

I2 MAP REDUCE: INCREMENTAL MAP REDUCE FOR EFFICIENT

MINING IN BIG DATA

Dr.T.POONGOTHAI, M.E., P.hD.,
 (1)

B DHAVAPRIYA
2
, M SUJIDA DEVI

3
, S VIDHYA

4
, S VIJAY SRINIVASAN

5

Associate Professor
1
, UG Scholar

2, 3, 4, 5

Department of Information Technology

K.S.R College of Engineering, Namakkal, Tamilnadu, India.

ABSRACT

New data and updates are constantly arriving ,

the result of data mining applications become

stale and obsolete over time.Incremental

processing is a promising approach to

refreshing mining result which is widely used

for large scale and one-time data-intensive

distributed computing , but lacks flexibility and

efficiency of processing small incremental data.

I
2
MapReduce framework is proposed for

incrementally processing new data of a large

data set, which takes state as implicit input and

combines it with new data . Map tasks are

created according to new splits instead of entire

splits while reduce tasks fetch their inputs

including the state and the intermediate results

of new map tasks fromdesignate nodes or local

nodes.

Key words: iterative computation,I map

reduce,big data.

1.INTRODUCTION

Incremental Map Reduce is also called I
2
 Map

Reduce which is based on the concept of both

plain and iterative Map Reduce performing Re-

computation. Map Reduce enables easy

development of scalable parallel applications to

process immense amount of data on large

clusters of commodity machines.

 It supports not only one step computation but

also more sophisticated iterative computation

which is used in Data mining.I
2

Map Reduce

makes some contributions such as Incremental

Map Reduce framework, Dynamic resource

allocation based on the state, Friendly APIs for

application.incremental processing is a

promising approach to refreshing mining

results. Given the size of the input big data, it is

often very expensive to rerun the entire

computation fromscratch. Incremental

processing exploits the fact that theinput data

of two subsequent computations A and B

aresimilar. Only a very small fraction of the

input data haschanged. The idea is to save

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2395-695X 901 Vol.3, Special Issue.24, March 2017

states in computation A, re-useA’s states iŶ
computation B, and perform re-computation

only for states that are affected by the changed

input data.In this paper, we investigate the

realization of this principlein the context of the

MapReduce computing framework.

 A number of previous studies (including

Percolator [22],CBP [16], and Naiad [20]) have

followed this principle and designed new

programming models to support incrementa

lprocessing. Unfortunately, the new

programming models(BigTable observers in

Percolator, stateful translate operators in CBP,

and timely dataflow paradigm in Naiad) are

drastically different from MapReduce, requiring

programmers to completely re-implement their

algorithms. On the other hand, Incoop [4]

extends MapReduce to support incremental

processing. However, it has two main

limitations. First, Incoop supports only task-

level incremental processing. That is, it saves

and reuses states at the granularity of individual

Map and Reduce tasks. Each task typically

processes a large number of key-value pairs

(kvpairs). If Incoop detects any data changes in

the input of a task, it will rerun the entire task.

While this approach easily leverages existing

MapReduce features for state savings,it may

incur a large amount of redundant

computationif only a small fraction of kv-pairs

have changed in a task.Second, Incoop supports

only one-step computation, while important

mining algorithms, such as PageRank, require

iterative computation. Incoop would treat each

iteration as a separate MapReduce job.

However, a small number of input data changes

may gradually propagate to affect a large

portion of intermediate states after a number

of iterations, resulting in expensive global re-

computation afterwards. We propose

i2MapReduce, an extension to MapReducethat

supports fine-grain incremental processing for

both one-step and iterative computation.

Compared to previous solutions,i2MapReduce

incorporates the following three novel.

• Fine-grain Incremental Processing using

MRBG-Store: Unlike Incoop, i2MapReduce

supports kv-pair level fine-grain incremental

processing in order to minimize the amount of

re-computation as much as possible. We model

the kv-pair level data flow and data dependence

in aMapReduce computation as a bipartite

graph, called MRBGraph. AMRBG-Store is

designed to preserve the fine-grain states in the

MRBGraph and support efficient queries to

retrieve fine-grain states for incremental

processing.

• General-Purpose Iterative Computation

withModest Extension toMapReduce API: Our

previous workproposed iMapReduce to

efficiently support iterative computation on the

MapReduce platform. However, ittargets types

of iterative computation where there is a

oneto-

one/all-to-one correspondence from Reduce

output to Map input. In comparison, our

current proposal provides general-purpose

support, including not only one-to-one,

but also one-to-many, many-to-one, and many-

to-many correspondence. We enhance the Map

API to allow users to easily express loop-

invariant structure data, and we propose a

Project API function to express the

correspondence from Reduce to Map. While

users need to slightly modify their algorithms in

order to take full advantage of i2MapReduce,

such modification is modest compared to the

effort to re-implement algorithms on a

completely different programming paradigm,

such as in Percolator , and Naiad .

• Incremental Processing for iterative

computation: iterative algorithm typically

performs the same computation on a data set in

every iteration, generating a sequence of

improving results. The computation of an

iteration can be represented by an update

function F: vk = F(vk−1;D);where D is the input

data set, and v is the result set being computed.

After initializing v with a certain v0, the iterative

algorithm computes an improved vk from vk−1

and D in the k-th iteration.This process

continues until it converges to a fixed point v∗.

Inpractice, this means that the difference

between the result sets of two consecutive

iterations is small enough. Then the iterative

computation will return the converged result

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2395-695X 902 Vol.3, Special Issue.24, March 2017

v∗. Note that while v is updated in every

iteration, D is static in the computation. We

refer to D as the static structure data, and v as

the dynamic state data.

For example, the well-known PageRank

algorithm [4] iteratively computes the PageRank

vector R that contains the ranking scores

of all pages in a web graph, using the following

update function:

 R(k) = dWR(k−1) + (1 − d)E;

Use the same computation logic (update

function) to process the data many times

•The previous iteratioŶ’s output is the Ŷext
iteratioŶ’s iŶput .
•Stop when the iterated result converges to a

fixed point .

Figure 1:iterative computation.

2. I MAP REDUCE BACKGROUND:

Start from the previously converged state data

Reduce the number of iterations Only execute

the changed mappers/reducers and utilize the

converged MR-Edge/RM-Edge state Reduce the

workload of each iteration Filter the converged

reducers Avoid changes propagation.

.

Figure 2:I map reduce.

A I map reduce program is composed of a map

function and a reduce function as shown in fig

2.

Building MRBGraph:

Figure 3:MapReduce extension

The MRBG-Store supports the preservation and

retrieval

of fine-grain MRBGraph states for incremental

processing.We see two main requirements on

the MRBG-Store. First,

the MRBG-Store must incrementally store the

evolving MRBGraph.Consider a sequence of

jobs that incrementally refresh

the results of a big data mining algorithm. As

input data evolves, the intermediate states in

the MRBGraph will

also evolve. It would be wasteful to store the

entire MRBGraph of each subsequent job.

Instead, we would like to

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2395-695X 903 Vol.3, Special Issue.24, March 2017

obtain and store only the updated part of the

MRBGraph.Second, the MRGB-Store must

support efficient retrieval of preserved states of

given Reduce instances.

SPECTRAL CLUSTERING:

In multivariate statistics and the clustering

of data, spectral clustering techniques

make use of the spectrum (eigenvalues) of

the similarity matrix of the data to perform

dimensionality reduction before clustering in

fewer dimensions. The similarity matrix is

provided as an input and consists of a

quantitative assessment of the relative

Figure

Figure 4:spectral clustering vs k-means

K means spectral

similarity of each pair of points in the

dataset

FAULT TOLERANCE AND LOAD BALANCING

 Fault Tolerance

Vanilla MapReduce reschedules the failed

Map/Reduce

task in case task failure is detected. However,

the interdependency

of prime Reduce tasks and prime Map tasks in

i2MapReduce requires more complicated fault-

tolerance solution. i2MapReduce checkpoints

the priŵe Reduce task’s

output state data and MRBGraph file on HDFS

in every iteration.Upon detecting a failure,

i2MapReduce recovers by consideringtask

dependencies in three cases. (i) In case a

primeMap task fails, the master reschedules the

Map task on the worker where its dependent

Reduce task resides. The primeMap task reloads

the its structure data and resumes computation

from its dependent state data (checkpoint). (ii)

Incase a prime Reduce task fails, the master

reschedules the Reduce task on the worker

where its dependent Map task resides. The

prime Reduce task reloads its MRBGraph

file(checkpoint) and resumes computation by

re-collecting Map outputs. (iii) In case a worker

fails, the master reschedules the

interdependent prime Map task and prime

Reduce task

to a healthy worker together.

Performance:

 We use APriori to understand the benefit of

incremental one-step processing in

i2MapReduce. MapReduce re-computation

takes 1608 seconds. In contrast, i2MapReduce

takes only 131 seconds. Fine-grain incremental

processing leads to a 12x speedup.

͞ϭ͟ correspoŶds to the ruŶtiŵe of PlaiŶMR
recomp.For PageRank, iterMR reduces the

runtime of PlainMR recomp by 56%. The main

saving comes from the caching of structure data

and the saving of the MapReduce startup costs.

i2MapReduce improves the performance

further with fine-grain incremental processing

and change propagation control (CPC),

achieving a speedup of 8 folds (i2MR w/o CPC).

We also show that without change propagation

control the changes it will return the exact

updated result but at the same time prolong

the runtime (i2MR w/o CPC). The change

propagation control technique is critical to

guarantee the performance. Section 8.5 will

discuss the effect of CPC in more details. On the

other hand, it is surprising to see that HaLoop

performs worse than plain MapReduce. This is

because HaLoop employs an extra MapReduce

job in each iteration to join the structure and

state data .

The profit of caching cannot compensate for the

extra cost when the structure data is not big

enough. Note that the iterative model in

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2395-695X 904 Vol.3, Special Issue.24, March 2017

https://en.wikipedia.org/wiki/Multivariate_statistics
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Spectrum_of_a_matrix
https://en.wikipedia.org/wiki/Eigenvalues
https://en.wikipedia.org/wiki/Similarity_matrix
https://en.wikipedia.org/wiki/Dimensionality_reduction

i2MapReduce avoids this overhead by

exploiting the Project function to co-partition

structure and state data. The detail comparison

with HaLoop is provided.For SSSP, the

performance gain of i2MapReduce is similar

to that for PageRank. We set the filter threshold

to 0 in the change propagation control. That is,

nodes without any changes will be filtered out.

Therefore, unlike PageRank, the SSSP results

with CPC are precise. For Kmeans, small portion

of changes in input will lead to global re-

computation. Therefore, we turn off the

MRBGraph functionality. As a result,

i2MapReduce falls back to iterMR recomp. We

see that HaLoop and iterMR exhibit similar

performance. They both outperform plainMR

because of similar optimizations, such as

caching structure data.For GIM-V, both plainMR

and HaLoop run two MapReduce

jobs in each iteration, one of which joins the

structure data (i.e., matrix) and the state data

(i.e., vector). In contrast, our general-purpose

iterative support removes the need for this

extra job. iterMR and i2MapReduce see

dramatic

performance improvements. i2MapReduce

achieves a 10.3x speedup over plainMR, and a

1.4x speedup over HaLoop.

CONCLUSION

We have described i2MapReduce, MapReduce-

based framework for incremental big data

processing. i2MapReduce combines a fine-grain

incremental engine, a general-purpose iterative

model, and a set of effective techniques for

incremental iterative computation. Real-

machine experiments show that i2MapReduce

can significantly reduce the runtime for

refreshing big data mining results compared to

recomputation on both plain and iterative

MapReduce.

REFERENCES:

[1]Y.Zhang, S.chen,Q .Wang and Ge Yu.I^2 Map

Reduce:Incremental Map Reduce for mining

Evolving Big Data.arXiv:1501.0485[cs.DC]

1,2015

[2]P. Bhatotia, A. Wieder, R. Rodrigues, U. A.

Acar , and R. Pasquin. Incoop: Mapreduce for

incremental computations. In Proc. of SOCC 11,

2011.

[3]J. Ekanayake, H. Li, B. Zhang, T. Gunarathne,

S.-H.Bae, J. Qiu, and G. Fox. Twister: a runtime

for iterative map Reduce. In Proc. of

MAPREDUCE ’ϭϬ,ϮϬϭϬ.

[4]Y. Zhang, Q. Gao, L. Gao, and C. Wang.

Accelerate large-scale iterative computation

through asynchronous accumulative updates. In

Proc. Of ScieŶceCloud ’ϭϮ, ϮϬϭϮ.

[5]C. Yan, X. Yang, Z. Yu, M. Li, and X. Li. Incmr:

Incremental data processing based on

ŵapreduce. IŶ Proc. of CLOUD ’ϭϮ, ϮϬϭϮ.

[6]Y. Bu, B. Howe, M. Balazinska, and M. Ernst,

͞Haloop: efficieŶt iterative data processiŶg oŶ
large clusters,͟ iŶ 34th International Conference

on Very Large Data Bases (VLDB), 2010.

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN(Online) : 2395-695X 905 Vol.3, Special Issue.24, March 2017

