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Abstract 
—Cloud Computing leverages Hadoop framework for 

processing BigData in parallel. Hadoop has certain 

limitations that 

could be exploited to execute the job efficiently. These 

limitations are mostly because of data locality in the 

cluster, jobs and tasks 

scheduling, and resource allocations in Hadoop. Efficient 

resource allocation remains a challenge in Cloud 

Computing MapReduce 

platforms. We propose H2Hadoop, which is an enhanced 

Hadoop architecture that reduces the computation cost 

associated with 

BigData analysis. The proposed architecture also 

addresses the issue of resource allocation in native 

Hadoop. H2Hadoop provides a 

better solution for “text data”, such as finding DNA 
sequence and the motif of a DNA sequence. Also, 

H2Hadoop provides an efficient 

Data Mining approach for Cloud Computing 

environments. H2Hadoop architecture leverages on 

NameNode’s ability to assign jobs to 

theTaskTrakers (DataNodes) within the cluster. By 

adding control features to the NameNode, H2Hadoop can 

intelligently direct and 

assign tasks to the DataNodes that contain the required 

data without sending the job to the whole cluster. 

Comparing with native 

Hadoop, H2Hadoop reduces CPU time, number of read 

operations, and another Hadoop factors 

. 

Index Terms—  

 

BigData, Cloud Computing, Hadoop, H2Hadoop, 

Hadoop Performance, MapReduce, Text Data 

 

1 INTRODUCTION 

 

parallel processing in Cloud Computing has emerged as 

an interdisciplinary research area due to the 

heterogeneous nature and large size of data. Translating 

sequential data to meaningful information requires 

substantial computational power and efficient 

algorithms 

to identify the degree of similarities among multiple 

sequences [1]. Sequential pattern mining or data 

analysis 

applications such as, DNA sequence aligning and motif 

finding usually require large and complex amounts of 

data 

processing and computational capabilities [2]. 

Efficiently 

targeting and scheduling of computational resources is 

required to solve such complex problems [3]. 

Although, some of the data sets are readable by 

humans, 

it can be very complex to be understood and processed 

using traditional processing techniques [3, 4]. 

Availability 

of open source and commercial Cloud Computing 

parallel 

processing platforms have opened new avenues to 

explore 

structured, semi-structured or unstructured data [5]. 

Before 

we go any further, it is necessary to define certain 

definitions that are related to BigData and Hadoop. 

 

1.1 BigData Concepts 
 

There are different ways of defining and comparing 

BigData with the traditional data such as data size, 

content, 

collection and processing. Big data has been defined as 

large data sets that cannot be processed using 

traditional 

processing techniques, such as Relational Database 

Management Systems, in a tolerable processing time 

[6]. 

BigData is either a relational database (Structured), 

such as 

stock market data or non-relational database 

(Semistructured 
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EXISTING SYSTEM 
Existing concept deals with providing backend 

by using mysql which contains lot of drawbacks  

i.e data limitation is that processing time is high 

when the data is huge and once data is lost we 

cannot recover  

DRAWBACKS 
We can process limitation of data. 

      We get results which take more time and    

maintenance   cost is very high. 

 

PROPOSED SYSTEM 
Proposed concept deals with providing database 

by using hadoop tool  

we can analyze no limitation of data and simple 

add number of machines to the cluster  

we get results with less time, high throughput 

and maintenance cost is very less  

we are using joins, partations and bucketing 

techniques in hadoop. 

Drawbacks 
We can process limitation of data. 

We get results which take more time and 

maintenance   cost is very high. 

 

or Unstructured), such as social media data or 

DNA data sets [7]. 

The 4V’s of BigData are 1) Volume of the data, which 

means the data size. Some of companies’ data storage is 

aboutZetabyte. 2) Velocity, which means the speed at 

which the data is generated. 3) Varity of the data, which 

means the data forms that different applications deal with 

such as sequence data, numeric data or binary data. 4) 

Veracity of the data, which means the uncertainty of the 

status of the data or how clear the data is to these 

applications [8]. 

Different challenges in BigData have been discussed in 

previous research [9] and they are described as technical 

challenges such as the physical storage, that stores the 

BigData and reduce the redundancy. Also, there are many 

challenges such as the process of extracting the 

information, 

cleaning data, data integration, data aggregation, and data 

representation. Since BigData has these issues, it needs 

such 

an environment or framework to work through these 

challenges. Hadoop, which works with BigData sets, is a 

framework that most organizations use to process 

BigData 

in order to overcome data challenges. 

P 
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Fig. 1. Overall MapReduceWordCountMapReduce Job 

 

1.2 Hadoop Overview 
 

Hadoop is an Apache open-source software framework 

that is written in Java for distributed storage and 

distributed processing. It provides solutions for 

BigData 

processing and analysis. It has a file system that 

provides 

an interface between the users’ applications and the 
local 

file system, which is the Hadoop Distributed File 

System 

HDFS.Hadoop distributed File System assures reliable 

sharing of the resources for efficient data analysis [10]. 

The two main components of Hadoop are (i) Hadoop 

Distributed File System (HDFS) that provides the data 

reliability (distributed storage) and (ii) MapReduce that 

provides the system analysis (distributed processing) 

[11] 

[10]. Relying on the principle that “moving 
computation 

towards data is cheaper than moving data towards 

computation” [12], Hadoop employs HDFS to store 
large 

data files across the cluster. 

MapReduce provides stream reading access, runs tasks 
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on a cluster of nodes, and provides a data managing 

system 

for a distributed data storage system [13]. MapReduce 

algorithm has been used for applications such as 

generating 

search indexes, document clustering, access log analysis, 

and different other kinds of data analysis [14]. 

“Write-once and read-many” is an approach that permits 

data files to be written only once in HDFS and then 

allows 

it to be read many times over with respect to the numbers 

of assigned jobs [10]. During the writing process, Hadoop 

divides the data into blocks with a predefined block size. 

The blocks are then written and duplicated in the HDFS. 

The blocks can be duplicated a number of times based on 

a 

specific value which is set to 3 times by default [15]. 

In HDFS, the cluster that Hadoop is installed in is 

divided into two main components, which are (i) the 

master node called NameNode and (ii) the slaves called 

DataNodes. In Hadoop cluster, single NameNode is 

responsible for overall management of the file system 

including saving the data and directing the jobs to the 

appropriateDataNodes that store related application data 

[16]. DataNodes facilitate Hadoop/MapReduce to process 

the jobs with streaming execution in a parallel processing 

environment [10, 17]. 

Running on the master node, JobTracker coordinates and 

deploys the applications to the DataNodes with 

TaskTracker services for execution and parallel 

processing 

[15]. Each task is executed in an available slot in a 

DataNode, which is configured with a fixed number of 

map 

slots, and another fixed number of reduced slots. The data 

inMapReduce for our purposes is in a text format, so both 

the input and output of data must also be in a text file 

format [10]. 

The master computer has two daemons, which are 

NameNode in terms of HDFS and JobTracker in terms of 

MapReduce. Similarly, the slaves also have two daemons, 

which are DataNodes in terms of HDFS and TaskTrackers 

in terms of MapReduce. 

 

1.3 What is MapReduce Job? 
 

A MapReduce job is an access and process-streaming job 

that splits the input dataset into independent chunks 

(blocks) and stores them in HDFS. During MapReduce, 

multiple Maps are processed in parallel followed by 

Reduce tasks also processed in parallel. Depending upon 

applications the numbers of maps can be different than 

that 

of reduces. Storing data in HDFS has different forms [8] 

such as <Key, Value> concept to determine the given 

parameter (Key) and to retrieve the required result 

(Value) 

at the end of the job. 

For example, a “WordCount” job counts number of 
replication of each word in the data files. Figure 1 

explains 

MapReduce example “WordCount” as a common 
example 

to apply MapReduce in such unstructured data like 

books. 

As an input file, it consists of a sequence of characters 

that 

are separated by space, so we can consider the space as 

a 

delimiter that separates words. First step, Hadoop 

divides 

the data to blocks in the Splitting phase. Then, the 

Mapping 

phase does <key, value> for each word (e.g. <Deer, 1>. 

Then, Shuffling phase collects the values of the same 

key to 

be in one intermediate result. After that, the Reducing 

phase provides the addition of values to have one final 

value for each key. Finally, NameNode provides a final 

result that has all keys and their values as one final 

result 

from the MapReduce job. 

Fig. 1. Overall MapReduceWordCountMapReduce Job 
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The rest of the paper is divided as follows. In section II, 

we go over an overview of HadoopMapReduce 

performance and focus on the parameters that can be 

developed to improve the performance of Hadoop. In 

section III, we discuss the Hadoop workflow and its 

limitations in terms of the MapReduce algorithm 

performance. Section IV discusses the problem that this 

research tries to solve. Then in section V, we will propose 

our enhanced HadoopMapReduce workflow and compare 

the two architectures in terms of developing MapReduce 

performance. In section VI, the implementation and 

testing 

phases are discussed, and the results are evaluated and 

discussed in section VII. In section VIII, we discuss some 

related works that have been proposed to improve the 

Hadoop performance. Finally in section IX, the 

conclusion 

is provided. 

 

2 OVERVIEW OF HADOOP PERFORMANCE 
 

Native Hadoop compiler processes MapReduce job by 

dividing the job into multiple tasks, then distributes these 

tasks to multiple nodes in the cluster. By studying Hadoop 

performance in [18] the authors discussed Hadoop 

MapReduce model to estimate MapReduce job cost by 

giving some parameters to the model. 

Different parameters that jobs need to have to be 

executed efficiently. These parameters are: 

• Hadoop Parameters: which is a set of predefined 

configuration parameters that are in Hadoop setting 

files. 

• Profile Statistics: which are a set of user-defined 

properties of input data and functions like Map, 

Reduce, or Combine. 

• Profile Cost Factor: which are I/O, CPU, and Network 

cost job execution parameters. 

We will focus on the third category of parameters, which 

is the Profile Cost Factor. In this section we are going to 

explain the job execution cost in details. We will further 

explain the relationship between the number of blocks and 

the cost associated with the reading of the data from 

HDFS. 

NumberOfBlocks = DataSize / BlockSize(1) 

Where DataSize is the size of the input data that we 

want to upload to HDFS, and BlockSize is the pre-defined 

size for data block (by default it is 64MB). There is a 

compression ratio that is applied to each block to have it 

less in size before it is stored in the HDFS. We will not 

discuss the compression ratio point here because it is not 

one of our concerns and it has been discussed clearly in 

[18]. 

MapReduce job reads data from HDFS where the cost 

of 

reading a single data block from the HDFS is 

HdfsReadCost. The cost of reading the whole data from 

HDFS is IOCostRead and it is calculated as: 

IOCostRead = NumberOfBloks X HdfsReadCost(2) 

Cost of writing a single data block to HDFS is 

HdfsWriteCost. The cost of writing any data, such as 

MapReduce job results or raw data, is IOCostWriteand 

is 

calculated as follows: 

IOCostWrite = NumberOfBloks X HdfsWriteCost(3) 

From the above equations we clearly see that the total 

costs of reading and writing from HDFS depends on the 

number of blocks, which is the data size. So, by 

reducing 

the data size, we can reduce the costs of these 

processes, 

which will lead to improving the Hadoop’s 
performance. 

In addition, it is true for every Hadoop’s process that 
the 

number of blocks is related to its costs. For example, 

the 

CPU cost of reading is CPUCostRead and is calculated 

as 

follows: 

CPUCostRead = NumberOfBlocks X 

InUncompeCPUCost 

+ InputMapPairs X MapCPUCost(4) 

Where InUncompeCPUCost is the compression ratio of 

blocks, InputMapPairs is the number of pairs for 

mapping 

process, and MapCPUCost is the cost of mapping one 

pair. 

Readers can find more details about the Hadoop 

performanceanalyzing model in [18] which is published 

by 

Duke university and considered as the most common 

paper 

that discussed the Hadoop performance model. 
 

2 NATIVE HADOOP WORKFLOW 

 
In current HadoopMapReduce architecture, the client 

first sends a job to the cluster administrator, which is 

the 

NameNode. The job can be sent either using Hadoop 

ecosystem (Query language such as Hive) or by writing 

a 

job source code [19]. Before that, the data source files 

should be uploaded to the HDFS by dividing the 

BigData 
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into blocks that have the same size of data, usually 64 or 

128 MB for each block. Then, these blocks are distributed 

among different DataNodes within the cluster. Any job 

now has to have the name of the data file in HDFS, the 

source file of MapReduce code (e.g. Java file), and the 

name 

of the file where the results will be stored in. 

Native Hadoop architecture follows the concept of 

“write-once and read-many,” so there is no ability to 
make 

any changes in the data source files in HDFS. Each job 

has 

the ability to access the data from all blocks. Therefore 

network bandwidth and latency is not a limitation in the 

dedicated cloud, where data is written once and read 

many 

times. Many iterative computations utilize the architecture 

efficiently as the computations need to pass over the same 

data many times. 

Several research groups have also presented solutions 

about data locality to address the issue of latency while 

reading data from DataNodes [20]. Hadoop falls short of 

query optimization and reliability of conventional 

database 

systems. 

In the existing HadoopMapReduce architecture, 

multiple jobs with the same data set work completely 

independent of each other. We also noticed that searching 

for the same sequence of characters. For example in any 

text 

format data requires the same amount of time each time 

we 
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Fig. 2. Native HadoopMapReduce Workflow 

Fig. 3. Native HadoopMapReduce Workflow Flowchart 

execute the same job. Also, searching for the 

supersequence 

of a sequence that has already been searched 

requires the same amount of time. 

 

 
 
Fig. 2. Native HadoopMapReduce Workflow 
 

3.1 Native HadoopMapReduce Workflow 
 

MapReduce workflow in native Hadoop has been 

explained in figure 2 as follows: 

Step 1: Client “ A” sends a request to NameNode. The 

request includes the need to copy the data files to 

DataNodes. 

Step 2: NameNode replays with the IP address of 

DataNodes. In the above diagram NameNode 

replies with the IP address of five nodes (DN1 to 

DN5). 

Step 3: Client “ A” accesses the raw data for 
manipulation 

inHadoop. 

Step 4: Client “A” formats the raw data into HDFS 
format 

and divides blocks based on the data size. In the 

above example the blocks B1to B4 are distributed 

among the DataNodes. 

Step 5: Client “A” sends the three copies of each data 

block 

to different DataNodes. 

Step 6: In this step, client “A” sends a MapReduce job 
(job1) 

to the JobTracker daemon with the source data file 

name(s). 

Step 7: JobTracker sends the tasks to all TaskTrackers 

holding the blocks of the data. 

Step 8: Each TaskTracker executes a specific task on 

each 

block and sends the results back to the JobTracker. 

Step 9: JobTracker sends the final result to Client “A”. 
If 

client “A” has another job that requires the same 

datasets it repeats the set 6-8. 

Step10: In native Hadoop client “B” with a new 
MapReduce 

job (job2) will go through step 1-5 even if the 

datasets are already available in HDFS. However, 

if client “B” knows that the data exists in HDFS, it 
will send job2 directly to JobTracker. 

Step 11: JobTracker sends job2 to all TaskTrackers. 

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017203



Step12: TaskTrackers execute the tasks and send the 

results 

back to the JobTracker. 

Step 13: JobTracker sends the final result to Client “B”. 
Figure 3 shows the workflow chart for Native Hadoop. 

We can see that there is independency between jobs 

because there are no conditions that test the relationship 

between jobs in Native Hadoop. So, every job deals with 

the same data every time it gets processed. In addition, if 

we have the same job executed more than one time; it 

reads 

all the data every time, which can cause weakness in 

Hadoop performance. 

 

3.2 Native HadoopMapReduce Limitations 
 

Many HadoopMapReduce jobs, especially tasks 

associated with the science data such as genomic data, 

deal 

with the sequences similarities, super-sequences and 

subsequences 

in DNA [21]. Such tasks usually require multiple 

MapReduce Jobs to access the same data many times. For 

a 

DNA sequence-matching task, if an n-nucleotide long 

sequence exists in a specific DataNode, then any 

superstring-sequence can only be found in the same 

DataNodes. 
 

As shown in Figure 2, let’s suppose that Client A and 

Client B are searching for the same sequence in 

BigData 

source files. Once client A finds the sequence, client B 

will 

also go through the same steps again to find the same 

results. Since each job is independent, clients do not 

share 

results. Process redundancy remains a major unsolved 

problem in native HadoopMapReduce infrastructure. 
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TABLE I 

COMMON JOB BLOCKS TABLE COMPONENTS 

 

3 RESEARCH PROLEM 

 

Searching for sequences or mutation of sequences in a 

large unstructured dataset can be both time-consuming 

and 

expensive. Sequence alignment algorithms are often used 

to 

align multiple sequences. Due to memory limitation, 

aligning more than three to four sequences is often not 

allowed by traditional alignment tools. 

As expected, a Hadoop cluster with three nodes is able to 

search the sequence data much faster than single node. It 

is 

expected that search time will reduce as the number of 

DataNodes are increased in the cluster. However, when 

we 

execute a MapReduce job in the same cluster for more 

than 

one time, each time it takes the same amount of time. This 

study aims to present this problem and propose a solution 

that would improve the time involved in the execution of 

MapReduce jobs. 

Since current Hadoop Framework does not support 

storing metadata of previous jobs, it ignores the location 

of 

DataNode with sub-sequence and reads data from all 

DataNodes for every new job [21]. 

Shown in Figure 2, Client A and Client B are searching 

for similar sequences in BigData. Once Client A finds the 

sequence, Client B will repeat the search of BigData again 

to 

find the same results. Since each job is independent, 

clients 

do not share results. Any client looking for a super 

sequence with a sequence that has already been searched 

will have to go through the BigData search again. Thus 

the 

cost to perform the same job will remain the same each 

time. 
 

5 H2HADOOP 

 
In existing Hadoop architecture, NameNode knows the 

location of the data blocks in HDFS. NameNode is 

responsible for assigning the jobs to a client and dividing 

that job into tasks. NameNode further assigns the tasks to 

theTasTrackers (DataNodes). Knowing which DataNode 

holds the blocks containing the required data, NameNode 

should be able to direct the jobs to the specific DataNodes 

without going through the whole cluster. In H2Hadoop, 

before assigning tasks to the DataNodes, we implemented 

a 

pre-processing phase in the NameNode. 

Our focus is on identifying and extracting features to 

build a metadata table that carries information related to 

the location of the data blocks with these features. Any 

job 

with the same features should only read the data from 

these specific blocks of the cluster without going 

through 

the whole data again. Explanation of the proposed 

solution 

is as follows: 

 

5.1 Common Job Blocks Table 

(CJBT) 

 
Proposed HadoopMapReduce workflow (H2Hadoop) is 

the same as the original Hadoop in terms of hardware, 

network, and nodes. However, the software level has 

been 

enhanced. We added features in NameNode that allow 

it to 

save specific data in a look up table which named 

Common 

Job Blocks Table CJBT. 

The proposed solution can only be used for text data. 

BigData, such as Genomic data and books can be 

processed 

efficiently using the proposed framework. CJBT stores 

information about the jobs and the blocks associated 

with 

specific data and features. This enables the related jobs 

to 

get the results from specific blocks without checking 

the 

entire cluster. Each CJBT is related to only one HDFS 

data 

file, which means that there is only one table for each 

data 

source file(s) in HDFS. In our research, we took an 

example 

of genome BigData to show the functionality of 

enhanced 

Hadoop architecture. 

In order to understand the framework of Mapping and 

Reducing in the proposed platform, we searched for a 

DNA 

sequence using H2Hadoop in HDFS. Sequence aligning 

is 

an essential step for many molecular biology and 

bioinformatics applications, such as phylogenetic tree 

construction, gene finding, gene function, and protein 

structure prediction [22]. Computationally intensive 

algorithms are used for sequence alignment. Scalable 
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parallel processing Hadoop framework has been proposed 

and implemented for the sequence alignment of genomic 

data [16, 23-25]. 

Proposed Hadoop architecture relies on CJBT for efficient 

data analysis. Each time a sequence is aligned using 

dynamic programming and conventional alignment 

algorithms, a common feature that is a sequence or 

subsequence 

is identified and updated in CJBT. Common 

features in CJBT can be compared and updated each time 

clients submit a new job to Hadoop. Consequently, the 

size 

of this table should be controlled and limited to a specific 

size to keep the architecture reliable and efficient. A 

typical 

CJBT consists of three main components or columns 

(TABLE I), which are explained below: 

 

entries. 

Common Job 

Name 

Common 

Feature 

Block 

Name 

Sequence_Alignment GGGATTTA B1 B2 B3 

TTTAGA B1 B4 

Fining_Sequence 

TTTAGCC B3 B6 

GCCATTAA B1 B3 B4 

AATCCAGG B3 B5 

5.1.1 Common Job Name CJN 
 

Common Job Name represents a shared name of a job 

that each MapReduce client must use when submitting a 

new job in order to get the benefit of the proposed 

architecture. We define a library, which contains a list of 

pre-coded jobs that is made available to the user by an 

Application Program Interface (API). The Jobs APIs 

provide a brief job description and access to job data. The 

users select a job name (or shared database name) from 

the 

list of jobs already identified for a shared MapReduce job 

(or data). This feature helps NameNode to identify and 

match a job to a DataNode(s) containing block(s) in the 

CJBT 

. 

5.1.2 Common Feature CF 

 
Common Features are defined as the shared data 

between jobs. H2Hadoop supports caching, enables 

output 

(or part of output) to be written in the CJBT during the 

reduce step. We use Common Features to identify the 

DataNodes or the blocks with shared data entries. 

Common Job 

Name 

Common 

Feature 

Block 

Name 

Sequence_Alignment GGGATTTA B1 B2 B3 

TTTAGA B1 B4 

Fining_Sequence 

TTTAGCC B3 B6 

GCCATTAA B1 B3 B4 

AATCCAGG B3 B5 
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Fig. 4. H2Hadoop MapReduce Workflow 

TABLE II 

LIKELIHOOD OF RANDOM NUCLEOTIDES 

JobTracker directs any new jobs with the shared 

common 

features to block names in CJBT. Suppose J1 and J2 are 

sequence search jobs, J1 uses MapReduce to find the 

sequence in a DataNode or a block. If J2 contains 

common 

feature of J1, it is logical to map the task and allocate 

the 

same data resources of J1. 

When a sub-sequence arrives to the NameNode as the 

result of a new job, the old common feature will be 

replaced 

with the old one. However, feature selection should be 

done carefully as the response time for the jobs can 

increase 

if common features exist in every DataNode. For 

example, 
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in genomic data, regulatory sequences and protein binding 

sites are highly recurring sequences. Using such 

sequences 

as common features can degrade the performance of the 

proposed solution. 

The length of common feature also plays on important 

role in the proposed solution. If the sequence is too short 

it 

will be present many times in all chromosomes and all 

datasets. For a random sequence Dn is the likelihood of 

how many times a DNA sequence occurs in the whole 

human genome. The likelihood of the binding sites for 9, 

12 

and 15 fingers, ZNF is presented in (TABLE II). For a 

random sequence of length Dn, where n is the length of 

nucleotide sequence, the likelihood of how many times a 

sequence occurs in the whole human genome is given by: 

Dn = 3 x 109/ (4)n 

Where n is the number of nucleotides in a random 

sequence. 

# of Nucleotides likelihood of finding any random 9 – 

15 nucleotides sequence in the 

human genome: D(n) 

genome 3 x 109 

09 -nucleotides D9 = 11444 

12 -nucleotides D12 =178 

15 -nucleotides D15 =2.7 

As shown in (TABLE II), the likelihood of any random 9 

base pair (bp) of a long nucleotides sequence in a whole 

genome is quite large comparing with 12 base pair (bp), 

and using a 9 bp long sequence as a common feature will 

result in the performance degradation of the proposed 

architecture. The probability of any random 12 bp long 

sequence in a human genome is 5.96 x 10-8 equaling 178 

times. 

 

5.1.3 Block Name BN 

 
BlockName or BlockID is the location of the common 

features. It identifies the block(s) in a cluster where 

certain 

information is stored. BlockName helps the NameNode 

direct jobs to specific DataNodes that store these blocks 

in 

HDFS. CJBT has the list of all blocks that are related to 

the 

results of the common feature. For example, if a sequence 

“TTTAGATCTAAAT” is only stored in B1 and B4, the 

NameNode will direct any job that has a particular 

sequence to B1 and B4. This CJBT is a dynamically 

configurable table and the BlockName entries are 

changing 

as the common feature changes. 

CJBT should not become too large because larger lookup 

table tends to decrease the system performance. The 

size of 

CJBT can be limited by employing the 'leaky bucket' 

algorithm [26]. The 'leaky bucket' parameters can be 

adjusted to keep the size of CJBT constant. This can be 

discussed more in future work. 

 

5.2 End-User Interface 
 

A user interface gives the user a list of Common Job 

Names (CJN) to choose from. As the tasks are 

completed, 

CJBT is dynamically updated and more relationships 

are 

defined. If the CJBT is empty, the user will execute the 

MapReduce job in a traditional way without getting the 

benefits of the proposed solution. The predefined CJN 

and 

CF are defined either by the user or by the user 

interface 

manager, which might become a central source for 

updating the lists for all clients. 

 

5.3 H2Hadoop MapReduce Workflow 
 

Enhanced Hadoop architecture doesn’t differ from the 

nativeHadoop architecture so it will be enhancing only 

the 

software level through build CJBT. Following chart 

(Figure 

4) shows the proposed changes in NameNode, which 

works as a lookup table that contains metadata for the 

executed jobs in H2Hadoop. 

 

 

 

 
 

MapReduce workflow in H2Hadoop has been 

explained 

in figure 4 as follows: 

Step 1 to Step 8: remain in the same workflow as native 

Hadoop. Except results from the first 7 steps are 
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stored in the CJBT. 

Step 9: JobTracker sends the result to Client “A”. In this 

step, NameNode keeps the names of the blocks 

that produced the results in the local lookup table 

(CJBT) by the Common Job Name (Job1) that has 

common feature as explained above. 

Step 10: Client “B” sends a new MapReduce job “Job2” 
to 

theJobTracker with the same common job name 

and same common feature or super-sequence of 

“Job1”. 
Step 11: JobTracker sends “job2” to TaskTrackers who 
hold 

the blocks, which have the first result of the 

MapReduce “Job1” (DN2, DN4, DN5). In this step, 
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Fig. 5. H2Hadoop MapReduce Workflow Flowchart 

theJobTracker starts with checking the CJBT first 

to find if it is a new job which has the same 

common name and common features of any 

previous ones or not – In this case yes. Then the 

JobTracker sends “Job2” only to TT2, TT4 and TT5. 
We may assume here that the lookup table will be 

updated with more details OR just remain as is 

because every time we have a new job that may 

carry the same name of “Job1”. 
Step 12: TaskTrackers execute the tasks and send the 

results 

back to the JobTracker. 

Step 13: JobTracker sends the final result to Client “B”. 
The workflow that is shown above explains the normal 

flow steps of the H2Hadoop MapReduce framework. In 

addition, there should be a training phase before starting 

the process of MapReduce to have some metadata in the 

 
CJBT to receive the benefits of the new architecture. 

From the flowchart that is explained in Figure 5, we 

can 

see that there are two more conditions in H2Hadoop 

when 

compared with native Hadoop that perform with a delay 

in 

job processing. However, if we have a relationship 

between 

jobs, H2Hadoop performance will be better than the 

native 

Hadoop. The above-mentioned delay in H2Hadoop 

ultimately causes a short delay in time. 

In H2Hadoop, after launching a job there is a condition 

that tests the name of the job. If the job uses a CJN, 

which 

means this job is commonly used and there might be a 

relationship between this job and others. Otherwise, if 

the 

name of the job is not common, it skips the second 

condition and reads the whole data from the HDFS and 

completes the execution. 

If the name of the job is common, which means the first 

condition is “Yes”, it will check the second condition, 
which 
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tests the common feature of the job. If the feature of the 

new job is common with any previous job, the new job 

reads the specific data blocks from the HDFS and sets 

them 

as source data files, not the whole data block. Then the 

new 

job will be executed normally. 

Under these two conditions, H2Hadoop reduces the size 

of the data that is being read by the new job. 

Consequently, 

this improves on the Hadoop performance for jobs that 

are 

working on similar data files. 

 

6 IMPLEMENTATION AND TESTING 

 

In this section we will discuss the implementation plan 

for the proposed solution and expected results of 

H2Hadoop. We tested H2Hadoop under these specific 

circumstances, which include number of data files and the 

size of each file. The proposed solution could be 

implemented in two different ways. First, in cases where 

there are many source data files and each one is less than 

the default value of the block size. Second, in cases where 

there is a one or a couple of data source files and where 

most of the files are larger than the default block in size. 

In our implementation, we used DNA chromosome data 

and the data source size is about 24 files. Each file is less 

than the default block size in Hadoop. Various jobs were 

implemented using the above mentioned data. The 

implementation of the proposed solution goes in three 

parts: 

 

6.1 Creating the Common Job Block Table 

(CJBT) 
Using different techniques we are able to perform design 

and create the CJBT. One of them is using a NoSQL 

database such as HBase. HBase is a column-oriented 

database of which a main property is expanded 

horizontally [27]. 

The reason for using HBase is that it is an Apache open 

source software that is one of NoSQL databases that 

works 

on top of Hadoop. We use HBase as an indexing table 

here 

to complete our research and enable the proposed solution 

works successfully. Another way is to create a key-value 

data structure such as dictionary in Python. 

6.2 Designing User Interface (UI) 

As we proposed earlier the user interface should contain 

user-friendly interface so that the user is receive the 

benefits of the enhanced design when choosing common 

data from lists. For example, when choosing the CJN 

from a 

list of common job names that are related to the similar 

data 

files. 

Different forms of user interfaces can be designed 

based 

on the user’s needs. One of the common user interfaces 
is, 

the command line that is commonly used when the user 

knows the commands and the related parameters they 

will 
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TABLE III 

COMMON JOB BLOCK TABLE (DNA EXAMPLE) 

Common Feature 

(Sequence) 

Block Name/ID 

(Chromosome Name) 

sq1 

GGGGCGGGG 

In All Chromosomes 

sq2AAGACGGTGGTAAGG 1, 8 

sq3 CATTTCTGCTAAGA 

1,2,3,4,6,7,9,10,11,12,13,18,19,21 

sq4GAATGTCCTTTCTCT 1,3,6,7,9,17,19,20,21 

sq5GATCTCAGCCAGTGTGAAA 3,7,16 

Fig. 6. Number of read operations in Native Hadoop 

and H2Hadoop 

for the same jobs. 

Native Hadoop 

H2Hadoop 

use. Hadoop and HBase are controlled by the same 

command line, which is a shell command line in Linux. 

Therefore, in our work, we use the shell command line 

as a 

user interface to implement the proposed solution. The 

commands that are used here are the same original 

Hadoops’ commands. 
 

6.3 Proposed Solution Environment 
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We can build a cluster for the proposed solution 

following some directions [28] to prepare the cluster first, 

then we can do the modifications on the environment. In 

addition, since we have Hadoop and HBase both run on a 

shell interface of Linux, we will use it for the 

implementation of the proposed solution. We use the 

following applications and tools: 

• We have one Master node, which is the NameNode 

and The JobTracker. 

• We have 9 slave nodes that work as DataNodes and 

TaskTrackers in different locations. 

• Linux OpenSUSE as an operating system on all nodes 

in the cluster. We used both versions of OpenSUSE11.1 

and OpenSUSE12.3. We can use different versions at 

the same time with no conflicts between the nodes. 

• Apache Hadoop1.2.1, which is the stable version of 
Hadoop at the time of implementing the cluster. 

• Apache HBase 0.98, which is the stable version of 
HBase at the time of implementing the cluster. 

 

COMMON JOB BLOCK TABLE (DNA EXAMPLE) 

Common Feature 

(Sequence) 

Block Name/ID 

(Chromosome Name) 

sq1 

GGGGCGGGG 

In All Chromosomes 

sq2AAGACGGTGGTAAGG 1, 8 

sq3 CATTTCTGCTAAGA 1,2,3,4,6,7,9,10,11,12,13,18,19,21 

sq4GAATGTCCTTTCTCT 1,3,6,7,9,17,19,20,21 

sq5GATCTCAGCCAGTGTGAAA 3 

• 
6.4 Execute some experiments 
 

Having common features exist in all files is not a 

common case, but it does happen. In DNA chromosomes, 

there are a couple of sequences that are common for 

searching prowtein process. The following examples are 

some sequences and their locations TABLE III (store the 

ChromosomeName in which chromosomes they occur): 

We launched many experiments on different text file 

formats to test the sequence finding job with different 

common features. One of the experiments is finding a 

sequence of DNA data files. We stored the common job 

block table as shown in TABLE III using HBase for easy 

access in the H2Hadoop environment. 

 

 
 

7 RESULTS AND EVALUATION 

 
Up to this point, there are indications that we received 

positive results comparing with the native Hadoop 

MapReduce environment. By implementing the 

proposed 

solution, we have less data size to be read by the related 

jobs. Reducing the number of reads has a direct effect 

on 

the performance of Hadoop [29]. As expected, we also 

noticed that the performance of HadoopMapReduce 

depends upon the length of common features and the 

likelihood of finding the common features in the source 

files and DataNodes. If the common features exist in all 

source files, then H2Hadoop will not improve the 

performance as the job reads all files that contain the 

common feature. 

From TABLE III, sequence1 is located in all 

chromosomes, which means it is located in all data 

blocks. 

So, H2Hadoop will read the whole data files again if 

the 

common feature is sequence1. In this case it gives no 

benefits of having H2Hadoop. However, all other 

sequences have better performance when we use them 

as 

common feature using H2Hadoop rather than Native 

Hadoop since they are not present in all data files. 

The above example gives us indications of positive 

results from the implementation in the number of 

blocks 

that are read from HDFS. Figure 6 shows one of the 

results, 

which is the number of read operations in native 

Hadoop 

compared with H2Hadoop. 

Number of read operations is one component of 

Hadoop 

MapReduce and it is the number of times that 

MapReduce 

reads blocks from HDFS. So, based on the data size we 

can 
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determine the number of blocks that should be read by the 

MapReduce job. As we mentioned before, by reducing the 

number of read operations we can improve the 

performance. 

Figure 6 shows improvement in Hadoop performance by 

reducing the number of read operations from HDFS. In 

nativeHadoop, the number of read operations remains the 

same in every job because it reads all data files again 

during each job. While, in H2Hadoop there is difference 

in 

number of read operations based on how frequent the 

sequence exists in the DNA. When we implemented 

native 

Hadoop, the number of read operations was 109. By using 

H2Hadoop, the number of read operations was reduced to 

be 15, which increases the efficiency by 86.2%. On the 

other 

hand, since sequence1 exists in every chromosome, the 

number of read operations remains the same 109 in 

H2Hadoop as native Hadoop. 

One additional point that we should mention is the 

length of the sequence. Finding short sequences in length 
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Fig. 7. CPU processing time in Native Hadoop and 

H2Hadoop for 

the same jobs. 

Native Hadoop 

H2Hadoop 

Fig. 8. A list of factors that we can use to compare 

between 

nativeHadoop and H2Hadoop for sequence2 results. 

take less time than finding longer ones. However, the 

chance of having a common feature that is very long is 

minute as we explained in TABLE II. 

Another HadoopMapReduce component is CPU 

processing time. Figure 7 shows the processing time of 

each 

feature in DNA data files, which used for finding the 

sequence of jobs in both native Hadoop and H2Hadoop. 

In H2Hadoop, we can see a huge difference between the 

CPU processing-time for H2Hadoop, which is less than 

nativeHadoop since H2Hadoop does not read all data 

blocks from HDFS. For example, CPU processing-time 

in 

nativeHadoop to process the job search for sequence2 is 

397 seconds whereas it is 50 seconds in H2Hadoop. 

Figure 7 

shows that H2Hadoop reduces the CPU processing time 

by 

87.4% compared to native Hadoop. 

However, in sequence1 the CPU processing time in 

nativeHadoop is less than H2Hadoop. Since sequence 1 

exists in all chromosomes, H2Hadoop reduces the 

efficiency by 3.9%. So, there is an overhead time in 

H2Hadoop, which is the process of looking for related 

jobs 

in the lookup table (CJBT) in H2Hadoop. Although, 

this 

might happen it rarely occurs based on our study 

showed 

above in Table II. This overhead is exists in all jobs 

because 

it is the processing time of checking the lookup table. 

However, it costs very tiny amount of time comparing 

with 

the benefit that can be gained by using H2Haddop. 

There are different factors in native Hadoop we can 

study and then compare with Enhanced Hadoop 

(H2Hadoop). Figure 8 shows the processing results 

when 

finding the job sequence in sequence2, which is 

(AAGACGGTGGTAAGG) in DNA data blocks. 

We can say that all operations or factors that are related 

to output from MapReduce remain the same in both 

native 

Hadoop and H2Hadoop. That is because our 

improvement 

is to reduce the input to MapReduce not its output. So, 

the 

number of write operations is the same in both native 

Hadoop and H2Hadoop, which is 1 since the result is 

the 

same and its size is very small. 

Finding the location of the data blocks with the 

common 

features can result in latency during the reading 

process. 

However, the benefits of the proposed system are much 

more than the disadvantages. Advantages of the 

proposed 

system go beyond the number of read operations and 

the 

performance of the system. The proposed system 

further 

reduces the data transfer within the network and 

reduces 
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the cost of execution of the MapReduce job as the number 

of active DataNodes during the action of a job reduces. 

 

 

SYSTEM ARCHITECHTURE 

 

 
 

 

Data Preprocessing Module: 
In this module  we have to create Data set for bank dataset 

it contain set of table such that customer details, account 

details, transaction details overall marks details for last 

year 

Data Migration Module with Sqoop 
Sqoop is a command-line interface application 

for transferring data between relational databases 

and Hadoop 

In this module we fetch the dataset into hadoop 

(HDFS) using sqoop Tool. 

Data Analytic Module with Hive 
Hive is a data ware house system for Hadoop. It 

runs SQL like queries called HQL (Hive query 

language) which gets internally converted to map 

reduce jobs 

In this module we have to analysis the dataset 

using HIVE tool which will be stored in hadoop 

(HDFS).For analysis dataset HIVE using HQL  

Data Analytic Module with Pig 

 

Apache Pig is a high level data flow platform for 

execution Map Reduce programs of Hadoop. The 

language for Pig is pig Latin. Pig handles both structure 

and unstructured language 

In this module also used for analyzing the Data set 

through Pig using Latin Script data flow language. 

 

The Algorithm 

Generally MapReduce paradigm is based on 

sending the computer to where the data 

resides! 

MapReduce program executes in three stages, 

namely map stage, shuffle stage, and reduce 

stage. 

Map stage : The map or mapper’s job is to 

process the input data. Generally the input 

data is in the form of file or directory and is 

stored in the Hadoop file system (HDFS). The 

input file is passed to the mapper function 

line by line. The mapper processes the data 

and creates several small chunks of data. 

Reduce stage : This stage is the combination 

of the Shuffle stage and the Reduce stage. 

The Reducer’s job is to process the data that 

comes from the mapper. After processing, it 

produces a new set of output, which will be 

stored in the HDFS. 

 

 
8 RELATED WORK 
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Hadoop is considered as a new technology that provides 

processing services for BigData issues in cloud 

computing, 

thus, research in this field is considered a hot topic. Many 

studies have discussed and developed different ways to 

improve the HadoopMapReduce performance from 

different considerations or aspects. Many studies have 

discussed optimizing Hadoop and MapReduce jobs such 

as 

job scheduling and execution time to improve Hadoop 

performance. Whereas, there are many studies that have 

been discussed in relation to data locality in cloud 

computing. 

One of the important features of Hadoop is the process of 

job scheduling [30] [31] and job execution time . 

Different 

studies have provide some information improvements and 

have come up with positive results based on their 

assumptions [32] [33]. Others focus on the time of 

initialization and termination phases of MapReduce jobs 

[34]. 

System memory has many issues that could be addressed 

to improve the system performance. In Hadoop, Apache 

performs a centralized memory approach which is 

implemented to control the cashing and resources [35]. 

Apache Hadoop supports centralized data cashing. 

However, some studies utilize a distributed cashing 

approach to improve Hadoop performance [36] [37]. 

There 

are different approaches that discuss memory issue. 

ShmStreaming [38] introduces a Shared memory 

Streaming 

schema to provide lockless FIFO queue that connects 

Hadoop and external programs. 

The location of input data has been determined in 

currentHadoop to be located in different nodes in the 

cluster. Since there is a default value for duplication of 

the 

data, which is 3 times, Hadoop distributes the duplicated 

data into different nodes in different network racks. This 
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strategy helps for various reasons, one of which is for 

false 

tolerant issue to have more reliability and scalability. 

However, the default data distribution location strategy 

causes some poor performance in terms of mapping and 

reducing tasks. Different studies proposed solutions to 

improveHadoop performance by developing data 

locality 

improvements [12] [39]. Others, focus on the type of 

data to 

improveHadoop performance [16] [40]. In addition, a 

few 

studies discuss different issues regarding the 

improvement 

ofHadoop performance [41-45]. 

 

9 CONCLUSION 

 
In this work we present Enhanced Hadoop framework 

(H2Hadoop), which allows a NameNode to identify the 

blocks in the cluster where certain information is 

stored. 

We discussed the proposed workflow in H2Hadoop and 

compared the expected performance of H2Hadoop to 

nativeHadoop. In H2hadoop, we read less data, so we 

have some Hadoop factors such as number of read 

operations, which are reduced by the number of 

DataNodes carrying the source data blocks, which is 

identified prior to sending a job to TaskTracker. The 

maximum number of data blocks that the TaskTracker 

will 

assign to the job is equal to the number of blocks that 

carries the source data related to a specific common job 

. 
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