
PERFORMANCE ANALYSIS OF THE TRANSACTIONS IN BANKING

SYSTEM

 [1]

Janarthanan.R
[2]

Ragu.G,
[3]

Monica,
[4]

Reshma.M,,
[5]

Yogeshwari
[1]

Hod
[2]

Asst.Professor
[3][4][5]

UG Student, Department of Computer Science and Engineering

T.J.S Engineering College
[1]

 hodcse@tjsenggcollege.com,
 [2]

40@yahoo.com,
 [3]

monigoodmoni@ gmail.com,
[4]

reshmamagi0920@gmail.com,,
 [5]

yokehwarigowri92@ gmail.com,

Abstract
—Cloud Computing leverages Hadoop framework for

processing BigData in parallel. Hadoop has certain

limitations that

could be exploited to execute the job efficiently. These

limitations are mostly because of data locality in the

cluster, jobs and tasks

scheduling, and resource allocations in Hadoop. Efficient

resource allocation remains a challenge in Cloud

Computing MapReduce

platforms. We propose H2Hadoop, which is an enhanced

Hadoop architecture that reduces the computation cost

associated with

BigData analysis. The proposed architecture also

addresses the issue of resource allocation in native

Hadoop. H2Hadoop provides a

better solution for “text data”, such as finding DNA
sequence and the motif of a DNA sequence. Also,

H2Hadoop provides an efficient

Data Mining approach for Cloud Computing

environments. H2Hadoop architecture leverages on

NameNode’s ability to assign jobs to

theTaskTrakers (DataNodes) within the cluster. By

adding control features to the NameNode, H2Hadoop can

intelligently direct and

assign tasks to the DataNodes that contain the required

data without sending the job to the whole cluster.

Comparing with native

Hadoop, H2Hadoop reduces CPU time, number of read

operations, and another Hadoop factors

.

Index Terms—

BigData, Cloud Computing, Hadoop, H2Hadoop,

Hadoop Performance, MapReduce, Text Data

1 INTRODUCTION

parallel processing in Cloud Computing has emerged as

an interdisciplinary research area due to the

heterogeneous nature and large size of data. Translating

sequential data to meaningful information requires

substantial computational power and efficient

algorithms

to identify the degree of similarities among multiple

sequences [1]. Sequential pattern mining or data

analysis

applications such as, DNA sequence aligning and motif

finding usually require large and complex amounts of

data

processing and computational capabilities [2].

Efficiently

targeting and scheduling of computational resources is

required to solve such complex problems [3].

Although, some of the data sets are readable by

humans,

it can be very complex to be understood and processed

using traditional processing techniques [3, 4].

Availability

of open source and commercial Cloud Computing

parallel

processing platforms have opened new avenues to

explore

structured, semi-structured or unstructured data [5].

Before

we go any further, it is necessary to define certain

definitions that are related to BigData and Hadoop.

1.1 BigData Concepts

There are different ways of defining and comparing

BigData with the traditional data such as data size,

content,

collection and processing. Big data has been defined as

large data sets that cannot be processed using

traditional

processing techniques, such as Relational Database

Management Systems, in a tolerable processing time

[6].

BigData is either a relational database (Structured),

such as

stock market data or non-relational database

(Semistructured

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017199

EXISTING SYSTEM
Existing concept deals with providing backend

by using mysql which contains lot of drawbacks

i.e data limitation is that processing time is high

when the data is huge and once data is lost we

cannot recover

DRAWBACKS
We can process limitation of data.

 We get results which take more time and

maintenance cost is very high.

PROPOSED SYSTEM
Proposed concept deals with providing database

by using hadoop tool

we can analyze no limitation of data and simple

add number of machines to the cluster

we get results with less time, high throughput

and maintenance cost is very less

we are using joins, partations and bucketing

techniques in hadoop.

Drawbacks
We can process limitation of data.

We get results which take more time and

maintenance cost is very high.

or Unstructured), such as social media data or

DNA data sets [7].

The 4V’s of BigData are 1) Volume of the data, which

means the data size. Some of companies’ data storage is

aboutZetabyte. 2) Velocity, which means the speed at

which the data is generated. 3) Varity of the data, which

means the data forms that different applications deal with

such as sequence data, numeric data or binary data. 4)

Veracity of the data, which means the uncertainty of the

status of the data or how clear the data is to these

applications [8].

Different challenges in BigData have been discussed in

previous research [9] and they are described as technical

challenges such as the physical storage, that stores the

BigData and reduce the redundancy. Also, there are many

challenges such as the process of extracting the

information,

cleaning data, data integration, data aggregation, and data

representation. Since BigData has these issues, it needs

such

an environment or framework to work through these

challenges. Hadoop, which works with BigData sets, is a

framework that most organizations use to process

BigData

in order to overcome data challenges.

P

————————————————

• HamoudAlshammari, Department of Computer Science

and Engineering,

221 University !Ave Bridgeport, Connecticut.

e-mail: halshamm@my.bridgeport.edu !

• Jeongkyu Lee, Associate Professor of Computer

Science,

221 University !Ave Bridgeport, Connecticut.

e-mail: jelee@bridgepoert.edu !

• Hassan Bajwa, Associate Professor of Electrical

Engineering,

221 !University Ave Bridgeport, Connecticut.

e-mail: hbajwa@bridgeport.edu)

2016

2016

2168-7161 (c) 2015 IEEE. Personal use is permitted,

but republication/redistribution requires IEEE

permission. See

http://www.ieee.org/publications_standards/publication

s/rights/index.html for more information.

This article has been accepted for publication in a

future issue of this journal, but has not been fully

edited. Content may change prior to final publication.

Citation information: DOI

10.1109/TCC.2016.2535261, IEEE

Transactions on Cloud Computing

IEEE TRANSACTIONS ON Cloud Computing,

manuscript ID TCC-2015-11-0399

2

Fig. 1. Overall MapReduceWordCountMapReduce Job

1.2 Hadoop Overview

Hadoop is an Apache open-source software framework

that is written in Java for distributed storage and

distributed processing. It provides solutions for

BigData

processing and analysis. It has a file system that

provides

an interface between the users’ applications and the
local

file system, which is the Hadoop Distributed File

System

HDFS.Hadoop distributed File System assures reliable

sharing of the resources for efficient data analysis [10].

The two main components of Hadoop are (i) Hadoop

Distributed File System (HDFS) that provides the data

reliability (distributed storage) and (ii) MapReduce that

provides the system analysis (distributed processing)

[11]

[10]. Relying on the principle that “moving
computation

towards data is cheaper than moving data towards

computation” [12], Hadoop employs HDFS to store
large

data files across the cluster.

MapReduce provides stream reading access, runs tasks

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017200

on a cluster of nodes, and provides a data managing

system

for a distributed data storage system [13]. MapReduce

algorithm has been used for applications such as

generating

search indexes, document clustering, access log analysis,

and different other kinds of data analysis [14].

“Write-once and read-many” is an approach that permits

data files to be written only once in HDFS and then

allows

it to be read many times over with respect to the numbers

of assigned jobs [10]. During the writing process, Hadoop

divides the data into blocks with a predefined block size.

The blocks are then written and duplicated in the HDFS.

The blocks can be duplicated a number of times based on

a

specific value which is set to 3 times by default [15].

In HDFS, the cluster that Hadoop is installed in is

divided into two main components, which are (i) the

master node called NameNode and (ii) the slaves called

DataNodes. In Hadoop cluster, single NameNode is

responsible for overall management of the file system

including saving the data and directing the jobs to the

appropriateDataNodes that store related application data

[16]. DataNodes facilitate Hadoop/MapReduce to process

the jobs with streaming execution in a parallel processing

environment [10, 17].

Running on the master node, JobTracker coordinates and

deploys the applications to the DataNodes with

TaskTracker services for execution and parallel

processing

[15]. Each task is executed in an available slot in a

DataNode, which is configured with a fixed number of

map

slots, and another fixed number of reduced slots. The data

inMapReduce for our purposes is in a text format, so both

the input and output of data must also be in a text file

format [10].

The master computer has two daemons, which are

NameNode in terms of HDFS and JobTracker in terms of

MapReduce. Similarly, the slaves also have two daemons,

which are DataNodes in terms of HDFS and TaskTrackers

in terms of MapReduce.

1.3 What is MapReduce Job?

A MapReduce job is an access and process-streaming job

that splits the input dataset into independent chunks

(blocks) and stores them in HDFS. During MapReduce,

multiple Maps are processed in parallel followed by

Reduce tasks also processed in parallel. Depending upon

applications the numbers of maps can be different than

that

of reduces. Storing data in HDFS has different forms [8]

such as <Key, Value> concept to determine the given

parameter (Key) and to retrieve the required result

(Value)

at the end of the job.

For example, a “WordCount” job counts number of
replication of each word in the data files. Figure 1

explains

MapReduce example “WordCount” as a common
example

to apply MapReduce in such unstructured data like

books.

As an input file, it consists of a sequence of characters

that

are separated by space, so we can consider the space as

a

delimiter that separates words. First step, Hadoop

divides

the data to blocks in the Splitting phase. Then, the

Mapping

phase does <key, value> for each word (e.g. <Deer, 1>.

Then, Shuffling phase collects the values of the same

key to

be in one intermediate result. After that, the Reducing

phase provides the addition of values to have one final

value for each key. Finally, NameNode provides a final

result that has all keys and their values as one final

result

from the MapReduce job.

Fig. 1. Overall MapReduceWordCountMapReduce Job
2016

2016

2168-7161 (c) 2015 IEEE. Personal use is permitted,

but republication/redistribution requires IEEE

permission. See

http://www.ieee.org/publications_standards/publication

s/rights/index.html for more information.

This article has been accepted for publication in a

future issue of this journal, but has not been fully

edited. Content may change prior to final publication.

Citation information: DOI

10.1109/TCC.2016.2535261, IEEE

Transactions on Cloud Computing

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017201

IEEE TRANSACTIONS ON Cloud Computing,

manuscript ID TCC-2015-11-0399

3

The rest of the paper is divided as follows. In section II,

we go over an overview of HadoopMapReduce

performance and focus on the parameters that can be

developed to improve the performance of Hadoop. In

section III, we discuss the Hadoop workflow and its

limitations in terms of the MapReduce algorithm

performance. Section IV discusses the problem that this

research tries to solve. Then in section V, we will propose

our enhanced HadoopMapReduce workflow and compare

the two architectures in terms of developing MapReduce

performance. In section VI, the implementation and

testing

phases are discussed, and the results are evaluated and

discussed in section VII. In section VIII, we discuss some

related works that have been proposed to improve the

Hadoop performance. Finally in section IX, the

conclusion

is provided.

2 OVERVIEW OF HADOOP PERFORMANCE

Native Hadoop compiler processes MapReduce job by

dividing the job into multiple tasks, then distributes these

tasks to multiple nodes in the cluster. By studying Hadoop

performance in [18] the authors discussed Hadoop

MapReduce model to estimate MapReduce job cost by

giving some parameters to the model.

Different parameters that jobs need to have to be

executed efficiently. These parameters are:

• Hadoop Parameters: which is a set of predefined

configuration parameters that are in Hadoop setting

files.

• Profile Statistics: which are a set of user-defined

properties of input data and functions like Map,

Reduce, or Combine.

• Profile Cost Factor: which are I/O, CPU, and Network

cost job execution parameters.

We will focus on the third category of parameters, which

is the Profile Cost Factor. In this section we are going to

explain the job execution cost in details. We will further

explain the relationship between the number of blocks and

the cost associated with the reading of the data from

HDFS.

NumberOfBlocks = DataSize / BlockSize(1)

Where DataSize is the size of the input data that we

want to upload to HDFS, and BlockSize is the pre-defined

size for data block (by default it is 64MB). There is a

compression ratio that is applied to each block to have it

less in size before it is stored in the HDFS. We will not

discuss the compression ratio point here because it is not

one of our concerns and it has been discussed clearly in

[18].

MapReduce job reads data from HDFS where the cost

of

reading a single data block from the HDFS is

HdfsReadCost. The cost of reading the whole data from

HDFS is IOCostRead and it is calculated as:

IOCostRead = NumberOfBloks X HdfsReadCost(2)

Cost of writing a single data block to HDFS is

HdfsWriteCost. The cost of writing any data, such as

MapReduce job results or raw data, is IOCostWriteand

is

calculated as follows:

IOCostWrite = NumberOfBloks X HdfsWriteCost(3)

From the above equations we clearly see that the total

costs of reading and writing from HDFS depends on the

number of blocks, which is the data size. So, by

reducing

the data size, we can reduce the costs of these

processes,

which will lead to improving the Hadoop’s
performance.

In addition, it is true for every Hadoop’s process that
the

number of blocks is related to its costs. For example,

the

CPU cost of reading is CPUCostRead and is calculated

as

follows:

CPUCostRead = NumberOfBlocks X

InUncompeCPUCost

+ InputMapPairs X MapCPUCost(4)

Where InUncompeCPUCost is the compression ratio of

blocks, InputMapPairs is the number of pairs for

mapping

process, and MapCPUCost is the cost of mapping one

pair.

Readers can find more details about the Hadoop

performanceanalyzing model in [18] which is published

by

Duke university and considered as the most common

paper

that discussed the Hadoop performance model.

2 NATIVE HADOOP WORKFLOW

In current HadoopMapReduce architecture, the client

first sends a job to the cluster administrator, which is

the

NameNode. The job can be sent either using Hadoop

ecosystem (Query language such as Hive) or by writing

a

job source code [19]. Before that, the data source files

should be uploaded to the HDFS by dividing the

BigData

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017202

into blocks that have the same size of data, usually 64 or

128 MB for each block. Then, these blocks are distributed

among different DataNodes within the cluster. Any job

now has to have the name of the data file in HDFS, the

source file of MapReduce code (e.g. Java file), and the

name

of the file where the results will be stored in.

Native Hadoop architecture follows the concept of

“write-once and read-many,” so there is no ability to
make

any changes in the data source files in HDFS. Each job

has

the ability to access the data from all blocks. Therefore

network bandwidth and latency is not a limitation in the

dedicated cloud, where data is written once and read

many

times. Many iterative computations utilize the architecture

efficiently as the computations need to pass over the same

data many times.

Several research groups have also presented solutions

about data locality to address the issue of latency while

reading data from DataNodes [20]. Hadoop falls short of

query optimization and reliability of conventional

database

systems.

In the existing HadoopMapReduce architecture,

multiple jobs with the same data set work completely

independent of each other. We also noticed that searching

for the same sequence of characters. For example in any

text

format data requires the same amount of time each time

we

2016

2016

2168-7161 (c) 2015 IEEE. Personal use is permitted, but

republication/redistribution requires IEEE permission.

See

http://www.ieee.org/publications_standards/publications/r

ights/index.html for more information.

This article has been accepted for publication in a future

issue of this journal, but has not been fully edited. Content

may change prior to final publication. Citation

information: DOI 10.1109/TCC.2016.2535261, IEEE

Transactions on Cloud Computing

IEEE TRANSACTIONS ON Cloud Computing,

manuscript ID TCC-2015-11-0399

4

Fig. 2. Native HadoopMapReduce Workflow

Fig. 3. Native HadoopMapReduce Workflow Flowchart

execute the same job. Also, searching for the

supersequence

of a sequence that has already been searched

requires the same amount of time.

Fig. 2. Native HadoopMapReduce Workflow

3.1 Native HadoopMapReduce Workflow

MapReduce workflow in native Hadoop has been

explained in figure 2 as follows:

Step 1: Client “ A” sends a request to NameNode. The

request includes the need to copy the data files to

DataNodes.

Step 2: NameNode replays with the IP address of

DataNodes. In the above diagram NameNode

replies with the IP address of five nodes (DN1 to

DN5).

Step 3: Client “ A” accesses the raw data for
manipulation

inHadoop.

Step 4: Client “A” formats the raw data into HDFS
format

and divides blocks based on the data size. In the

above example the blocks B1to B4 are distributed

among the DataNodes.

Step 5: Client “A” sends the three copies of each data

block

to different DataNodes.

Step 6: In this step, client “A” sends a MapReduce job
(job1)

to the JobTracker daemon with the source data file

name(s).

Step 7: JobTracker sends the tasks to all TaskTrackers

holding the blocks of the data.

Step 8: Each TaskTracker executes a specific task on

each

block and sends the results back to the JobTracker.

Step 9: JobTracker sends the final result to Client “A”.
If

client “A” has another job that requires the same

datasets it repeats the set 6-8.

Step10: In native Hadoop client “B” with a new
MapReduce

job (job2) will go through step 1-5 even if the

datasets are already available in HDFS. However,

if client “B” knows that the data exists in HDFS, it
will send job2 directly to JobTracker.

Step 11: JobTracker sends job2 to all TaskTrackers.

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017203

Step12: TaskTrackers execute the tasks and send the

results

back to the JobTracker.

Step 13: JobTracker sends the final result to Client “B”.
Figure 3 shows the workflow chart for Native Hadoop.

We can see that there is independency between jobs

because there are no conditions that test the relationship

between jobs in Native Hadoop. So, every job deals with

the same data every time it gets processed. In addition, if

we have the same job executed more than one time; it

reads

all the data every time, which can cause weakness in

Hadoop performance.

3.2 Native HadoopMapReduce Limitations

Many HadoopMapReduce jobs, especially tasks

associated with the science data such as genomic data,

deal

with the sequences similarities, super-sequences and

subsequences

in DNA [21]. Such tasks usually require multiple

MapReduce Jobs to access the same data many times. For

a

DNA sequence-matching task, if an n-nucleotide long

sequence exists in a specific DataNode, then any

superstring-sequence can only be found in the same

DataNodes.

As shown in Figure 2, let’s suppose that Client A and

Client B are searching for the same sequence in

BigData

source files. Once client A finds the sequence, client B

will

also go through the same steps again to find the same

results. Since each job is independent, clients do not

share

results. Process redundancy remains a major unsolved

problem in native HadoopMapReduce infrastructure.

2016

2016

2168-7161 (c) 2015 IEEE. Personal use is permitted,

but republication/redistribution requires IEEE

permission. See

http://www.ieee.org/publications_standards/publication

s/rights/index.html for more information.

This article has been accepted for publication in a

future issue of this journal, but has not been fully

edited. Content may change prior to final publication.

Citation information: DOI

10.1109/TCC.2016.2535261, IEEE

Transactions on Cloud Computing

IEEE TRANSACTIONS ON Cloud Computing,

manuscript ID TCC-2015-11-0399

5

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017204

TABLE I

COMMON JOB BLOCKS TABLE COMPONENTS

3 RESEARCH PROLEM

Searching for sequences or mutation of sequences in a

large unstructured dataset can be both time-consuming

and

expensive. Sequence alignment algorithms are often used

to

align multiple sequences. Due to memory limitation,

aligning more than three to four sequences is often not

allowed by traditional alignment tools.

As expected, a Hadoop cluster with three nodes is able to

search the sequence data much faster than single node. It

is

expected that search time will reduce as the number of

DataNodes are increased in the cluster. However, when

we

execute a MapReduce job in the same cluster for more

than

one time, each time it takes the same amount of time. This

study aims to present this problem and propose a solution

that would improve the time involved in the execution of

MapReduce jobs.

Since current Hadoop Framework does not support

storing metadata of previous jobs, it ignores the location

of

DataNode with sub-sequence and reads data from all

DataNodes for every new job [21].

Shown in Figure 2, Client A and Client B are searching

for similar sequences in BigData. Once Client A finds the

sequence, Client B will repeat the search of BigData again

to

find the same results. Since each job is independent,

clients

do not share results. Any client looking for a super

sequence with a sequence that has already been searched

will have to go through the BigData search again. Thus

the

cost to perform the same job will remain the same each

time.

5 H2HADOOP

In existing Hadoop architecture, NameNode knows the

location of the data blocks in HDFS. NameNode is

responsible for assigning the jobs to a client and dividing

that job into tasks. NameNode further assigns the tasks to

theTasTrackers (DataNodes). Knowing which DataNode

holds the blocks containing the required data, NameNode

should be able to direct the jobs to the specific DataNodes

without going through the whole cluster. In H2Hadoop,

before assigning tasks to the DataNodes, we implemented

a

pre-processing phase in the NameNode.

Our focus is on identifying and extracting features to

build a metadata table that carries information related to

the location of the data blocks with these features. Any

job

with the same features should only read the data from

these specific blocks of the cluster without going

through

the whole data again. Explanation of the proposed

solution

is as follows:

5.1 Common Job Blocks Table

(CJBT)

Proposed HadoopMapReduce workflow (H2Hadoop) is

the same as the original Hadoop in terms of hardware,

network, and nodes. However, the software level has

been

enhanced. We added features in NameNode that allow

it to

save specific data in a look up table which named

Common

Job Blocks Table CJBT.

The proposed solution can only be used for text data.

BigData, such as Genomic data and books can be

processed

efficiently using the proposed framework. CJBT stores

information about the jobs and the blocks associated

with

specific data and features. This enables the related jobs

to

get the results from specific blocks without checking

the

entire cluster. Each CJBT is related to only one HDFS

data

file, which means that there is only one table for each

data

source file(s) in HDFS. In our research, we took an

example

of genome BigData to show the functionality of

enhanced

Hadoop architecture.

In order to understand the framework of Mapping and

Reducing in the proposed platform, we searched for a

DNA

sequence using H2Hadoop in HDFS. Sequence aligning

is

an essential step for many molecular biology and

bioinformatics applications, such as phylogenetic tree

construction, gene finding, gene function, and protein

structure prediction [22]. Computationally intensive

algorithms are used for sequence alignment. Scalable

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017205

parallel processing Hadoop framework has been proposed

and implemented for the sequence alignment of genomic

data [16, 23-25].

Proposed Hadoop architecture relies on CJBT for efficient

data analysis. Each time a sequence is aligned using

dynamic programming and conventional alignment

algorithms, a common feature that is a sequence or

subsequence

is identified and updated in CJBT. Common

features in CJBT can be compared and updated each time

clients submit a new job to Hadoop. Consequently, the

size

of this table should be controlled and limited to a specific

size to keep the architecture reliable and efficient. A

typical

CJBT consists of three main components or columns

(TABLE I), which are explained below:

entries.

Common Job

Name

Common

Feature

Block

Name

Sequence_Alignment GGGATTTA B1 B2 B3

TTTAGA B1 B4

Fining_Sequence

TTTAGCC B3 B6

GCCATTAA B1 B3 B4

AATCCAGG B3 B5

5.1.1 Common Job Name CJN

Common Job Name represents a shared name of a job

that each MapReduce client must use when submitting a

new job in order to get the benefit of the proposed

architecture. We define a library, which contains a list of

pre-coded jobs that is made available to the user by an

Application Program Interface (API). The Jobs APIs

provide a brief job description and access to job data. The

users select a job name (or shared database name) from

the

list of jobs already identified for a shared MapReduce job

(or data). This feature helps NameNode to identify and

match a job to a DataNode(s) containing block(s) in the

CJBT

.

5.1.2 Common Feature CF

Common Features are defined as the shared data

between jobs. H2Hadoop supports caching, enables

output

(or part of output) to be written in the CJBT during the

reduce step. We use Common Features to identify the

DataNodes or the blocks with shared data entries.

Common Job

Name

Common

Feature

Block

Name

Sequence_Alignment GGGATTTA B1 B2 B3

TTTAGA B1 B4

Fining_Sequence

TTTAGCC B3 B6

GCCATTAA B1 B3 B4

AATCCAGG B3 B5

2016

2016

2168-7161 (c) 2015 IEEE. Personal use is permitted,

but republication/redistribution requires IEEE

permission. See

http://www.ieee.org/publications_standards/publication

s/rights/index.html for more information.

This article has been accepted for publication in a

future issue of this journal, but has not been fully

edited. Content may change prior to final publication.

Citation information: DOI

10.1109/TCC.2016.2535261, IEEE

Transactions on Cloud Computing

IEEE TRANSACTIONS ON Cloud Computing,

manuscript ID TCC-2015-11-0399

6

Fig. 4. H2Hadoop MapReduce Workflow

TABLE II

LIKELIHOOD OF RANDOM NUCLEOTIDES

JobTracker directs any new jobs with the shared

common

features to block names in CJBT. Suppose J1 and J2 are

sequence search jobs, J1 uses MapReduce to find the

sequence in a DataNode or a block. If J2 contains

common

feature of J1, it is logical to map the task and allocate

the

same data resources of J1.

When a sub-sequence arrives to the NameNode as the

result of a new job, the old common feature will be

replaced

with the old one. However, feature selection should be

done carefully as the response time for the jobs can

increase

if common features exist in every DataNode. For

example,

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017206

in genomic data, regulatory sequences and protein binding

sites are highly recurring sequences. Using such

sequences

as common features can degrade the performance of the

proposed solution.

The length of common feature also plays on important

role in the proposed solution. If the sequence is too short

it

will be present many times in all chromosomes and all

datasets. For a random sequence Dn is the likelihood of

how many times a DNA sequence occurs in the whole

human genome. The likelihood of the binding sites for 9,

12

and 15 fingers, ZNF is presented in (TABLE II). For a

random sequence of length Dn, where n is the length of

nucleotide sequence, the likelihood of how many times a

sequence occurs in the whole human genome is given by:

Dn = 3 x 109/ (4)n

Where n is the number of nucleotides in a random

sequence.

of Nucleotides likelihood of finding any random 9 –

15 nucleotides sequence in the

human genome: D(n)

genome 3 x 109

09 -nucleotides D9 = 11444

12 -nucleotides D12 =178

15 -nucleotides D15 =2.7

As shown in (TABLE II), the likelihood of any random 9

base pair (bp) of a long nucleotides sequence in a whole

genome is quite large comparing with 12 base pair (bp),

and using a 9 bp long sequence as a common feature will

result in the performance degradation of the proposed

architecture. The probability of any random 12 bp long

sequence in a human genome is 5.96 x 10-8 equaling 178

times.

5.1.3 Block Name BN

BlockName or BlockID is the location of the common

features. It identifies the block(s) in a cluster where

certain

information is stored. BlockName helps the NameNode

direct jobs to specific DataNodes that store these blocks

in

HDFS. CJBT has the list of all blocks that are related to

the

results of the common feature. For example, if a sequence

“TTTAGATCTAAAT” is only stored in B1 and B4, the

NameNode will direct any job that has a particular

sequence to B1 and B4. This CJBT is a dynamically

configurable table and the BlockName entries are

changing

as the common feature changes.

CJBT should not become too large because larger lookup

table tends to decrease the system performance. The

size of

CJBT can be limited by employing the 'leaky bucket'

algorithm [26]. The 'leaky bucket' parameters can be

adjusted to keep the size of CJBT constant. This can be

discussed more in future work.

5.2 End-User Interface

A user interface gives the user a list of Common Job

Names (CJN) to choose from. As the tasks are

completed,

CJBT is dynamically updated and more relationships

are

defined. If the CJBT is empty, the user will execute the

MapReduce job in a traditional way without getting the

benefits of the proposed solution. The predefined CJN

and

CF are defined either by the user or by the user

interface

manager, which might become a central source for

updating the lists for all clients.

5.3 H2Hadoop MapReduce Workflow

Enhanced Hadoop architecture doesn’t differ from the

nativeHadoop architecture so it will be enhancing only

the

software level through build CJBT. Following chart

(Figure

4) shows the proposed changes in NameNode, which

works as a lookup table that contains metadata for the

executed jobs in H2Hadoop.

MapReduce workflow in H2Hadoop has been

explained

in figure 4 as follows:

Step 1 to Step 8: remain in the same workflow as native

Hadoop. Except results from the first 7 steps are

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017207

stored in the CJBT.

Step 9: JobTracker sends the result to Client “A”. In this

step, NameNode keeps the names of the blocks

that produced the results in the local lookup table

(CJBT) by the Common Job Name (Job1) that has

common feature as explained above.

Step 10: Client “B” sends a new MapReduce job “Job2”
to

theJobTracker with the same common job name

and same common feature or super-sequence of

“Job1”.
Step 11: JobTracker sends “job2” to TaskTrackers who
hold

the blocks, which have the first result of the

MapReduce “Job1” (DN2, DN4, DN5). In this step,
2016-

2016

2168-7161 (c) 2015 IEEE. Personal use is permitted, but

republication/redistribution requires IEEE permission.

See

http://www.ieee.org/publications_standards/publications/r

ights/index.html for more information.

This article has been accepted for publication in a future

issue of this journal, but has not been fully edited. Content

may change prior to final publication. Citation

information: DOI 10.1109/TCC.2016.2535261, IEEE

Transactions on Cloud Computing

IEEE TRANSACTIONS ON Cloud Computing,

manuscript ID TCC-2015-11-0399

7

Fig. 5. H2Hadoop MapReduce Workflow Flowchart

theJobTracker starts with checking the CJBT first

to find if it is a new job which has the same

common name and common features of any

previous ones or not – In this case yes. Then the

JobTracker sends “Job2” only to TT2, TT4 and TT5.
We may assume here that the lookup table will be

updated with more details OR just remain as is

because every time we have a new job that may

carry the same name of “Job1”.
Step 12: TaskTrackers execute the tasks and send the

results

back to the JobTracker.

Step 13: JobTracker sends the final result to Client “B”.
The workflow that is shown above explains the normal

flow steps of the H2Hadoop MapReduce framework. In

addition, there should be a training phase before starting

the process of MapReduce to have some metadata in the

CJBT to receive the benefits of the new architecture.

From the flowchart that is explained in Figure 5, we

can

see that there are two more conditions in H2Hadoop

when

compared with native Hadoop that perform with a delay

in

job processing. However, if we have a relationship

between

jobs, H2Hadoop performance will be better than the

native

Hadoop. The above-mentioned delay in H2Hadoop

ultimately causes a short delay in time.

In H2Hadoop, after launching a job there is a condition

that tests the name of the job. If the job uses a CJN,

which

means this job is commonly used and there might be a

relationship between this job and others. Otherwise, if

the

name of the job is not common, it skips the second

condition and reads the whole data from the HDFS and

completes the execution.

If the name of the job is common, which means the first

condition is “Yes”, it will check the second condition,
which

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017208

tests the common feature of the job. If the feature of the

new job is common with any previous job, the new job

reads the specific data blocks from the HDFS and sets

them

as source data files, not the whole data block. Then the

new

job will be executed normally.

Under these two conditions, H2Hadoop reduces the size

of the data that is being read by the new job.

Consequently,

this improves on the Hadoop performance for jobs that

are

working on similar data files.

6 IMPLEMENTATION AND TESTING

In this section we will discuss the implementation plan

for the proposed solution and expected results of

H2Hadoop. We tested H2Hadoop under these specific

circumstances, which include number of data files and the

size of each file. The proposed solution could be

implemented in two different ways. First, in cases where

there are many source data files and each one is less than

the default value of the block size. Second, in cases where

there is a one or a couple of data source files and where

most of the files are larger than the default block in size.

In our implementation, we used DNA chromosome data

and the data source size is about 24 files. Each file is less

than the default block size in Hadoop. Various jobs were

implemented using the above mentioned data. The

implementation of the proposed solution goes in three

parts:

6.1 Creating the Common Job Block Table

(CJBT)
Using different techniques we are able to perform design

and create the CJBT. One of them is using a NoSQL

database such as HBase. HBase is a column-oriented

database of which a main property is expanded

horizontally [27].

The reason for using HBase is that it is an Apache open

source software that is one of NoSQL databases that

works

on top of Hadoop. We use HBase as an indexing table

here

to complete our research and enable the proposed solution

works successfully. Another way is to create a key-value

data structure such as dictionary in Python.

6.2 Designing User Interface (UI)

As we proposed earlier the user interface should contain

user-friendly interface so that the user is receive the

benefits of the enhanced design when choosing common

data from lists. For example, when choosing the CJN

from a

list of common job names that are related to the similar

data

files.

Different forms of user interfaces can be designed

based

on the user’s needs. One of the common user interfaces
is,

the command line that is commonly used when the user

knows the commands and the related parameters they

will

2016

2016

2168-7161 (c) 2015 IEEE. Personal use is permitted,

but republication/redistribution requires IEEE

permission. See

http://www.ieee.org/publications_standards/publication

s/rights/index.html for more information.

This article has been accepted for publication in a

future issue of this journal, but has not been fully

edited. Content may change prior to final publication.

Citation information: DOI

10.1109/TCC.2016.2535261, IEEE

Transactions on Cloud Computing

IEEE TRANSACTIONS ON Cloud Computing,

manuscript ID TCC-2015-11-0399

8

TABLE III

COMMON JOB BLOCK TABLE (DNA EXAMPLE)

Common Feature

(Sequence)

Block Name/ID

(Chromosome Name)

sq1

GGGGCGGGG

In All Chromosomes

sq2AAGACGGTGGTAAGG 1, 8

sq3 CATTTCTGCTAAGA

1,2,3,4,6,7,9,10,11,12,13,18,19,21

sq4GAATGTCCTTTCTCT 1,3,6,7,9,17,19,20,21

sq5GATCTCAGCCAGTGTGAAA 3,7,16

Fig. 6. Number of read operations in Native Hadoop

and H2Hadoop

for the same jobs.

Native Hadoop

H2Hadoop

use. Hadoop and HBase are controlled by the same

command line, which is a shell command line in Linux.

Therefore, in our work, we use the shell command line

as a

user interface to implement the proposed solution. The

commands that are used here are the same original

Hadoops’ commands.

6.3 Proposed Solution Environment

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017209

We can build a cluster for the proposed solution

following some directions [28] to prepare the cluster first,

then we can do the modifications on the environment. In

addition, since we have Hadoop and HBase both run on a

shell interface of Linux, we will use it for the

implementation of the proposed solution. We use the

following applications and tools:

• We have one Master node, which is the NameNode

and The JobTracker.

• We have 9 slave nodes that work as DataNodes and

TaskTrackers in different locations.

• Linux OpenSUSE as an operating system on all nodes

in the cluster. We used both versions of OpenSUSE11.1

and OpenSUSE12.3. We can use different versions at

the same time with no conflicts between the nodes.

• Apache Hadoop1.2.1, which is the stable version of
Hadoop at the time of implementing the cluster.

• Apache HBase 0.98, which is the stable version of
HBase at the time of implementing the cluster.

COMMON JOB BLOCK TABLE (DNA EXAMPLE)

Common Feature

(Sequence)

Block Name/ID

(Chromosome Name)

sq1

GGGGCGGGG

In All Chromosomes

sq2AAGACGGTGGTAAGG 1, 8

sq3 CATTTCTGCTAAGA 1,2,3,4,6,7,9,10,11,12,13,18,19,21

sq4GAATGTCCTTTCTCT 1,3,6,7,9,17,19,20,21

sq5GATCTCAGCCAGTGTGAAA 3

•
6.4 Execute some experiments

Having common features exist in all files is not a

common case, but it does happen. In DNA chromosomes,

there are a couple of sequences that are common for

searching prowtein process. The following examples are

some sequences and their locations TABLE III (store the

ChromosomeName in which chromosomes they occur):

We launched many experiments on different text file

formats to test the sequence finding job with different

common features. One of the experiments is finding a

sequence of DNA data files. We stored the common job

block table as shown in TABLE III using HBase for easy

access in the H2Hadoop environment.

7 RESULTS AND EVALUATION

Up to this point, there are indications that we received

positive results comparing with the native Hadoop

MapReduce environment. By implementing the

proposed

solution, we have less data size to be read by the related

jobs. Reducing the number of reads has a direct effect

on

the performance of Hadoop [29]. As expected, we also

noticed that the performance of HadoopMapReduce

depends upon the length of common features and the

likelihood of finding the common features in the source

files and DataNodes. If the common features exist in all

source files, then H2Hadoop will not improve the

performance as the job reads all files that contain the

common feature.

From TABLE III, sequence1 is located in all

chromosomes, which means it is located in all data

blocks.

So, H2Hadoop will read the whole data files again if

the

common feature is sequence1. In this case it gives no

benefits of having H2Hadoop. However, all other

sequences have better performance when we use them

as

common feature using H2Hadoop rather than Native

Hadoop since they are not present in all data files.

The above example gives us indications of positive

results from the implementation in the number of

blocks

that are read from HDFS. Figure 6 shows one of the

results,

which is the number of read operations in native

Hadoop

compared with H2Hadoop.

Number of read operations is one component of

Hadoop

MapReduce and it is the number of times that

MapReduce

reads blocks from HDFS. So, based on the data size we

can

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017210

determine the number of blocks that should be read by the

MapReduce job. As we mentioned before, by reducing the

number of read operations we can improve the

performance.

Figure 6 shows improvement in Hadoop performance by

reducing the number of read operations from HDFS. In

nativeHadoop, the number of read operations remains the

same in every job because it reads all data files again

during each job. While, in H2Hadoop there is difference

in

number of read operations based on how frequent the

sequence exists in the DNA. When we implemented

native

Hadoop, the number of read operations was 109. By using

H2Hadoop, the number of read operations was reduced to

be 15, which increases the efficiency by 86.2%. On the

other

hand, since sequence1 exists in every chromosome, the

number of read operations remains the same 109 in

H2Hadoop as native Hadoop.

One additional point that we should mention is the

length of the sequence. Finding short sequences in length

2016

2016

2168-7161 (c) 2015 IEEE. Personal use is permitted, but

republication/redistribution requires IEEE permission.

See

http://www.ieee.org/publications_standards/publications/r

ights/index.html for more information.

This article has been accepted for publication in a future

issue of this journal, but has not been fully edited. Content

may change prior to final publication. Citation

information: DOI 10.1109/TCC.2016.2535261, IEEE

Transactions on Cloud Computing

IEEE TRANSACTIONS ON Cloud Computing,

manuscript ID TCC-2015-11-0399

9

Fig. 7. CPU processing time in Native Hadoop and

H2Hadoop for

the same jobs.

Native Hadoop

H2Hadoop

Fig. 8. A list of factors that we can use to compare

between

nativeHadoop and H2Hadoop for sequence2 results.

take less time than finding longer ones. However, the

chance of having a common feature that is very long is

minute as we explained in TABLE II.

Another HadoopMapReduce component is CPU

processing time. Figure 7 shows the processing time of

each

feature in DNA data files, which used for finding the

sequence of jobs in both native Hadoop and H2Hadoop.

In H2Hadoop, we can see a huge difference between the

CPU processing-time for H2Hadoop, which is less than

nativeHadoop since H2Hadoop does not read all data

blocks from HDFS. For example, CPU processing-time

in

nativeHadoop to process the job search for sequence2 is

397 seconds whereas it is 50 seconds in H2Hadoop.

Figure 7

shows that H2Hadoop reduces the CPU processing time

by

87.4% compared to native Hadoop.

However, in sequence1 the CPU processing time in

nativeHadoop is less than H2Hadoop. Since sequence 1

exists in all chromosomes, H2Hadoop reduces the

efficiency by 3.9%. So, there is an overhead time in

H2Hadoop, which is the process of looking for related

jobs

in the lookup table (CJBT) in H2Hadoop. Although,

this

might happen it rarely occurs based on our study

showed

above in Table II. This overhead is exists in all jobs

because

it is the processing time of checking the lookup table.

However, it costs very tiny amount of time comparing

with

the benefit that can be gained by using H2Haddop.

There are different factors in native Hadoop we can

study and then compare with Enhanced Hadoop

(H2Hadoop). Figure 8 shows the processing results

when

finding the job sequence in sequence2, which is

(AAGACGGTGGTAAGG) in DNA data blocks.

We can say that all operations or factors that are related

to output from MapReduce remain the same in both

native

Hadoop and H2Hadoop. That is because our

improvement

is to reduce the input to MapReduce not its output. So,

the

number of write operations is the same in both native

Hadoop and H2Hadoop, which is 1 since the result is

the

same and its size is very small.

Finding the location of the data blocks with the

common

features can result in latency during the reading

process.

However, the benefits of the proposed system are much

more than the disadvantages. Advantages of the

proposed

system go beyond the number of read operations and

the

performance of the system. The proposed system

further

reduces the data transfer within the network and

reduces

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017211

the cost of execution of the MapReduce job as the number

of active DataNodes during the action of a job reduces.

SYSTEM ARCHITECHTURE

Data Preprocessing Module:
In this module we have to create Data set for bank dataset

it contain set of table such that customer details, account

details, transaction details overall marks details for last

year

Data Migration Module with Sqoop
Sqoop is a command-line interface application

for transferring data between relational databases

and Hadoop

In this module we fetch the dataset into hadoop

(HDFS) using sqoop Tool.

Data Analytic Module with Hive
Hive is a data ware house system for Hadoop. It

runs SQL like queries called HQL (Hive query

language) which gets internally converted to map

reduce jobs

In this module we have to analysis the dataset

using HIVE tool which will be stored in hadoop

(HDFS).For analysis dataset HIVE using HQL

Data Analytic Module with Pig

Apache Pig is a high level data flow platform for

execution Map Reduce programs of Hadoop. The

language for Pig is pig Latin. Pig handles both structure

and unstructured language

In this module also used for analyzing the Data set

through Pig using Latin Script data flow language.

The Algorithm

Generally MapReduce paradigm is based on

sending the computer to where the data

resides!

MapReduce program executes in three stages,

namely map stage, shuffle stage, and reduce

stage.

Map stage : The map or mapper’s job is to

process the input data. Generally the input

data is in the form of file or directory and is

stored in the Hadoop file system (HDFS). The

input file is passed to the mapper function

line by line. The mapper processes the data

and creates several small chunks of data.

Reduce stage : This stage is the combination

of the Shuffle stage and the Reduce stage.

The Reducer’s job is to process the data that

comes from the mapper. After processing, it

produces a new set of output, which will be

stored in the HDFS.

8 RELATED WORK

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017212

Hadoop is considered as a new technology that provides

processing services for BigData issues in cloud

computing,

thus, research in this field is considered a hot topic. Many

studies have discussed and developed different ways to

improve the HadoopMapReduce performance from

different considerations or aspects. Many studies have

discussed optimizing Hadoop and MapReduce jobs such

as

job scheduling and execution time to improve Hadoop

performance. Whereas, there are many studies that have

been discussed in relation to data locality in cloud

computing.

One of the important features of Hadoop is the process of

job scheduling [30] [31] and job execution time .

Different

studies have provide some information improvements and

have come up with positive results based on their

assumptions [32] [33]. Others focus on the time of

initialization and termination phases of MapReduce jobs

[34].

System memory has many issues that could be addressed

to improve the system performance. In Hadoop, Apache

performs a centralized memory approach which is

implemented to control the cashing and resources [35].

Apache Hadoop supports centralized data cashing.

However, some studies utilize a distributed cashing

approach to improve Hadoop performance [36] [37].

There

are different approaches that discuss memory issue.

ShmStreaming [38] introduces a Shared memory

Streaming

schema to provide lockless FIFO queue that connects

Hadoop and external programs.

The location of input data has been determined in

currentHadoop to be located in different nodes in the

cluster. Since there is a default value for duplication of

the

data, which is 3 times, Hadoop distributes the duplicated

data into different nodes in different network racks. This

2016

2016

2168-7161 (c) 2015 IEEE. Personal use is permitted, but

republication/redistribution requires IEEE permission.

See

http://www.ieee.org/publications_standards/publications/r

ights/index.html for more information.

This article has been accepted for publication in a future

issue of this journal, but has not been fully

edited. Content may change prior to final publication.

Citation information: DOI 10.1109/TCC.2016.2535261,

IEEE

Transactions on Cloud Computing

IEEE TRANSACTIONS ON Cloud Computing,

manuscript ID TCC-2015-11-0399

10

strategy helps for various reasons, one of which is for

false

tolerant issue to have more reliability and scalability.

However, the default data distribution location strategy

causes some poor performance in terms of mapping and

reducing tasks. Different studies proposed solutions to

improveHadoop performance by developing data

locality

improvements [12] [39]. Others, focus on the type of

data to

improveHadoop performance [16] [40]. In addition, a

few

studies discuss different issues regarding the

improvement

ofHadoop performance [41-45].

9 CONCLUSION

In this work we present Enhanced Hadoop framework

(H2Hadoop), which allows a NameNode to identify the

blocks in the cluster where certain information is

stored.

We discussed the proposed workflow in H2Hadoop and

compared the expected performance of H2Hadoop to

nativeHadoop. In H2hadoop, we read less data, so we

have some Hadoop factors such as number of read

operations, which are reduced by the number of

DataNodes carrying the source data blocks, which is

identified prior to sending a job to TaskTracker. The

maximum number of data blocks that the TaskTracker

will

assign to the job is equal to the number of blocks that

carries the source data related to a specific common job

.

REFERENCES
1. Ming, M., G. Jing, and C. Jun-jie. Blast-Parallel:

The parallelizing

implementation of sequence alignment algorithms

based on

Hadoop platform.inBiomedical Engineering and

Informatics

(BMEI), 2013 6th International Conference on. 2013.

2. Schatz, M.C., B. Langmead, and S.L. Salzberg,

Cloud computing

and the DNA data race. Nature biotechnology, 2010.

28(7): p. 691.

3. Schadt, E.E., et al., Computational solutions to

large-scale data

management and analysis. Nature Reviews Genetics,

2010. 11(9):

p. 647-657.

4. Farrahi, K. and D. Gatica-Perez, A probabilistic

approach to

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017213

mining mobile phone data sequences. Personal

Ubiquitous

Comput., 2014. 18(1): p. 223-238.

5. Marx, V., Biology: The big challenges of big data.

Nature, 2013.

498(7453): p. 255-260.

6. Lohr, S., The age of big data. New York Times, 2012.

11.

7. Changqing, J., et al. Big Data Processing in Cloud

Computing

Environments.inPervasive Systems, Algorithms and

Networks

(ISPAN), 2012 12th International Symposium on. 2012.

8. Chen, M., S. Mao, and Y. Liu, Big Data: A Survey.

Mobile

Networks and Applications, 2014. 19(2): p. 171-209.

9. Jagadish, H., et al., Big data and its technical

challenges.

Communications of the ACM, 2014. 57(7): p. 86-94.

10. White, T., Hadoop: The definitive guide. 2012: "

O'Reilly Media,

Inc.".

11. Patel, A.B., M. Birla, and U. Nair. Addressing big

data problem

usingHadoop and Map Reduce. inEngineering

(NUiCONE), 2012

Nirma University International Conference on. 2012.

12. Hammoud, M. and M.F. Sakr. Locality-Aware Reduce

Task

Scheduling for MapReduce.inCloud Computing

Technology and

Science (CloudCom), 2011 IEEE Third International

Conference

on. 2011.

13. Dean, J. and S. Ghemawat, MapReduce: simplified

data processing

on large clusters. Communications of the ACM, 2008.

51(1): p.

107-113.

14. Li, F., et al., Distributed data management using

MapReduce.

ACM Comput.Surv., 2014. 46(3): p. 1-42.

15. Xu, W., W. Luo, and N. Woodward. Analysis and

optimization of

data import with hadoop. IEEE.

16. Buck, J.B., et al. SciHadoop: Array-based query

processing in

Hadoop.inHigh Performance Computing, Networking,

Storage

and Analysis (SC), 2011 International Conference for.

2011.

17. Condie, T., et al. MapReduce Online. inNSDI. 2010.

18. Herodotou, H., Hadoop performance models. arXiv

preprint

arXiv:1106.0940, 2011.

19. Wu, S., et al. Query optimization for massively

parallel data

processing. inProceedings of the 2nd ACM Symposium

on Cloud

Computing. 2011. ACM.

20. Palanisamy, B., et al. Purlieus: locality-aware

resource allocation

forMapReduce in a cloud. inProceedings of 2011

International

Conference for High Performance Computing,

Networking,

Storage and Analysis.ACM.

21. Matsunaga, A., M. Tsugawa, and J. Fortes.

CloudBLAST:

Combining MapReduce and Virtualization on

Distributed

Resources for Bioinformatics Applications.ineScience,

2008.

eScience '08. IEEE Fourth International Conference

on. 2008.

22. Cuff, J.A. and G.J. Barton, Application of multiple

sequence

alignment profiles to improve protein secondary

structure

prediction. Proteins: Structure, Function, and

Bioinformatics,

2000. 40(3): p. 502-511.

23. Sadasivam, G.S. and G. Baktavatchalam. A novel

approach to

multiple sequence alignment using hadoop data grids.

in

Proceedings of the 2010 Workshop on Massive Data

Analytics on

the Cloud. 2010. ACM.

24. Alshammari, H., H. Bajwa, and J. Lee, Hadoop

Based Enhanced

Cloud Architecture, in ASEE. 2014: USA.

25. Erodula, K., C. Bach, and H. Bajwa. Use of Multi

Threaded

Asynchronous DNA Sequence Pattern Searching Tool

to

Identifying Zinc-Finger-Nuclease Binding Sites on the

Human

Genome.inInformation Technology: New Generations

(ITNG),

2011 Eighth International Conference on. 2011. IEEE.

26. Yin, N. and M.G. Hluchyj. Analysis of the leaky

bucket algorithm

for on-off data sources. inGlobal Telecommunications

Conference, 1991.GLOBECOM '91. 'Countdown to the

New

Millennium. Featuring a Mini-Theme on: Personal

Communications Services. 1991.

27. Vora, M.N. Hadoop-HBase for large-scale data.

inComputer

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017214

Science and Network Technology (ICCSNT), 2011

International

Conference on. 2011. IEEE.

28. Noll, M.G., Running hadoop on ubuntulinux (multi-

node cluster).

Apr-2013.[Online]. Available: http://www.michaelnoll.

com/tutorials/running-hadoop-on-ubuntu-linuxmulti-

nodecluster/ 2011.

29. Herodotou, H. and S. Babu, Profiling, what-if

analysis, and costbased

optimization of MapReduce programs. Proceedings of the

VLDB Endowment, 2011. 4(11): p. 1111-1122.

30. Tiwari, N., et al., Classification Framework of

MapReduce

Scheduling Algorithms.ACM Comput.Surv., 2015. 47(3):

p. 1-38.

31. Zaharia, M., et al., Job scheduling for multi-user

mapreduce

clusters. EECS Department, University of California,

Berkeley,

Tech. Rep. UCB/EECS-2009-55, 2009.

32. Gu, R., et al., SHadoop: Improving MapReduce

performance by

optimizing job execution mechanism in Hadoop clusters.

Journal of

Parallel and Distributed Computing, 2014. 74(3): p. 2166-

2179.

33. Qi, C., L. Cheng, and X. Zhen, Improving MapReduce

Performance Using Smart Speculative Execution

Strategy.

Computers, IEEE Transactions on, 2014. 63(4): p. 954-

967.

34. Jinshuang, Y., et al. Performance Optimization for

Short

MapReduce Job Execution in Hadoop.inCloud and Green

Computing (CGC), 2012 Second International

Conference on.

2012.

35. Apache, Centralized Cache Management in HDFS.

Update date

2014.

36. Zhang, S., et al. Accelerating MapReduce with

distributed memory

cache. inParallel and Distributed Systems (ICPADS),

2009 15th

International Conference on. 2009. IEEE.

37. Zhang, J., et al., A Distributed Cache for Hadoop

Distributed File

System in Real-Time Cloud Services, in Proceedings of

the 2012

ACM/IEEE 13th International Conference on Grid

Computing.

2012, IEEE Computer Society. p. 12-21.

38. Longbin, L., et al. ShmStreaming: A Shared Memory

Approach for

Improving Hadoop Streaming Performance.inAdvanced

Information Networking and Applications (AINA), 2013

IEEE 27th

International Conference on. 2013.

39. Palanisamy, B., et al. Purlieus: locality-aware

resource allocation

forMapReduce in a cloud. inProceedings of 2011

International

2016

2016

2168-7161 (c) 2015 IEEE. Personal use is permitted,

but republication/redistribution requires IEEE

permission. See

http://www.ieee.org/publications_standards/publication

s/rights/index.html for more information.

This article has been accepted for publication in a

future issue of this journal, but has not been fully

edited. Content may change prior to final publication.

Citation information: DOI

10.1109/TCC.2016.2535261, IEEE

Transactions on Cloud Computing

IEEE TRANSACTIONS ON Cloud Computing,

manuscript ID TCC-2015-11-0399

11

Conference for High Performance Computing,

Networking,

Storage and Analysis. 2011. ACM.

40. Xiao, Y. and H. Bo. Bi-Hadoop: Extending Hadoop

to Improve

Support for Binary-Input Applications. inCluster,

Cloud and Grid

Computing (CCGrid), 2013 13th IEEE/ACM

International

Symposium on. 2013.

41. Nishanth, S., et al. CoHadoop++: A load balanced

data colocation

inHadoop Distributed File System. inAdvanced

Computing (ICoAC), 2013 Fifth International

Conference on.

2013.

42. Jian, T., et al. Improving ReduceTask data locality

for sequential

MapReduce jobs.inINFOCOM, 2013 Proceedings

IEEE. 2013.

43. Xuhui, L., et al. Implementing WebGIS on Hadoop:

A case study of

improving small file I/O performance on HDFS.

inCluster

Computing and Workshops, 2009.CLUSTER '09. IEEE

International Conference on. 2009.

44. Xie, J., et al. Improving mapreduce performance

through data

placement in heterogeneous hadoop clusters. inParallel

&

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017215

Distributed Processing, Workshops and Phd Forum

(IPDPSW),

2010 IEEE International Symposium on. 2010. IEEE.

45. Elghandour, I. and A. Aboulnaga, ReStore: reusing

results of

MapReduce jobs.Proc. VLDB Endow., 2012. 5(6): p. 586-

597.

HamoudAlshammari (First Author)

received a BS in Computer Information

Systems from King Saud University,

Saudi Arabia in 2002. He received his

first MS degree in Business MBA from

Yarmok University, Jordan. Then, he

received the second MS degree in

Computer Science from University of Bridgeport, CT-

USA.

He is doing his Ph.D. in Computer Science and

Engineering

at University of Bridgeport, CT-USA. Alshammari is

doing

his research in BigData and HadoopMapReduce

performance. He is also has interesting in data analysis.

Mr.

Alshammari is a member in Upsilon Pi Epsilon Honor

Society.

Dr.Jeongkyu Lee received a B.S. from

Sungkyunkwan University in Mathematic

Education and an M.S. from Sogang

University in Computer Science, both of

Seoul, Korea in 1996 and 2001,

respectively. He worked as a database

administrator for seven years with

companies including IBM. In fall 2002, he

entered the Doctoral program in Computer Science and

Engineering at the University of Texas at Arlington. After

he received Ph.D. degree in summer 2006, he joined the

Department of Computer Sciences and Engineering at

University of Bridgeport, CT as an assistant professor,

and

he has been an associated professor since 2012.

His research interest is in the multimedia database

management and big data analytics. His work also

includes

techniques for multimedia data mining, video processing,

multimedia ontology, and medical imaging. He is a

program committee of IEEE International Symposium on

Multimedia, ACM Symposium on Applied Computing

(SAC), and International Resources Management

Association (IRMA). He is a president of KOCSEA

(Korean

Computer Scientists and Engineers Association in

America).

Dr. Hassan Bajwa received his BSc

degree in Electrical Engineering from

NYU Polytechnic University of New York

in 1998. From 1998 to 2001 he worked for

Software Spectrum. He received his MS

from the City College of New York in

2003, and his Doctorate in Electrical

Engineering from City University of New

York in 2007.Currently he is an Associate Professor of

Electrical Engineering at the University of Bridgeport.

His

research interests include modeling and simulation of

Nano-electronic architectures, low power sensor

networks,

flexible electronics, bioelectronics, and Bioinformatics.

2016

2016.

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017216

