Design and Analysis of Steering Column By Vibration / Structural Mode

M.Soundar Rajan [1] , N.Ramesh [2] , M. Naveen Kumar $^{[3]}$, R.Murali Manokar $^{[4]}$ PG Scholar, M.E-Engineering Design¹, Assistant Professor^{2, 3} H.O.D⁴, Department of Mechanical Engineering^{2, 3, 4} Maharaja College of Engineering, Avinashi, Tamilnadu, India

Abstract-Finite Element Analysis and parametric study of steering column for new generation vehicles to reduce or nullify the steering unit. The analysis is carried out with respect to vibration. Stresses developed in an object design requirements at the joints , deformation in body due to vibrations, continuos twisting and loading these are related to steering rod. Harmonic analysis will be giving us natural frequency of body that compared with harmonic frequency. Aim of project is to perform design optimization of steering column to nullify its functions-ability issues related with stressess, deformation, vibrations also minimize cost by saving material to compare original model. The software Ansys is used for FE Analysis and method of harmonic is used structrual is used for design.

I.INTRODUCTION

Recent trends in automobile development activities for reduction of lead-time and cost have led to a current situation where CAE(computer aided engineering) techniques are fully used to skip conventional development steps for making and checking costly prototypes.

Many automakers now use a computer simulation instead of preparing costly prototypes to analyze the strength and the collision resistance of a vehicle body.

Recent use of computer simulation has been further expanded for a dummy model or vehicle interior accessories which are used for analyzing what and how much impact may occur to passengers.

Some automakers are trying to use a so-called digital prototyping, where all design steps for a prototype are performed through computing operation.

With such a trend for digital developments by automakers, vehicle component makers including KOYO, who are responsible for the development and mass-production of steering column products.(e.g.,a safety steering wheel and an electric power steerings), must keep up with the trend by further improving their CAE analysis techniques for preproduction steps to reduce the number of redundant steps from prototyping to experiment evaluation and to provide drawings with higher accuracy.

The current CAE analysis by Koyo includes four major functions of a vehicle (i.e., strength, noise/Vibration, vehicle motion, and collision),among with collision of a steering column assembly (hereinafter referred to as assembly) will be focused in this paper. Specially, this paper will use a collision model of steering column assembly to examine the consistency between the result of the CAE analysis model and the

result of actual collision test of an actual assembly.

1.1 NEED FOR THE STUDY

Recent trends in automobile development activities for reduction of lead time and cost have lead to a current situation where CAE (Computer Aided Engineering) techniques are fully used to skip conventional development steps for making and checking costly prototypes . The Steering System used predominantly in passenger cars today is the Rack and pinion type . A virtual prototyping approach by using a one degree haptic system, makes it possible for the customer to test the virtual prototype of the steering unit in a direct and natural way, in early design phase . An comparison of CAE analysis results and Testing results for the Steering Column Assembly and characteristics of the steering system can be evaluated properly using HIL

A number of Analysis has been performed on virtual prototype of Steering column Assembly. But Static Rack Bending Analysis of Steering

column Assembly has not been studied yet. Steering Rack is designed to sustain bending loads during vehicle running. The loads come from tire side and produce the bending loads on Steering Rack. Steering Rack Static Bending Analysis will be focused in this paper.

This project is an attempt to design a Rack and Pinion with specifications minimizing swing torque, in ADAMS (Automatic Dynamic Analysis of mechanical Systems).

This model helped to identify critical parameter which affects steering column. A number of Analysis has been performed on virtual prototype of Steering case Assembly.

The loads come from tire side and produce the bending loads on Steering Rack. Steering Rack Static Bending Analysis will be focused in this paper.

Specifically, this paper will use a CAD / CATIA 3D model of Steering Column /Case Assembly to examine the consistency between the results of the CAE Analysis model and the theoretical calculation of Steering Case Bending and

Deflection. The objective of this work is to carry out Computer Aided design and Analysis of Steering Rack. The CAD modeling is done in CATIA V21 and Finite Element Analysis is done in ANSYSR 15.0 Animation.

1.3. Objective of Study

The loads come from tire side and produce the bending loads on Steering Case through Steering Rack Static Bending Analysis will be focused in this project.

- Identify and study using software tools (for simulation/ analysis), the nature and characteristics of stresses acting on the component.
- Evaluate the influence of the loads/ mass/geometry/ boundary conditions over the nature and extend of stresses.
- Review the existing design and consider improvement for negating the harmful influences of undue stresses (Torsion or Shear).

Study and analysis of a modified steering system according to the constraints provided by team.

2. LITERARATURE REVIEW:

IJIRST –International Journal for Innovative Research in Science & Technology| Volume 2 | Issue 05 | October 2015. " A Literature Review on Collapsible Steering Column". Imran J. Shaikh. Energy absorbing steering column (Collapsible steering column) is a kind of steering column which minimizes the injury of thedriver during a car accident by collapse or breaking particular part of system. Up to now, Collapsible Steering Column for lowbudget passenger car had no way to describe these Ω , Collapse["] or Ω , Slip" by the Axial and Lateral Forces from driver. In this paper,I have created a collapsible steering column from rigid steering column using a Detailed FE model which can describe suchcollapse behavior .

FIGURE-2.1-Steering column collapse

International Journal of Advances in Engineering Sciences Vol.4, Issue 3,

April, 2014 12 Print-ISSN: 2231-2013 e-ISSN: 2231-0347 in " Design and Stress Analysis of Steering Rack Using CAE Tool"

Nitalikar et al., International Journal of Advanced Engineering Research and Studies E-ISSN2249– 8974Int. J. Adv. Engg. Res. Studies/III/I/Oct.-Dec.,2013/112-114 Review Article "STRUCTURAL ANALYSIS FOR A CARDON JOINT IN STEERING COLUMN ASSEMBLY THROUGH FEA TECHNIQUES" by Ashish Bharatrao Nitalikar, 2R.D.Kulkarni, 3Swapnil S. Kulkarni.

Friction due to rubbing between the spider and the yoke bores is minimized by incorporating needle-roller bearings between the hardened spider journals and hardened bearing caps pressed into the yoke bores.

3. METHODOLOGY OF DESIGN: 3.1. STEPS FOR THE PROPOSED WORK

• Creation of Geometry for Steering Column.

- Importing the geometry for meshing.
- Assigning the nature of loads and the values for loading.
- Solving for the meshed model to identify stressed areas.
- Viewing the results.
- Modifying the geometry/ mass/ boundary conditions
- Solving the meshed model again (iteration/s)
- Comparison / Interpretation of the results
- Recommendations.

4. MODEL ANALYSIS OF STEERING COLUMN The analytical/ computational approach offers results through simulation/ analyses for the case study predefined for the solver. The technique would deploy any of the following software tools: Patran/Hyper Mesh/ Nast ran, ANSYS, Abaqus, RadioSS orany compatible CAE software Benefits of using CAE software - The CAE software usually has an intuitive graphical user interface with direct access to **CAD geometry**, advanced tools for meshing and integration with other compatible software for solving. It is optimized for large scale systems, assemblies, dynamics and NVH simulations. Typically, the CAE interface design to handle structural problems as the case study concerned here Is adept to linear static analysis with a post processing interface to view results. The Geomentric Dimensions should be carried out by CAD 2016 versions of software. For modeling of the component, CATIA V5 R21 Software is used. Preprocessing work like meshing and analysis work is carried out in ANSYS R15.0 software. Using FEA analysis,

FIGURE4.1-Model (A4) > Static Structural (A5) > Remote Displacement > Image

we can identify the nature and characteristics of stress acting on the steering case and rod also evaluate the influence of the loads/mass/geomentry/boundary

FIGURE.4.2Model (A4) Static Structural (A5)

 Figure shows the 3D model geomentry of Steering Case, rod with assembly.

FIGURE-4.3-Modal-Meshing of steering 5 DESIGN OF STEER COLUMN

5.1. Basic description of Steering Components:

Friction materials used are Cork and Copper Powder Metal. Material used for inner disc is steel and outer disc is bronze.

FIGUR5.1 Steering Arm knucle joint

Due to caster angle.

- $F_{\text{zr}} \sin \gamma$ = Force component in the direction parallel to caster angle seen in side view.
- d cos δ = moment arm forward to force.
- Moment due to both wheel is opposite in direction. This force balances the left right wheel load. This may result into wheel toe-in and asymmetry of tie rod resulting in its push or pull.
- Axle rolls with steered.
- Sensitive to left right load imbalance.
- Torque gradient depends upon wheel offset at the ground castor angle, left right load difference in cornering, front and rear suspension roll stiffness, Suspension roll centre height, centre of gravity height, lateral acceleration level.

FIGURE-5.2 Steering Arm turn

5.1.1 Design Theory of Steering Column (Hub/Shaft):

Steering system forces and moment:

Three types of forces are normally seen in vehicle tire:

- **1. force (aligning torque) zdirection.**
- **2. Tractive force (Rolling resistance moment) ydirection.**
- **3. Lateral force (overturning moment) x-direction.**

The reaction in the steering system is due to the moment about steering axis , which must be reduce to control the wheel steer angle.

- **1. Vertical force**
- **2. It has inclusion of two forces.**
- **3. Due to lateral inclination angle (left side of equation).**

Caster angle (right side of equation):

MV = - (FZ1+FZr) dsin

 $My = -(FzI + Fzr)$ d sin λ sin $\delta + (FzI -$ **Fzr) d sin γ cos δ**

My = Total moment from left and right wheels.

 F_{z1} , F_{z1} = Vertical load on left and right wheel

 $d =$ lateral offset on ground or scrub radius.

 λ = lateral inclination angle or king pin angle.

 δ = Steer angle

 γ = caster angle

Due to lateral inclination angle:

- F_{zr} sin $\lambda =$ Sine angle of force component acting laterally and parallel to king pin axis.
- d sin δ = moment arm of above force
- The moment is zero when no steering. When steering, because of this force vehicle tends to lift, Increasing the steering effort and also self-centring force.
- Axles lift when steered.
- Unaffected by right left load differences.
- Torque gradient depends upon wheel offset at ground, Inclination angle, and axle load.
- **5.1.2. Calculation of**

steering shaft:

Steering Hub & Steering

 $a =$ Major Axis

 $b =$ Minor Axis

 $l =$ Length of Shaft

Rod

Elliptical Section:

 $C =$ Rigidity of Modulus

Maximum Shear Stress (t):-

 $T = 16T/pi^*a^*b^2$

Maximum shear stress occurs at the ends of the minor axis:

Angle of Twist (q):

Theta = $16*1*T*/pi*a* b*c$

 $[1/a2+1/b2]$

Torsional Stiffness (k):-

$$
K = C^*pi^*a^3b^3
$$

Equilateral Triangles:-

 $A = side of triangle$

- $L =$ Length of shaft
- $T =$ Applied torque

 $C =$ Rigidity modulus

Maximum shear stress occurs at the centre of each side while the shear stress of each corner is equal to zero.

Angle of Twist (Q):

Q = $80/a^4 v3 * T^*1/C$

Torsional stiffness (K):

$$
K = v3/80^*a^4C
$$

Calculation:

Applied Torque,

 $T = 2.5$ KN/m.

Maximum Permissible shear stress:-

 $T = 80$ MN/m^{2.}

Major Axis (a) and Minor Axis (b):-

W.K.T. T =
$$
16*T/pi* a* b^2
$$

\n $80*10^6$ = $16*2.5*10^3$ /
\n $pi*1.5b* b^2 = >b^3 = 1.061*10^2-4$

b =

 0.0473m or 47.3 mm.

 $a=1.5b=1.5*47.3$ mm

a=70.95 mm.

Angular twist per metre length, q/l:

Angular Twist $=$ Q $=$ $16T/(pi^*a^*b^*C[1/a^2+1/b^2])$

Angular Twist $=$ $Q =$

 $16*2.5*10^3$ /pi $*70.95*10^{-3}*47.3*10^{-3}$ $3*80*10^9[1/(70.95*10^{-3}m) + 1/(47.3*10^{-3}m)]$ ³)²].

 = 40.0306 rad (1.75 deg).

THEORITICAL BENDING STRESS AND DEFLECTION:

 The vertical Load causes the bending stress and if the Load is higher than critical load then it will lead to breakage.

 Considering the Vehicle Front Axle Weight of 6 kN.

 The assembly is considered as Cantilever beam.

FIGURE-5.3-Rack Housing – Vertical load

FIGURE-5.4-Minimum cross section steering column

Deflection Equation at Point Load: (1)

$$
\mathcal{S} = \frac{W.L^3}{3.E.I}
$$

Steering Case Breakage Stress Equation: (2)

$$
\sigma=\frac{w.\mathtt{L}}{z}
$$

Using Equations 1 and 2 above and putting Values from Table No. 1, the results are as below: Rack Deflection, **Ϩ= 5.8 mm** Rack Bending Stress**, ϭ = 420 Mpa**

Maximum Principal Stress &

Equivalemt Stresses are Analysed by Analytical Method - After the construction of the geometry (3D model) and preprocessing (meshing), a static stress analysis is planned by using the mechanical properties of the material (Elasticity modulus = 205 GPa,

Poisson's ratio $= 0.29$ of the typical Carbon steel material variant) as input data for preparing the model for analysis. The solid model followed by finite element mesh followed by static analysis for assessing the distribution of von Misses stress values should offer good inputs, in turn, to review the design in the light of these results.

6. STRUCTURAL ANALYSIS OF STEERING COLUMN

The analytical/ computational approach offers results through simulation/ analyses for the case study predefined for the solver. The technique would deploy any of the following software tools: Patran/HyperMesh/ Nastran, ANSYS, Abaqus, RadioSS orany compatible CAE softwareBenefits of using CAE software - The CAE software usually has an intuitive graphical user interface with direct access to **CAD geometry**, advanced tools for meshing and integration with other compatible software for solving. It is optimized for

large scale systems, assemblies, dynamics and NVH simulations. Typically, the CAE interface design to handle structural problems as the case study concerned here Is adept to linear static analysis with a postprocessinginterface to view results.

6.1. Analysis Project Report :

Project

Contents

- Units
- Model (A4)
- o Geometry
	- **Parts**
- o Coordinate Systems
- o Connections
- o Mesh
- o Static Structural (A5)
	- **Analysis Settings**
	- Loads
	- Solution $(A6)$
		- Solution
			- Information
		- Results
- o Chart
- o Chart 2
- Material Data
	- o Structural Steel

Units

TABLE 6.1

Model (A4)

Geometry

TABLE 6.2 Model (A4) > Geometry

Coordinate Systems

Connections

Mesh

Static Structural (A5)

TABLE 6.8 Model (A4) > Static Structural (A5) > Analysis Settings

FIGURE 1 **Model (A4) > Static Structural (A5) > Remote Displacement**

FIGURE-6.3-Model (A4) > Static Structural (A5) > Remote Displacement 2

Solution (A6)

Object Name	Solution (A6)
State	Solved
Adaptive Mesh Refinement	
Max Refinement Loops 1.	
Refinement Depth	2.
Information	
Status	Done

TABLE 6.11 Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information

FIGURE-6.4-Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Stress

TABLE 6. 13 Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Stress

FIGURE-6.5-Model (A4) > Static Structural (A5) > Solution (A6) > Maximum Shear Stress

TABLE 6. 14 Model (A4) > Static Structural (A5) > Solution (A6) > Maximum Shear

Chart

TABLE 6. 15 Model (A4) > Chart

Chart 2

FIGURE 6.7 Model (A4) > Chart 2

TABLE 6. 16 Model (A4) > Chart 2

Material Data

Structural Steel

TABLE6.18 Structural Steel > Compressive Ultimate Strength Compressive Ultimate Strength Pa 0

TABLE 6.19 Structural Steel > Compressive Yield Strength

Compressive Yield Strength Pa

2.5e+008

TABLE 6.20 Structural Steel > Tensile Yield Strength Tensile Yield Strength Pa

2.5e+008

TABLE 6.21 Structural Steel > Tensile Ultimate Strength

Tensile Ultimate Strength Pa

4.6e+008

TABLE 6. 22 Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Reference Temperature C

22

TABLE 6. 23 Structural Steel > Alternating Stress Mean Stress

TABLE 6.24 Structural Steel > Strain-Life Parameters

TABLE 6.26 Structural Steel > Isotropic Relative Permeability

Relative Permeability

10000

 Experimental Method-Upon creating a physical prototype identical in geometry and mechanical properties to the intended component during production, the same is set-up for testing under identical service conditions for the component on field. A comparison of the results obtained through physical experimentation and the analytical (using simulation/ software) could offer a basis forvalidation.To simulate the working conditions, the force considered to be applied at the spider mounting location as a **torsional moment could be about**

25Nmand above (based on the application and the size of the vehicle). However the value takes a minimum and a maximum limit depending on the **driving conditions** and the **auxiliary mechanisms** to assist the maneuverability of the vehicle.

CONCLUSION

There is a much scope in design of steering rod to minimize its defect due to twisting, Vibrations, etc.,

FIGURE7.1Equivalent Stress

 optimization of design [existing/optimized] will provide better stability and less vibration defects in steering rod as well as column for

making the rod better the rod ends should be made thicker where the coupling is to be used at the end were the universal joint used at the end.

FIGURE 7.2Maximum Shear Stress

 The material properties at both the ends should be made, different and instead of circular cut at the ends if any other shapes should be tried for better results.

Scope of the Project:

There is a much scope in design of steering rod to minimize its defect due to twisting, Vibrations, etc., optimization of design [existing/optimized] will provide better stability and less vibration defects in steering rod as well as column for making the rod better the rod ends should be made thicker where the coupling is to be used at the end were the

universal joint used at the end. The material properties at both the ends should be made , different and instead of circular cut at the ends if any other shapes should be tried for better results.

References:

- 1. International Journal for numerical methods in engineering , Volume 2, issue 3 , July /sep/1970 pf " Finite elwment analysis of torsional and torsional flexural stability problems: by ROSHDY S.BARSOUM , RICHARD H : GALLAGHER .
- 2. 2. Steering collapse analysis using detailed Fe model in ISSN : 2278- 0181 , Vol.3 Issue6,June-2014,IJERTV#ISO617322138.
- 3. Dashboard support with vibration – damping feature in US 20050279909 A1 on Dec 22,2005 published by jochem Fischer, Bentler of Abstract.