
LOAD REBALANCING FOR DISTRIBUTED FILE SYSTEMS IN CLOUD 
[1]

Rajkamal J 

rajkamal.smit@gmail.com  

Assistant Professor 
           [2]

Malarvizhi V       
[3]

 Rukzana k      
[4]

Sandhiya R 

malarvalluvan5@gmail.com         ruksanasana96@gmail.com    sandhiyasandy2135@gmail.com  
[2][3][4]

UG students 

Department of Computer Science and Engineering 

T.J.S. Engineering College 
 

 

Abstract 
Dynamic resource allocation is an up growing and 

challenging process in cloud environment key building 

blocks for cloud computing applications based on map 

reduce in distributed file system environment are 

programming paradigm .our algorithm is compared 

against a centralized approach in a production system 

and a competing distributed solution presented. 

 

Index Terms – Distributed Hash Tables, Chunk 

creation, replica management.  

 

1. Introduction  
  Cloud computing has the scope of moving OS to 

the web. It can bring about collaboration while 

solving platform interdependence problems. The 

important challenges for the transition to utility 

computing are performance and security. In the 

long run, performance of the system would only 

benefit the user with cheaper rates. The security of 

the system needs a serious check with good 

intrusion detection mechanisms. 
      It basically is a cycle where technology triggers 

infrastructure growth which improves operational 

efficiency. The efficiency concerns and demands can 

bring about tough competition which would lower 

the costs and bring about new advancement in 

technology. The growth of cloud computing could 

be something similar to the telecommunication 

gadgets around. It might even bring an anytime, 

aŶyǁhere ĐoŵputiŶg possiďle ďeĐause users doŶ’t 
want to invest in new hardware or software for 

doing their needs. They can rather use the services 

provided. This has been further enhanced with the 

aesthetic needs of consumers and the introduction 

of good graphics processing software with their 

hardware requirements. 

        In the implementation, it is proposed that an 

open source OS similar to EyeOS be used. EyeOS 

is an open source cloud computing web desktop. 

It provides a number of functionalities such as 

word processor, spreadsheets, text editor and 

also a process manager. Besides, it provides the 

user the opportunity to develop his own 

application. 

         Depending on whether the machine is 

hosted by the company or some other provider, 

clouds are classified as internal or hosted clouds. 

Clouds are broadly classified as public, private and 

hybrid clouds. Public clouds are those that are 

accessible to the general public and everyone can 

use the services. Private clouds are those that are 

accessible only to the particular organization. 

Hybrid clouds are those that are accessible to a 

group of organizations. 

       It is proposed that we use private clouds for 

the financial system. It is due to security and 

privacy concerns. User privacy is of utmost 

importance as any leaked information can contain 

valuable data which important to maintain good 

security in the system as any accidental 

modifications may need the entire operation of 

the system to be stopped and reviewed. 

 

 

 

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017155

mailto:rajkamal.smit@gmail.com
mailto:malarvalluvan5@gmail.com
mailto:ruksanasana96@gmail.com
mailto:sandhiyasandy2135@gmail.com


1.1 PROJECT PLATFORM SPECIFICATION 

STAND-ALONE: 

JAVA: 

 Java is a programming language originally 

developed by James Gosling at Sun Microsystems 

(which is now a subsidiary of Oracle Corporation) 

and released in 1995 as a core component of Sun 

Microsystems' Java platform. The language derives 

much of its syntax from C and C++ but has a simpler 

object model and fewer low-level facilities. Java 

applications are typically compiled to byte code 

(class file) that can run on any Java Virtual Machine 

(JVM) regardless of computer architecture. Java is 

general-purpose, concurrent, class-based, and object-

oriented, and is specifically designed to have as few 

implementation dependencies as possible. It is 

intended to let application developers "write once, 

run anywhere". Java is considered by many as one of 

the most influential programming languages of the 

20th century, and widely used from application 

software to web application. 
 One characteristic of Java is portability, which 

means that computer programs written in the Java 

language must run similarly on any supported 

hardware/operating-system platform. 

 2.Java Technology 
Java technology is both a programming language 

and a platform. 
The Java programming language is a high-level 

language that can be characterized by all of the 

following buzzwords:  
With most programming languages, you either 

compile or interpret a program so that you can run it 

on your computer. The Java programming language 

is unusual in that a program is both compiled and 

interpreted. With the compiler, first you translate a 

program into an intermediate language called Java 

byte codes —the platform-independent codes 

interpreted by the interpreter on the Java platform. 

The interpreter parses and runs each Java byte code 

instruction on the computer. Compilation happens 

just once; interpretation occurs each time the 

program is executed. The following figure illustrates 

how this works.  

 TECHNICAL HIGHLIGHT 

 JaǀaFX is ďased oŶ the ĐoŶĐept of a ͞CoŵŵoŶ 
profile͟ that is intended to span across all devices 

supported by JavaFX. This approach makes it 

possible for developers to use a common 

programming model while building an application 

targeted for both desktop and mobile devices and 

to share much of the code, graphics assets and 

content between desktop and mobile versions. 

 
Drag-to-Install: From the point of view of the 

eŶd user ͞Drag-to-IŶstall͟ alloǁs theŵ to drag a 
JavaFX widget and drop it onto their desktop. The 

application will not lose its state or context even 

after the browser is closed. An application can 

also be re-launched by clicking on a shortcut that 

gets created automatically on the users desktop. 

Integrating graphics created with third-party 

tools: JavaFX includes a set of plug-ins for Adobe 

Photoshop and Illustrator that enable advanced 

graphics to be integrated directly into JavaFX 

applications. The plug-ins generatesJavaFX Script 

code that preserves layers and structure of the 

graphics. Developers can then easily add 

animation or effects to the static graphics 

imported. 

3.Literature Survey: 

 Existing solutions to balance load in DHTs incur 

a high overhead either in terms of routing state or 

in terms of load movement generated by nodes 

arriving or departing the system. In this paper, we 

propose a set of general techniques and use them 

to develop a protocol based on Chord, called Y0, 

that achieves load balancing with minimal 

overhead under the typical assumption that the 

load is uniformly distributed in the identifier 

space.  

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017156



In particular, we prove that Y0 can achieve near-

optimal load balancing, while moving little load to 

maintain thincreasing the size of the routing tables 

by at most a constant factor. Using extensive 

simulations based on real-world and synthetic 

capacity distributions, we show that Y0 reduces the 

load imbalance of Chord from O (log n) to a less 

than 3.6 without increasing the number of links that 

a node needs to maintain. In addition, we study the 

effect of heterogeneity on both DHTs, demonstrating 

significantly reduced average route length as node 

capacities become increasingly heterogeneous. For a 

real-world distribution of node capacities, the route 

length in Y0 is asymptotically less than half the the 

route length in the case of a homogeneous system. 

 

4.EXISTING SYSTEM: 

State-of-the-art distributed file systems (e.g., Google 

GFS and Hadoop HDFS) in clouds rely on central 

nodes tomanage the metadata information of the file 

systems and to balance the loads of storage nodes 

based on that metadata.The centralized approach 

simplifies the design and implementation of a 

distributed file system. However, recentexperience 

concludes that when the number of storage nodes, 

the number of files and the number of accesses to 

files increase linearly, the central nodes (e.g., 

themaster in Google GFS) become a performance 

bottleneck,as they are unable to accommodate a 

large number of fileaccesses due to clients and 

MapReduce applications. Mostexisting solutions are 

designed without consideringboth movement cost 

and node heterogeneity andmay introduce significant 

maintenance networktraffic to the DHTs. 

5.PROPOSED SYSTEM: 

Our objective is to allocate the chunks of files as 

uniformlyas possible among the nodes such that no 

node manages anexcessive number of chunks. we 

aim toreduce network traffic (or movement cost) 

caused byrebalancing the loads of nodes as much as 

possible tomaximize the network bandwidth 

available to normalapplications. Moreover, as failure 

is the norm, nodes are 

newly added to sustain the overall system 

performance resulting in the heterogeneity of nodes. 

we present a load rebalancingalgorithm for 

distributing file chunks as uniformlyas possible and 

minimizing the movement cost asmuch as possible. 

Particularly, our proposed algorithmoperates in a 

distributed manner in whichnodes perform their 

load-balancing tasks independentlywithout 

synchronization or global knowledgeregarding the 

system. 

 

            System architecture 

 

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017157



AES ALGORITHM: 
AES is an iterative rather than Feistel cipher. It is 

based on ‘substitution–permutation network’. It 
comprises of a series of linked operations, some of 

which involve replacing inputs by specific outputs 

(substitutions) and others involve shuffling bits 

around (permutations). 
Interestingly, AES performs all its computations on 

bytes rather than bits. Hence, AES treats the 128 

bits of a plaintext block as 16 bytes. These 16 bytes 

are arranged in four columns and four rows for 

processing as a matrix − 

Unlike DES, the number of rounds in AES is 

variable and depends on the length of the key. AES 

uses 10 rounds for 128-bit keys, 12 rounds for 192-

bit keys and 14 rounds for 256-bit keys. Each of 

these rounds uses a different 128-bit round key, 

which is calculated from the original AES Key. 

Encryption Process 

Here, we restrict to description of a typical 

round of AES encryption. Each round comprise 

of four sub-processes. The first round process 

is depicted below − 

Byte Substitution (SubBytes) 
The 16 input bytes are substituted by looking 

up a fixed table (S-box) given in design. The 

result is in a matrix of four rows and four 

columns. 

Shiftrows 

Each of the four rows of the matrix is shifted to 

the left. Any entries that ‘fall off’ are re-inserted 

on the right side of row. 

 

Mix columns 

Shift row and mixed columns provide 

Diffusion to the cipher.Each column is 

processed separately.Each byte is replaced by 

value dependent on all 4bytes in the columns. 

 

 

6.Conclusion: 

A novel load-balancing algorithm to deal with 

the load rebalancing problem in large-scale, 

dynamic, and distributedfile systems in clouds 

has been presented in this paper. Our proposal 

strives to balance the loads of nodes and 

reduce the demanded movement cost as much 

as possible, while taking advantage of 

physical network locality and node 

heterogeneity. 

7.REFERENCES 

[1] J. Dean and S. Ghemawat, 

“MapReduce: Simplified Data Processing 

on Large Clusters,” Proc. Sixth Symp. 
Operating System Design 

and Implementation (OSDI ’04), pp. 137-

150, Dec. 2004. 

[2] S. Ghemawat, H. Gobioff, and S.-T. 

Leung, “The Google File 

System,” Proc. 19th ACM Symp. Operating 
Systems Principles (SOSP 

’03), pp. 29-43, Oct. 2003. 

[3] Hadoop Distributed File System, 

http://hadoop.apache.org/ 

hdfs/, 2012. 

[4] VMware, http://www.vmware.com/, 

2012. 

[5] Xen, http://www.xen.org/, 2012. 

[6]ApacheHadoop,  

http://hadoop.apache.org/, 2012. 

[7] Hadoop Distributed File System 

“RebalancingBlocks,”http://developer.yaho

o.com/hadoop/tutorial/module2.html#rebal

aning,2012. 

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2456-5717 Vol. 3, Special Issue 34, March 2017158


