sufficient sparsity, K is chosen 
much smaller than the number of dictionary 

atoms. In this paper, the sparse code is estimated 

by orthogonal matching pursuit (OMP) [32]. 

X. COMPLEXITY ANALYSIS 

The SALSA algorithm has a complexity of 

O1(Pnitnmlog(Pnm)), where nit is the number of 

SALSA iterations, P is the number of 

endmembers, and nm is the total number of 

pixels [28], [34]. The computational com- 

plexity of the SC is O2(KnpLh), where K is the 

number of dictionary atoms and np is the patch 

size. Therefore, the complexity of the proposed 

algorithm is Nth(O1(Pnitnmlog(Pnm)) + 

O2(KnpLh)), where Nth is max_iteration. 
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XI.PANSHAEPENING METHODS 

: For the spatial resolution enhancement of HSI, 

the Gramm–Schmidt (GS) procedure of [6], the 

adaptive GS (GSA) method of [7], the smooth- 

ing filter-based intensity modulation method 

(SFIM) of [23], and a modulation transfer 

function generalized Laplacian pyramid with 

high-pass modulation (MTF_GLP_HPM) from 

[41] are applied to the first dataset along with the 
proposed SUSC method. All the methods are 

implemented in Matlab on a computer with an 

Intel(R) Core(TM) i5-3210 processor (3.1 GHz), 

4 GB of memory, and a 64-bit Operating 

System. Fig. 3 shows the obtained results for 

one specific subimage. 

wavelength (0.4–0.9 µm). The simulation results 

show that in CS-based fusion techniques (GS, 

GSA), the spatial resolution of the reconstructed 

image is low and the spectral distortion is high 

because of the spectral mismatch between the 

PAN image and the HSI spectral range. In the 

MRA approaches (SFIM, MTF_GLP_HPM), the 

spatial resolution is low but the spectral 

distortion is lower than with the CS methods. 

The reconstructed images by the proposed 

method SUSC are visually very close to the 

ground truth images. As is shown in Table I, the 

spectral distortion is the lowest in the proposed 

method. The required computing time of the 

proposed method, however, is much higher than 

the pansharpening methods. 

 The construction of the dictionary and the 

estimation of the sparse code take aconsiderable 

amount of time. Moreover, the method 

iteratively updates the abundance fractions and 

the sparse code, which makes the proposed 

method time consuming. 2) SUSC Methods: The 

SC method from [13], CNMF from [21], and 

LSU from [20] are applied to the second dataset. 

In CNMF, the maximum number of iterations in 

the inner and outer loops is selected as 10 and 

300, respectively. In LSU, the image is divided 

into several patches, and the proper size for the 

patches is related to the number of endmembers 

in each patch. In the experiment, different patch 

sizes were applied. Using SUSC, the same 

parameters as in the first dataset are applied. 

Quality measures and computing time for the 

proposed algorithm and the other algorithms are 

reported in Table II. Fig. 4 shows results for 

band 170 of a specific subimage.  

The simulation results show that SC produces 

high spatial resolution HRHSI because of the 

use of the high spatial resolution dic- tionary, 

but spectral distortion occurs. Using LSU and 

CNMF, the spectral distortion is lower than for 

SC, but the spatial resolution is limited. The 

reconstructed image by the proposed method is 

visually very close to the ground truth image. 

The PSNR, ERGAS, and CC in function of the 

wavelength (0.4–2.5 µm) are shown in Figs. 8–
10, respectively. Fig. 11 shows the spectra of 

pixel (1100) in the ground truth and 

reconstructed image; the spectral distortion 

value is lowest in the proposed method. In the 

proposed method, spectral unmixing is used to 

preserve the spectral content of the HSI, and SC 

is used to enhance the spatial resolution of the 

HSI. Therefore, the reconstructed HRHSI have, 

simultaneously, a higher spatial and spectral 

resolutions compared to the other methods. 

XII. DATA SET  

The proposed method has been applied to two 

real datasets. The first dataset was acquired by 

the reflective optics system imaging 

spectrometer (ROSIS) optical sensor over the 

This article has been accepted for inclusion in a 

future issue of this journal. Content is final as 

presented, with the exception of 

pagination.urban area of the University of Pavia, 

Italy.1 The image size is 610×610×103 with a 

spatial resolution of 1.3 m. For these HSI, a MSI 

of the same scene does not exist. Therefore, we 
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generate an MSI of four band by filtering the 
HSI with the IKONOS-like reflectance spectral 

responses. With these, R andB are estimated as 

in [12]. In fact, the IKONOS satellite captures 

both a PAN (0.45–0.90 µm) and four 

multispectral bands (0.45–0.52, 0.52–0.60, 

0.63–0.69, and 0.76–0.90 µm). On the HSI, the 

water vapor absorption bands are removed. The 

obtained HSI is applied as the ground truth 

image with high spatial and spectral resolutions. 

For constructing an LRHSI, Gaussian blurring 

(B) (with dimension 7×7 and σ =1 .5) is applied 
to the ground truth images and the blurred 

images are downsampled by a factor of 4 (M). 

For the simulations, ground truth subimages are 

selected with size 120×120×93 leading to 

LRHSI with size 30×30×93 and MSI with size 

120× 120×4. For the dictionary, twenty PAN 

QuickBird images2 with a spatial resolution 0.7 

m, which are unrelated and do not overlap with 

the test images, have been used. These images 

are downsampled by a mean filter with a factor 
of 2 in order to have the same spatial resolution 

as the HRHSI. Fig. 3 shows for one of the 

subimages band 10 of the ground truth image 

and the LRHSI, band 2 of the MSI, and the PAN 

image. SUSC is applied to these images, and the 

reconstructed HRHSI is compared with the 

ground truth images. The second dataset 

contains images taken above Shiraz city in Iran, 

and was obtained by two instruments, the 

Hyperion instrument, and the ALI.3 Hyperion is 

a hyperspectral imager with a spatial resolution 

of 30 m, the entity ID of the Hyperion image is 

EO1H1630392004316110PV_1R1. It has size 

3858×256×242.  

The ALI instrument provides MSI and PAN of 

the same scene at resolutions of 30 and 10 m, 

respectively. The MSI are used in our 

experiment. The entity ID of the ALI data is 

EO1A1630392004316110PV_1GST. It has size 

4241×256×10. First the HSI and MSI are 

geometrically coregistered. Then, the water 

absorption bands (1–7, 58–76, 121–128, 165–
180, 221–242) are removed from the HSI, and it 

is denoised using [24]. A LRHSI is constructed 

from it in the same way as described for the first 
dataset. Also, since the original HSI and MSI of 

this dataset have the same resolution, we set B = 

I and estimate R. In the simulations, ground 

truth images are selected with size 

120×120×170, and LRHSI with size 30×30×170 

and MSI with size 120×120×9 are obtained. Fig. 

4 shows for one of the subimages band 170 of 

the ground truth image and the LRHSI and band 

2 of the MSI. 

 The proposed algorithm is applied to these 

images, and the reconstructed HRHSI are 

compared with the ground truth images. In the 

proposed method, VCA is used for 

endmemberextrac- tion. Since VCA is not 

robust, we performed ten runs of the algorithm 

and report the average of the corresponding 

results. The number of endmembers is equal to 

the number of MSI bands. For constructing the 

dictionary, the PAN images are converted to 10 

000 patches with size of (8×8). Then 40 atoms 

of the dictionary are used for constructing the 

HRHSI.. 

solving the optimization problem, the 

regularization parameters are selected as: Ȝm 
=1and ȝ =5×10−2 for both datasets [12], [28]. In 
order to select an appropriate value of Ȝ, the per- 
formance of the proposed algorithm has been 

evaluated as a function of Ȝ. Figs. 5 and 6 
display the results for the first and second 
datasets, respectively. The optimal value of Ȝ is 
found to be one. 
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 For image- based applications, such as still 

pictures, stream video, voice, animal sounds and 

monitoring data, one uses a wireless sensor 

networkwhereby the nodes arecamera-

equipped[2]. 

XIII. COMPARISON WITH OTHER 

FUSION METHODS 

The proposed method is compared with state –
of-the-art algorithms. considerable amount of 

time. Moreover, the method iteratively updates 

the abundance fractions and the sparse code, 

which makes the proposed method time 

consuming. 2) SUSC Methods: The SC method 

from [13], CNMF from [21], and LSU from [20] 

are applied to the second dataset. In CNMF, the 

maximum number of iterations in the inner and 

outer loops is selected as 10 and 300, 

respectively. In LSU, the image is divided into 

several patches, and the proper size for the 

patches is related to the number of endmembers 

in each patch. In the experiment, different patch 

sizes were applied. Using SUSC, the same 

parameters as in the first dataset are applied. 

Quality measures and computing time for the 

proposed algorithm and the other algorithms are 

reported in Table II. Fig. 4 shows results for 

band 170 of a specific subimage. The simulation 

results show that SC produces high spatial 

resolution HRHSI because of the use of the high 

spatial resolution dic- tionary, but spectral 

distortion occurs. Using LSU and CNMF, the 

spectral distortion is lower than for SC, but the 

spatial res- olution is limited. The reconstructed 

image by the proposed method is visually very 

close to the ground truth image. The PSNR, 

ERGAS, and CC in function of the wavelength 

(0.4–2.5 µm) are shown in Figs. 8–10, 

respectively. Fig. 11 shows the spectra of pixel 

(1100) in the ground truth and reconstructed 

image; the spectral distortion value is lowest in 

the proposed method. In the proposed method, 

spectral unmixing is used to preserve the 

spectral content of the HSI, and SC is used to 

enhance the spatial resolution of the HSI. 

Therefore, the reconstructed HRHSI have, 

simultaneously, a higher spatial and spectral 

resolutions compared to the other methods. 

 

 

 

 

 

XV. CONCLUSION 
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        In this paper, a new method for enhancing 

the spatial resolution of HSI based on fusion 

with MSI is proposed. The method combines the 

spectral mixing model to reduce spec- tral 

distortions with SC to inject high spatial 

information from a dictionary of unrelated high 

spatial resolution images. The problem is 

expressed as an LIP with the SC as regularizer. 

The inverse problem is solved by iteratively 

updating the abundance fractions using SALSA 

and the sparse code using OMP. Based on the 

visual and quantitative results, in the proposed 

method, the spatial resolution is significantly 
enhanced and the spectral distortion of the 

reconstructed image is low compared to state of 

the art reconstruction techniques based on local 

unmixing and SC. In the future, our aim is to 

reduce the computational complexity of the 

proposed algorithm. 
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