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ABSRACT 

New data and updates are constantly arriving , 

the result of  data mining applications become 

stale and obsolete over  time.Incremental 

processing is a promising approach to 

refreshing  mining result which is widely used 

for large scale and one-time data-intensive 

distributed computing , but  lacks flexibility and 

efficiency of processing small incremental data. 

I
2
MapReduce framework is proposed for 

incrementally processing new data of a large 

data set, which takes state as implicit input and 

combines it with new data . Map tasks are 

created according to new splits instead of entire 

splits while reduce tasks fetch their inputs 

including the state and the intermediate results 

of new map tasks fromdesignate nodes or local 

nodes. 

Key words: iterative computation,I map 

reduce,big data. 

1.INTRODUCTION 

Incremental Map Reduce  is also called I
2
 Map 

Reduce  which is based on the concept of both 

plain and iterative Map Reduce performing Re-

computation.  Map Reduce enables easy 

development of scalable parallel applications to 

process immense amount of data on large 

clusters of commodity machines. 

  It supports not only one step computation but 

also more sophisticated iterative computation 

which is used in Data mining.I
2 

Map Reduce 

makes some contributions such as Incremental 

Map Reduce framework, Dynamic resource 

allocation based on the state, Friendly APIs for 

application.incremental processing is a 

promising approach to refreshing mining 

results. Given the size of the input big data, it is 

often very expensive to rerun the entire 

computation fromscratch. Incremental 

processing exploits the fact that theinput data 

of two subsequent computations A and B 

aresimilar. Only a very small fraction of the 

input data haschanged. The idea is to save 
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states in computation A, re-useA’s states iŶ 
computation B, and perform re-computation 

only for states that are affected by the changed 

input data.In this paper, we investigate the 

realization of this principlein the context of the 

MapReduce computing framework. 

  A number of previous studies (including 

Percolator [22],CBP [16], and Naiad [20]) have 

followed this principle and designed new 

programming models to support incrementa 

lprocessing. Unfortunately, the new 

programming models(BigTable observers in 

Percolator, stateful translate operators in CBP, 

and timely dataflow paradigm in Naiad) are 

drastically different from MapReduce, requiring 

programmers to completely re-implement their 

algorithms. On the other hand, Incoop [4] 

extends MapReduce to support incremental 

processing. However, it has two main 

limitations. First, Incoop supports only task-

level incremental processing. That is, it saves 

and reuses states at the granularity of individual 

Map and Reduce tasks. Each task typically 

processes a large number of key-value pairs 

(kvpairs). If Incoop detects any data changes in 

the input of a task, it will rerun the entire task. 

While this approach easily leverages existing 

MapReduce features for state savings,it may 

incur a large amount of redundant 

computationif only a small fraction of kv-pairs 

have changed in a task.Second, Incoop supports 

only one-step computation, while important 

mining algorithms, such as PageRank, require 

iterative computation. Incoop would treat each 

iteration as a separate MapReduce job. 

However, a small number of input data changes 

may gradually propagate to affect a large 

portion of intermediate states after a number 

of iterations, resulting in expensive global re-

computation afterwards. We propose 

i2MapReduce, an extension to MapReducethat 

supports fine-grain incremental processing for 

both one-step and iterative computation. 

Compared to previous solutions,i2MapReduce 

incorporates the following three novel. 

• Fine-grain Incremental Processing using 

MRBG-Store: Unlike Incoop, i2MapReduce 

supports kv-pair level fine-grain incremental 

processing in order to minimize the amount of 

re-computation as much as possible. We model 

the kv-pair level data flow and data dependence 

in aMapReduce computation as a bipartite 

graph, called MRBGraph. AMRBG-Store is 

designed to preserve the fine-grain states in the 

MRBGraph and support efficient queries to 

retrieve fine-grain states for incremental 

processing.  

• General-Purpose Iterative Computation 

withModest Extension toMapReduce API: Our 

previous workproposed iMapReduce to 

efficiently support iterative computation on the 

MapReduce platform. However, ittargets types 

of iterative computation where there is a 

oneto- 

one/all-to-one correspondence from Reduce 

output to Map input. In comparison, our 

current proposal provides general-purpose 

support, including not only one-to-one, 

but also one-to-many, many-to-one, and many-

to-many correspondence. We enhance the Map 

API to allow users to easily express loop-

invariant structure data, and we propose a 

Project API function to express the 

correspondence from Reduce to Map. While 

users need to slightly modify their algorithms in 

order to take full advantage of i2MapReduce, 

such modification is modest compared to the 

effort to re-implement algorithms on a 

completely different programming paradigm, 

such as in Percolator , and Naiad .   

• Incremental Processing for iterative 

computation: iterative algorithm typically 

performs the same computation on a data set in 

every iteration, generating a sequence of 

improving results. The computation of an 

iteration can be represented by an update 

function F: vk = F(vk−1;D);where D is the input 

data set, and v is the result set being computed. 

After initializing v with a certain v0, the iterative 

algorithm computes an improved vk from vk−1 

and D in the k-th iteration.This process 

continues until it converges to a fixed point v∗. 

Inpractice, this means that the difference 

between the result sets of two consecutive 

iterations is small enough. Then the iterative 

computation will return the converged result 
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v∗. Note that while v is updated in every 

iteration, D is static in the computation. We 

refer to D as the static structure data, and v as 

the dynamic state data. 

For example, the well-known PageRank 

algorithm [4] iteratively computes the PageRank 

vector R that contains the ranking scores 

of all pages in a web graph, using the following 

update function: 

             R(k) = dWR(k−1) + (1 − d)E; 

Use the same computation logic (update 

function) to process the data many times  

•The previous iteratioŶ’s output is the Ŷext 
iteratioŶ’s iŶput . 
•Stop when the iterated result converges to a 

fixed point . 

 

 

Figure 1:iterative computation. 

2. I MAP REDUCE BACKGROUND: 

Start from the previously converged state data 

Reduce the number of iterations Only execute 

the changed mappers/reducers and utilize the 

converged MR-Edge/RM-Edge state Reduce the 

workload of each iteration Filter the converged 

reducers Avoid changes propagation.  

.  

Figure 2:I  map reduce. 

A  I map reduce program is composed of a map 

function and a reduce function as shown in fig 

2. 

Building MRBGraph: 

Figure 3:MapReduce extension 

 

The MRBG-Store supports the preservation and 

retrieval 

of fine-grain MRBGraph states for incremental 

processing.We see two main requirements on 

the MRBG-Store. First, 

the MRBG-Store must incrementally store the 

evolving MRBGraph.Consider a sequence of 

jobs that incrementally refresh 

the results of a big data mining algorithm. As 

input data evolves, the intermediate states in 

the MRBGraph will 

also evolve. It would be wasteful to store the 

entire MRBGraph of each subsequent job. 

Instead, we would like to 
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obtain and store only the updated part of the 

MRBGraph.Second, the MRGB-Store must 

support efficient retrieval of preserved states of 

given Reduce instances. 

 

SPECTRAL CLUSTERING: 

 

In multivariate statistics and the clustering 

of data, spectral clustering techniques 

make use of the spectrum (eigenvalues) of 

the similarity matrix of the data to perform 

dimensionality reduction before clustering in 

fewer dimensions. The similarity matrix is 

provided as an input and consists of a 

quantitative assessment of the relative  

Figure 

Figure 4:spectral clustering vs k-means 

 

 
 

K means                           spectral 

similarity of each pair of points in the 

dataset 
 

FAULT TOLERANCE AND LOAD BALANCING 

 

 Fault Tolerance 

Vanilla MapReduce reschedules the failed 

Map/Reduce 

task in case task failure is detected. However, 

the interdependency 

of prime Reduce tasks and prime Map tasks in 

i2MapReduce requires more complicated fault-

tolerance solution. i2MapReduce checkpoints 

the priŵe Reduce task’s 

output state data and MRBGraph file on HDFS 

in every iteration.Upon detecting a failure, 

i2MapReduce recovers by consideringtask 

dependencies in three cases. (i) In case a 

primeMap task fails, the master reschedules the 

Map task on the worker where its dependent 

Reduce task resides. The primeMap task reloads 

the its structure data and resumes computation 

from its dependent state data (checkpoint). (ii) 

Incase a prime Reduce task fails, the master 

reschedules the Reduce task on the worker 

where its dependent Map task resides. The 

prime Reduce task reloads its MRBGraph 

file(checkpoint) and resumes computation by 

re-collecting Map outputs. (iii) In case a worker 

fails, the master reschedules the 

interdependent prime Map task and prime 

Reduce task 

to a healthy worker together. 

Performance: 

 We use APriori to understand the benefit of 

incremental one-step processing in 

i2MapReduce. MapReduce re-computation 

takes 1608 seconds. In contrast, i2MapReduce 

takes only 131 seconds. Fine-grain incremental 

processing leads to a 12x speedup. 

͞ϭ͟ correspoŶds to the ruŶtiŵe of PlaiŶMR 
recomp.For PageRank, iterMR reduces the 

runtime of PlainMR recomp by 56%. The main 

saving comes from the caching of structure data 

and the saving of the MapReduce startup costs. 

i2MapReduce improves the performance 

further with fine-grain incremental processing 

and change propagation control (CPC), 

achieving a speedup of 8 folds (i2MR w/o CPC). 

We also show that without change propagation 

control the changes it will return the exact 

updated result but at the same time prolong 

the runtime (i2MR w/o CPC). The change 

propagation control technique is critical to 

guarantee the performance. Section 8.5 will 

discuss the effect of CPC in more details. On the 

other hand, it is surprising to see that HaLoop 

performs worse than plain MapReduce. This is 

because HaLoop employs an extra MapReduce 

job in each iteration to join the structure and 

state data . 

The profit of caching cannot compensate for the 

extra cost when the structure data is not big 

enough. Note that the iterative model in 
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i2MapReduce avoids this overhead by 

exploiting the Project function to co-partition 

structure and state data. The detail comparison 

with HaLoop is provided.For SSSP, the 

performance gain of i2MapReduce is similar 

to that for PageRank. We set the filter threshold 

to 0 in the change propagation control. That is, 

nodes without any changes will be filtered out. 

Therefore, unlike PageRank, the SSSP results 

with CPC are precise. For Kmeans, small portion 

of changes in input will lead to global re-

computation. Therefore, we turn off the 

MRBGraph functionality. As a result, 

i2MapReduce falls back to iterMR recomp. We 

see that HaLoop and iterMR exhibit similar 

performance. They both outperform plainMR 

because of similar optimizations, such as 

caching structure data.For GIM-V, both plainMR 

and HaLoop run two MapReduce 

jobs in each iteration, one of which joins the 

structure data (i.e., matrix) and the state data 

(i.e., vector). In contrast, our general-purpose 

iterative support removes the need for this 

extra job. iterMR and i2MapReduce see 

dramatic 

performance improvements. i2MapReduce 

achieves a 10.3x speedup over plainMR, and a 

1.4x speedup over HaLoop. 

 

CONCLUSION 

 
We have described i2MapReduce, MapReduce-

based framework for incremental big data 

processing. i2MapReduce combines a fine-grain 

incremental engine, a general-purpose iterative 

model, and a set of effective techniques for 

incremental iterative computation. Real-

machine experiments show that i2MapReduce 

can significantly reduce the runtime for 

refreshing big data mining results compared to 

recomputation on both plain and iterative 

MapReduce. 
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