
ISSN (ONLINE): 2395-695X

ISSN (PRINT): 2395-695X

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

Vol.3, Special Issue.24, March 2017

M.I.Thufail Ahamed et al ©IJARBEST PUBLICATIONS

ENHANCED k-NEAREST NEIGHBOUR CLASSIFIER FOR BIG DATA

M.I.Thufail Ahamed, PG Scholar, Department of CSE, Kongu Engineering College, Tamilnadu

 Dr.R.Thangarajan, Professor, Department of CSE, Kongu Engineering College ,Tamilnadu

ABSTRACT

Big data analytics is the process of examining large data sets to uncover hidden patterns, unknown correlations,
market trends, customer preferences and other useful business information. The analytical findings can lead to more
effective marketing, new revenue opportunities, better customer service, improved operational efficiency,
competitive advantages over rival organizations and other business benefits.The k-Nearest Neighbors classifier is a
simple yet effective widely renowned method in data mining. The actual application of this model in the big data
domain is not feasible due to time and memory restrictions. Several distributed alternatives based on MapReduce
have been proposed to enable this method to handle large-scale data. However, their performance can be further
improved with new designs that fit with newly arising technologies. In this work we provide a new solution to
perform an exact k-nearest neighbor classification based on Spark. We take advantage of its in-memory operations
to classify big amounts of unseen cases against a big training dataset.
Key words: K-nearest neighbors, Big data,Apache Hadoop, Apache Spark

I.INTRODUCTION

Big data is a term for data sets that are so large or
complex that traditional data processing
applications are inadequate to deal with them.
Challenges include analysis, capture, data curation,
search, sharing, storage, transfer, visualization,
querying, updating and information privacy. The
term "big data" often refers simply to the use of
predictive analytics, user behavior analytics, or
certain other advanced data analytics methods that
extract value from data, and seldom to a particular
size of data set[1].

The primary goal of big data analytics is to help
companies make more informed business decisions
by enabling data scientists, predictive modelers and
other analytics professionals to analyze large
volumes of transaction data, as well as other forms
of data that may be untapped by conventional
business intelligence (BI) programs[2]. That could
include Web server logs and Internet click stream
data, social media content and social network
activity reports, text from customer emails and
survey responses, mobile-phone call detail records
and machine data captured by sensors connected to
the Internet of Things.

II.RELATED WORK

C. Lynch (2008) in his work demonstrated how do
the data grow[1].The author describes the various
sources of data and the speed of data generated and
the variety of data generated how they accelerate
the growth of data.

M. Minelli , M. Chambers , A. Dhiraj (2013)
proposed various techniques[3] that, deals with
using big data analytics in analyzing the current
trends in business techniques to improve the
decision making process and choosing the best
stratergy to improve the productivity and growth of
the business..

Y. Bu, B. Howe, M. Balazinska, M.D. Ernst,(2010)
, demonstrated the processing of big data using
hadoop framework[3] where big data sets can be
processed using massive parallelism in the hadoop
environment using distributed systems

S. Ghemawat , H. Gobioff, S.-T. Leung(2003)
explained in their work the parallel processing of
google file systems(5).The google file system is

T
h
is

 w
o

rk
 b

y
 I
J
A

R
B

E
S

T
 i
s
 l
ic

e
n
s
e

d
 u

n
d

e
r

C
re

a
ti
v
e

 C
o
m

m
o

n
s
 A

tt
ri
b

u
ti
o

n
 4

.0
 I
n

te
rn

a
ti
o

n
a

l
L

ic
e

n
s
e
.
A

v
a

ila
b
le

 a
t

h
tt
p

s
:/
/w

w
w

.i
ja

rb
e
s
t.
c
o

m

545

https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Data_processing
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Data_curation
https://en.wikipedia.org/wiki/Data_sharing
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Data_visualization
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Information_privacy
https://en.wikipedia.org/wiki/Predictive_analytics
https://en.wikipedia.org/wiki/User_behavior_analytics
http://searchcloudcomputing.techtarget.com/definition/big-data-Big-Data
http://searchbusinessanalytics.techtarget.com/definition/Data-scientist
http://searchdatamanagement.techtarget.com/definition/business-intelligence
http://searchsoa.techtarget.com/definition/click-stream

ISSN (ONLINE): 2395-695X

ISSN (PRINT): 2395-695X

International Journal of Advanced Research in Basic Engineering Sciences and Technology

(IJARBEST)

Vol.3, Special Issue.24, March 2017

M.I.Thufail Ahamed et al ©IJARBEST PUBLICATIONS

enhanced for Google’s core data storage.It has
multiple nodes that are divided into master node
and slave nodes each chunk is divided into 64 bit
label by master node at the time of creation and
logical mapping of file and it is replicated several
times throughout the network minimum three and
are processed in hadoop environment.

A. Spark (2015) proposed a new concept for fast
cluster computing using a new framework known
as Spark framework[6].Spark provides an interface
for programming entire clusters with implicit data
parallelism and fault tolerance which makes Spark
an ideal choice for fast cluster computing.

C. Zhang, F. Li, J. Jestes,(2012) demonstrated in
their work about efficient parallel kNN joins for
large dataset[9] where the kNN algorithm which is
simple yet an effective classification algorithm is
implemented in a parallel approach which is
executed by dividing the dataset into small subset
of multiple datasets and kNN algorithm is applied
over the multiple sub datasets and the final result is
aggregated by mapreduce programming model.

Arnaiz-González, J.F. Díez-Pastor, J.J. Rodríguez,
C. García-Osorio,(2016) proposed in their work to
reduced the time complexity in processing big
datasets to make them linear. two new algorithms
with linear complexity for instance selection
purposes are presented. The algorithm use locality-
sensitive hashing to find similarities between
instances. While the complexity of conventional
methods (usually quadratic, or log-linear, O) means
that they are unable to process large-sized data sets,
the new proposal shows competitive results in
terms of accuracy. Even more remarkably, it
shortens execution time, as the proposal manages to
reduce complexity and make it linear with respect
to the data set size.

From the literature, the main disadvantages
observed are time complexity .due to loading
bigdatasets from hdfs.

III.PROPOSED WORK

III.PROBLEM STATEMENT

k-Nearest Neighbors algorithm is a method used
for classification, The input consists of the k closest
training examples.The output is a class
membership. An object is classified by a majority
vote of its neighbors(by euclidean distance), with
the object being assigned to the class most common
among its k nearest neighbors[9].

 Let TR be a training dataset and TS a test set, they
are formed by a determined number n and t of
samples, respectively. Each sample x p is a tuple (
x p1 , x p2 , ..., x pD , ω) , where, x pf is the value
of the f -th feature of the p -th sample. This sample
belongs to a class ω, given by x ω p , and a D -
dimensional space. For the TR set the class ω is
known, while it is unknown for TS . For each
sample x test included in the TS set, the kNN
algorithm searches the k clos- est samples in the TR

set. Thus, the kNN calculates the distances between
x test and all the samples of TR . The Euclidean
distance is the most widely-used measure for this
purpose. The training samples are ranked in
ascending order according to the computed
distance, taking the k nearest samples (neigh 1 ,
neigh 2 , ..., neigh k). Then, they are used to
compute the most predominant class label.
SYSTEM ELUCIDATION

The enormous amount of data is generated day to
day. To manage and analyse those big data is the
challenging task. Thus to handle big data an
efficient and scalable algorithms are needed.In this
work we provide a new solution to perform an
exact k-nearest neighbor classification based on
Spark.

As a MapReduce model, this divides the
computation into two main phases: the map and the
reduce operations. The map phase splits the
training data and calculates for each chunk the
distances and the corresponding classes of the k

nearest neighbors for every test sample. The reduce
stage aggregates the distances of the k nearest
neighbors from each map and makes a definitive
list of k nearest neighbours. Ultimately, it conducts
the usual majority voting procedure of the kNN
algorithm to predict the resulting class. Map and
reduce functions are now defined.

546

ISSN (ONLINE): 2395-695X

ISSN (PRINT): 2395-695X

International Journal of Advanced Research in Basic Engineering Sciences and Technology

(IJARBEST)

Vol.3, Special Issue.24, March 2017

M.I.Thufail Ahamed et al ©IJARBEST PUBLICATIONS

.

Figure 3.1 k-NN using Spark

Let us assume that the training set TR and the
corresponding subset of test samples TS i have been
previously read from HDFS as RDD objects.
Hence, the training dataset TR has already been
split into a user-defined number m of disjoint
subsets when it was read. Each map task (Map 1 ,
Map 2 , ..., Map m) tackles a subset TR j , where 1
≤j ≤m , with the samples of each chunk in which
the training set file is divided. Therefore, each map
approximately processes a similar number of
training instances. To obtain an exact
implementation of kNN, the input test set TS i is
not split together with the training set, but it is read
in each map in order to compare every test sample
against the whole training set. It implies that both
TS i and TR j are supposed to fit altogether in
memory.

Every map j will constitute a class-distance vector
CD t, j of pairs < class, distance > of dimension k

for each test sample t in TS i . To do so, Instruction
2 computes for each test sample the class and the
distance to its k nearest neighbors. To accelerate
the posterior actualization of the nearest neighbors
in the reducers, every vector CD t, j is sorted in
ascending order regarding the distance to the test
sample, so that, Dist (neigh 1) < Dist (neigh 2) <
.... < Dist (neigh k).

The pseudocode of map function is shown in
Algorithm 1.

I Algorithm 1 Map function
Require: T R j T S i ; k
 1: for t = 0 to size (T S i) do

 2: CD t,j ← Compute kNN (T R j , T S i (x) , k)
 3: result j ← (< key : t, value : CD t,j >)
 4: EMIT(result j)
 5: end for

The reduce phase consists of collecting, from the
tentative k nearest neighbors provided by the maps,
the closest ones for the examples contained in TS i.
After the map phase, all the elements with the same
key have been grouped. A reducer is run over a list(
CD t , 0 , CD t , 1 , .., CD t, m) and determines the
k nearest neighbors of this test example t . This
function will process every element of such list one
after another. Instructions 2 to 7 update a resulting
list results reducer with the k neighbors. Since the
vectors coming from the maps are or- dered
according to the distance, the update process
becomes faster. This consists of merging two sorted
lists up to get k values, so that, the complexity in
the worst case is O(k).

 Therefore, this function compares every distance
value of each of the neighbors one by one, starting
with the closest neighbor. If the distance is lesser
than the current value, the class and the distance of
this position is updated with the corresponding
values, otherwise we proceed with the following
value.

 Algorithm 2 provides the details of the reduce
operation.

547

ISSN (ONLINE): 2395-695X

ISSN (PRINT): 2395-695X

International Journal of Advanced Research in Basic Engineering Sciences and Technology

(IJARBEST)

Vol.3, Special Issue.24, March 2017

M.I.Thufail Ahamed et al ©IJARBEST PUBLICATIONS

I. Algorithm 2 Reduce by key operation
Require: result key , k

II. 1: cont=0
III. 2: for i = 0 to k do

IV. 3: if r esult key (cont) .Dist < r esult

reducer (i) .Dist then

V. 4: result reducer (i) = result key (cont)
VI. 5: cont++

VII. 6: end if

VIII. 7: end for

As input, we receive the path in the HDFS for both
training and test data as well as the number of maps
m and reducers r . We also dispose of the number
of neighbors k and the memory allowance for each
map.

First, we create an RDD object with the training set
TR formed by m blocks (Instruction 1). The test set
TS is also read as an RDD without specifying a
number of partitions. As this is read, we establish
the key of every single test instance according to its
position in the dataset (Instruction 2, function
zipWithIndex() in Spark).

Since we will use Euclidean distance to compute
the similarity between instances, normalizing both
datasets becomes a manda- tory task. Thus,
Instructions 3 and 4 both perform a parallel oper-
ation to normalize the data into the range [0,1].
Both datasets are also cached for future reuse.
Instruction 5 calculates the minimum number of
iterations # Iter. Instruction 6 will perform the
partitioning of the test dataset by using the function
RangePartitioner.
Next, the algorithm enters into a loop in which we
classify sub- sets of the test set (Instructions 7-12).
Instruction 7 firstly gets the split corresponding to
the current iteration. We use the transfor- mation
filterByRange(lowKey, maxKey) to efficiently take
the corre- sponding subset. This function takes
advantage of the split per- formed in Instruction 6,
to only scan the matching elements. Then, we
broadcast this subset TS i into the main memory of
all the com- puting nodes involved. The broadcast

function of Spark allows us to keep a read-only
variable cached on each machine rather than

copying it with the tasks. After that, the main map
phase starts in Instruction 9. As stated before, the
mapPartition function computes the kNN for each
par- titions of TR j and TS i and emits a pair RDD
with key equals to the number of instance and
value equals to a list of class-distance . The reduce
phase joins the results of each map grouping by key
(Instruction 9). As a result, we obtain the k

neighbors with the small- est distance and their
classes for each test input in TS i .

More de- tails can be found in the previous section.
The last step in this loop collects the right and
predicted classes storing them as an array in every
iteration (Instruction 11).Finally, when the loop is
done, Instruction 13 computes the resulting
confusion matrix and outputs the desired
performance measures. that we will have to
perform to manage the input data. To do so, it will
use the size of every chunk of the training dataset,
the size of the test set and the memory allowance
for each map. The output of the combine function
is then passed as the input to the reduce function. In
reduce function, the sum of all the samples is
performed and the computation for the total
number of samples is done for the cluster.
Therefore, we can get the new centers which are
used for next iteration. The pseudocode for reduce
function is given in the algorithm 3

Algorithm 3 kNN-IS Require: T R ; T S; k ; #
Maps ; # Reduces ; # MemAl l ow

1: T R −RDD raw ← textFile(T R , # Maps)
2: T S −RDD raw ← textFile(T S).zipWithIndex()
3: T R −RDD ← T R −RDD raw

.map(normalize).cache
4: T S −RDD ← T S −RDD raw

.map(normalize).cache
5: # Iter ← calIter(T R −RDD .weight(), T S −RDD

.weight, MemAl l ow)
6: T S −RDD .RangePartitioner(# Iter)
7: for i = 0 to # Iter do

8: T S i ← broadcast(T S −RDD .getSplit(i))
9: resultKNN ← T R −RDD .mapPartition(T R j →
kNN(T R j , T S i , k))
10: result ← r esultKNN.r educeByKey

(combineResult, #Reduces) .collect

548

ISSN (ONLINE): 2395-695X

ISSN (PRINT): 2395-695X

International Journal of Advanced Research in Basic Engineering Sciences and Technology

(IJARBEST)

Vol.3, Special Issue.24, March 2017

M.I.Thufail Ahamed et al ©IJARBEST PUBLICATIONS

11: right-predictedClasses[i] ←
calculateRightPredicted(result)

IV RESULTS AND DISCUSSION

The performance for proposed methods can be
evaluated by using certain metrics. Scalability is
used for evaluating the performance of the
algorithm.

.
ACCURACY

Represents the number of correct classifications
against the total number of classified instances.
This is calculated from a resulting confusion
matrix, dividing the sum of the diagonal elements
between the total of the elements of the confusion
matrix. This is the most commonly used metric for
assessing the performance of classifiers for years in
standard classification.

RUNTIME

 The total runtime for the parallel approach
includes reading and distributing all the data, in
addition to calculating k nearest neighbors and
majority vote.

SPEEDUP

Proves the efficiency of a parallel algorithm
comparing against the sequential version of the
algorithm. Thus, it measures the relation between
the runtime of sequential and parallel versions. In a
fully parallelism environment, the maximum
theoretical speed up would be the same as the
number of used cores, according to the Amdahl’s
Law.

 Speedup = base _ line /paral l el _ time

 where base_line is the runtime spent with the
sequential version and parallel _time is the total
runtime achieved with its improved version.

The k-NN algorithm implemented in spark
produces ouput almost same as when implemented
in sequential execution and the time complexity has
been reduced to a great extent due to the in-
memory operations in spark frame work.The
accuracy calculated using confusion matrix is
88.76%.And the value of k influences the accuracy
of the classification.

V CONCLUSION AND FUTURE WORK

CONCLUSION

This work presented a Iterative MapReduce
solution for the k-Nearest Neighbors algorithm
based on Spark. It is denominated as kNN-IS. The
proposed scheme is an exact model of the kNN
algorithm that we have enabled to apply with large-
datasets. Thus, kNN-IS obtains the same accuracy
as kNN. However, the kNN algorithm has two
main issues when dealing with large-scale data:
Runtime and Memory consumption. The use of
Apache Spark has provided us with a simple,
transparent and efficient environment to parallelize
the kNN algorithm as an iterative MapReduce
process.

FUTURE WORK

To tackle big datasets that contain missing values
by using kNN-IS to impute them, and datasets with
a very large number of features by using multi-
view approaches[10]. Also to extend the use of
kNN-IS to instance selection techniques for big
data, where it reports good results[11]. And also to
extend the application of the presented kNN-IS
approach to a big data semi-supervised learning
context[12] as well as to implement adaptive k-NN
which finds out the optimal k value for the training
set thereby improving the performance of k-NN
algorithm

REFERENCES

[1] . Lynch, Big data: how do your data grow?
Nature 455 (7209) (2008) 28–29.

549

ISSN (ONLINE): 2395-695X

ISSN (PRINT): 2395-695X

International Journal of Advanced Research in Basic Engineering Sciences and Technology

(IJARBEST)

Vol.3, Special Issue.24, March 2017

M.I.Thufail Ahamed et al ©IJARBEST PUBLICATIONS

[2] M. Minelli , M. Chambers , A. Dhiraj ,
Big Data, Big Analytics: Emerging Business
Intelligence and Analytic Trends for Today’s
Businesses (Wiley CIO), 1st edition, Wiley
Publishing, 2013 .

[3] Y. Bu, B. Howe, M. Balazinska, M.D.
Ernst, Hadoop: efficient iterative data processing
on large clusters, Proc. VLDB Endow. 3 (1-2)
(2010) 285–296, doi: 10. 14778/1920841.1920881 .

[4] K. Grolinger, M. Hayes, W. Higashino, A.
L’Heureux, D. Allison, M. Capretz, Challenges for
mapreduce in big data, in: Services (SERVICES),
2014 IEEE World Congress on, 2014, pp. 182–189,
doi: 10.1109/SERVICES.2014.41 T.Sun, J.Deng
and K. Deng (2008), ‘Scale-free network model
with evolving local-world,’ in Proc. 4th Int. Nat.
Comput. Conf., Vol. 1, pp.237–240

[5] S. Ghemawat , H. Gobioff, S.-T. Leung ,
The google file system, in: Proceedings of the
nineteenth ACM symposium on Operating systems
principles, SOSP ’03, 2003, pp. 29–43

[6] A. Spark , Apache Spark: Lightning-fast
cluster computing, 2015 . [Online; accessed July
2015].

[7]] H. Karau , A. Konwinski , P. Wendell , M.
Zaharia , Learning Spark: Lightning-Fast Big Data
Analytics, O’Reilly Media, Incorporated, 2015 .

[8] C. Zhang, F. Li, J. Jestes, Efficient parallel knn
joins for large data in mapreduce, in: Proceedings
of the 15th International Conference on Extending
Database Technology, in: EDBT ’12, ACM, New
York, NY, USA, 2012, pp. 38–49, doi: 10.
1145/2247596.2247602 .

[9] Á. Arnaiz-González, J.F. Díez-Pastor, J.J.
Rodríguez, C. García-Osorio, Instance selection of
linear complexity for big data, Knowl. Based Syst.
(2016), doi: 10. 1016/j.knosys.2016.05.056 .

[10] I. Triguero, S. García, F. Herrera, Self-labeled
techniques for semi-supervised learning: taxonomy,
software and empirical study, Knowl. Inf. Syst. 42
(2) (2013) 245–284, doi: 10.1007/s10115- 013-
0706- y .

550

