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ABSTRACT 
 
Big data analytics is the process of examining large data sets to uncover hidden patterns, unknown correlations, 
market trends, customer preferences and other useful business information. The analytical findings can lead to more 
effective marketing, new revenue opportunities, better customer service, improved operational efficiency, 
competitive advantages over rival organizations and other business benefits.The k-Nearest Neighbors classifier is a 
simple yet effective widely renowned method in data mining. The actual application of this model in the big data 
domain is not feasible due to time and memory restrictions. Several distributed alternatives based on MapReduce 
have been proposed to enable this method to handle large-scale data. However, their performance can be further 
improved with new designs that fit with newly arising technologies. In this work we provide a new solution to 
perform an exact k-nearest neighbor classification based on Spark. We take advantage of its in-memory operations 
to classify big amounts of unseen cases against a big training dataset. 
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I.INTRODUCTION 

 
Big data is a term for data sets that are so large or 
complex that traditional data processing 
applications are inadequate to deal with them. 
Challenges include analysis, capture, data curation, 
search, sharing, storage, transfer, visualization, 
querying, updating and information privacy. The 
term "big data" often refers simply to the use of 
predictive analytics, user behavior analytics, or 
certain other advanced data analytics methods that 
extract value from data, and seldom to a particular 
size of data set[1]. 
 
The primary goal of big data analytics is to help 
companies make more informed business decisions 
by enabling data scientists, predictive modelers and 
other analytics professionals to analyze large 
volumes of transaction data, as well as other forms 
of data that may be untapped by conventional 
business intelligence (BI) programs[2]. That could 
include Web server logs and Internet click stream 
data, social media content and social network 
activity reports, text from customer emails and 
survey responses, mobile-phone call detail records 
and machine data captured by sensors connected to 
the Internet of Things.  

 
 

II.RELATED WORK 

 

C. Lynch (2008) in his work demonstrated how do 
the data grow[1].The author describes the various 
sources of data and the speed of data generated and 
the variety of data generated how they accelerate 
the growth of data. 
 

M. Minelli , M. Chambers , A. Dhiraj (2013) 
proposed various techniques[3] that, deals with 
using big data analytics in analyzing the current 
trends in business techniques to improve the 
decision making process and choosing the best 
stratergy to improve the productivity and growth of 
the business.. 

Y. Bu, B. Howe, M. Balazinska, M.D. Ernst,(2010) 
, demonstrated the processing of big data using 
hadoop framework[3] where big data sets can be 
processed using massive parallelism in the hadoop 
environment using distributed systems 

S. Ghemawat , H. Gobioff, S.-T. Leung(2003) 
explained in their work the parallel processing of 
google file systems(5).The google file system is 
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enhanced for Google’s core data storage.It has 
multiple nodes that are divided into master node 
and slave nodes each chunk is divided into 64 bit 
label by master node at the time of creation and 
logical mapping of file and it is replicated several 
times throughout the network minimum three and 
are processed in hadoop environment.                        

A. Spark (2015) proposed a new concept for fast 
cluster computing using a new framework known 
as Spark framework[6].Spark provides an interface 
for programming entire clusters with implicit data 
parallelism and fault tolerance which makes Spark 
an ideal choice for fast cluster computing. 

C. Zhang, F. Li, J. Jestes,(2012) demonstrated in 
their work about efficient parallel kNN joins for 
large dataset[9] where the kNN algorithm which is 
simple yet an effective classification algorithm is 
implemented in a parallel approach which is 
executed by dividing the dataset into small subset 
of multiple datasets and kNN algorithm is applied 
over the multiple sub datasets and the final result is 
aggregated by mapreduce programming model. 

Arnaiz-González, J.F. Díez-Pastor, J.J. Rodríguez, 
C. García-Osorio,(2016) proposed in their work to 
reduced the time complexity in processing big 
datasets to make them linear. two new algorithms 
with linear complexity for instance selection 
purposes are presented. The algorithm use locality-
sensitive hashing   to find similarities between 
instances. While the complexity of conventional 
methods (usually quadratic, or log-linear, O) means 
that they are unable to process large-sized data sets, 
the new proposal shows competitive results in 
terms of accuracy. Even more remarkably, it 
shortens execution time, as the proposal manages to 
reduce complexity and make it linear with respect 
to the data set size. 

From the literature, the main disadvantages 
observed are time complexity .due to loading 
bigdatasets from hdfs. 

III.PROPOSED WORK 

III.PROBLEM STATEMENT 

k-Nearest Neighbors algorithm  is a  method used 
for classification, The input consists of the k closest 
training examples.The output is a class 
membership. An object is classified by a majority 
vote of its neighbors(by euclidean distance), with 
the object being assigned to the class most common 
among its k nearest neighbors[9]. 

 Let TR be a training dataset and TS a test set, they 
are formed by a determined number n and t of 
samples, respectively. Each sample x p is a tuple ( 
x p1 , x p2 , ..., x pD , ω) , where, x pf is the value 
of the f -th feature of the p -th sample. This sample 
belongs to a class ω, given by x ω p , and a D -
dimensional space. For the TR set the class ω is 
known, while it is unknown for TS . For each 
sample x test included in the TS set, the kNN 
algorithm searches the k clos- est samples in the TR 

set. Thus, the kNN calculates the distances between 
x test and all the samples of TR . The Euclidean 
distance is the most widely-used measure for this 
purpose. The training samples are ranked in 
ascending order according to the computed 
distance, taking the k nearest samples ( neigh 1 , 
neigh 2 , ..., neigh k ). Then, they are used to 
compute the most predominant class label. 
SYSTEM ELUCIDATION 

The enormous amount of data is generated day to 
day. To manage and analyse those big data is the 
challenging task. Thus to handle big data an 
efficient and scalable algorithms are needed.In this 
work we provide a new solution to perform an 
exact k-nearest neighbor classification based on 
Spark. 

As a MapReduce model, this divides the 
computation into two main phases: the map and the 
reduce operations. The map phase splits the 
training data and calculates for each chunk the 
distances and the corresponding classes of the k 

nearest neighbors for every test sample. The reduce 
stage aggregates the distances of the k nearest 
neighbors from each map and makes a definitive 
list of k nearest neighbours. Ultimately, it conducts 
the usual majority voting procedure of the kNN 
algorithm to predict the resulting class. Map and 
reduce functions are now defined.              
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Figure 3.1 k-NN using Spark 

Let us assume that the training set TR and the 
corresponding subset of test samples TS i have been 
previously read from HDFS as RDD objects. 
Hence, the training dataset TR has already been 
split into a user-defined number m of disjoint 
subsets when it was read. Each map task ( Map 1 , 
Map 2 , ..., Map m ) tackles a subset TR j , where 1 
≤j ≤m , with the samples of each chunk in which 
the training set file is divided. Therefore, each map 
approximately processes a similar number of 
training instances. To obtain an exact 
implementation of kNN, the input test set TS i is 
not split together with the training set, but it is read 
in each map in order to compare every test sample 
against the whole training set. It implies that both 
TS i and TR j are supposed to fit altogether in 
memory.   

Every map j will constitute a class-distance vector 
CD t, j of pairs < class, distance > of dimension k 

for each test sample t in TS i . To do so, Instruction 
2 computes for each test sample the class and the 
distance to its k nearest neighbors. To accelerate 
the posterior actualization of the nearest neighbors 
in the reducers, every vector CD t, j is sorted in 
ascending order regarding the distance to the test 
sample, so that, Dist ( neigh 1 ) < Dist ( neigh 2 ) < 
.... < Dist ( neigh k ). 

The pseudocode of map function is shown in 
Algorithm 1. 

I Algorithm 1 Map function  
Require: T R j T S i ; k 
 1: for t = 0 to size (T S i ) do 

 2: CD t,j ← Compute kNN ( T R j , T S i (x ) , k ) 
 3: result j ← (< key : t, value : CD t,j > )  
 4: EMIT( result j ) 
 5: end for 

 

The reduce phase consists of collecting, from the 
tentative k nearest neighbors provided by the maps, 
the closest ones for the examples contained in TS i. 
After the map phase, all the elements with the same 
key have been grouped. A reducer is run over a list( 
CD t , 0 , CD t , 1 , .., CD t, m ) and determines the 
k nearest neighbors of this test example t . This 
function will process every element of such list one 
after another. Instructions 2 to 7 update a resulting 
list results reducer with the k neighbors. Since the 
vectors coming from the maps are or- dered 
according to the distance, the update process 
becomes faster. This consists of merging two sorted 
lists up to get k values, so that, the complexity in 
the worst case is O(k).  

 Therefore, this function compares every distance 
value of each of the neighbors one by one, starting 
with the closest neighbor. If the distance is lesser 
than the current value, the class and the distance of 
this position is updated with the corresponding 
values, otherwise we proceed with the following 
value. 

 Algorithm 2 provides the details of the reduce 
operation. 
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I. Algorithm 2 Reduce by key operation 
Require: result key , k 

II. 1: cont=0  
III. 2: for i = 0 to k do 

IV. 3: if r esult key (cont) .Dist < r esult 

reducer (i ) .Dist then  

V. 4: result reducer (i ) = result key (cont)  
VI. 5: cont++  

VII. 6: end if  

VIII. 7: end for 

 
As input, we receive the path in the HDFS for both 
training and test data as well as the number of maps 
m and reducers r . We also dispose of the number 
of neighbors k and the memory allowance for each 
map.  
 
First, we create an RDD object with the training set 
TR formed by m blocks (Instruction 1). The test set 
TS is also read as an RDD without specifying a 
number of partitions. As this is read, we establish 
the key of every single test instance according to its 
position in the dataset (Instruction 2, function 
zipWithIndex() in Spark).  
 
Since we will use Euclidean distance to compute 
the similarity between instances, normalizing both 
datasets becomes a manda- tory task. Thus, 
Instructions 3 and 4 both perform a parallel oper- 
ation to normalize the data into the range [0,1]. 
Both datasets are also cached for future reuse. 
Instruction 5 calculates the minimum number of 
iterations # Iter. Instruction 6 will perform the 
partitioning of the test dataset by using the function 
RangePartitioner. 
Next, the algorithm enters into a loop in which we 
classify sub- sets of the test set (Instructions 7-12). 
Instruction 7 firstly gets the split corresponding to 
the current iteration. We use the transfor- mation 
filterByRange(lowKey, maxKey) to efficiently take 
the corre- sponding subset. This function takes 
advantage of the split per- formed in Instruction 6, 
to only scan the matching elements. Then, we 
broadcast this subset TS i into the main memory of 
all the com- puting nodes involved. The broadcast 

function of Spark allows us to keep a read-only 
variable cached on each machine rather than  

 
copying it with the tasks. After that, the main map 
phase starts in Instruction 9. As stated before, the 
mapPartition function computes the kNN for each 
par- titions of TR j and TS i and emits a pair RDD 
with key equals to the number of instance and 
value equals to a list of class-distance . The reduce 
phase joins the results of each map grouping by key 
(Instruction 9). As a result, we obtain the k 

neighbors with the small- est distance and their 
classes for each test input in TS i .  
 
More de- tails can be found in the previous section. 
The last step in this loop collects the right and 
predicted classes storing them as an array in every 
iteration (Instruction 11).Finally, when the loop is 
done, Instruction 13 computes the resulting 
confusion matrix and outputs the desired 
performance measures. that we will have to 
perform to manage the input data. To do so, it will 
use the size of every chunk of the training dataset, 
the size of the test set and the memory allowance 
for each map. The output of the combine function 
is then passed as the input to the reduce function. In 
reduce function, the sum of all the samples is 
performed and the computation for the total 
number of samples is done for the cluster. 
Therefore, we can get the new centers which are 
used for next iteration. The pseudocode for reduce 
function is given in the algorithm 3 
 

Algorithm 3 kNN-IS Require: T R ; T S; k ; # 
Maps ; # Reduces ; # MemAl l ow  

1: T R −RDD raw ← textFile( T R , # Maps ) 
2: T S −RDD raw ← textFile( T S).zipWithIndex() 
3: T R −RDD ← T R −RDD raw 

.map(normalize).cache  
4: T S −RDD ← T S −RDD raw 

.map(normalize).cache  
5: # Iter ← calIter( T R −RDD .weight(), T S −RDD 

.weight, MemAl l ow )  
6: T S −RDD .RangePartitioner( # Iter)  
7: for i = 0 to # Iter do  

8: T S i ← broadcast( T S −RDD .getSplit(i))  
9: resultKNN ← T R −RDD .mapPartition( T R j → 
kNN( T R j , T S i , k ))  
10: result ← r esultKNN.r educeByKey 

(combineResult, #Reduces ) .collect  
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11: right-predictedClasses[i] ← 
calculateRightPredicted(result)  

 
 
IV RESULTS AND DISCUSSION 

 

The performance for proposed methods can be 
evaluated by using certain metrics. Scalability is 
used for evaluating the performance of the 
algorithm. 

. 
ACCURACY 

 
Represents the number of correct classifications 
against the total number of classified instances. 
This is calculated from a resulting confusion 
matrix, dividing the sum of the diagonal elements 
between the total of the elements of the confusion 
matrix. This is the most commonly used metric for 
assessing the performance of classifiers for years in 
standard classification. 

 
RUNTIME 

 

 The total runtime for the parallel approach 
includes reading and distributing all the data, in 
addition to calculating k nearest neighbors and 
majority vote. 
 
 
SPEEDUP 

 

Proves the efficiency of a parallel algorithm 
comparing against the sequential version of the 
algorithm. Thus, it measures the relation between 
the runtime of sequential and parallel versions. In a 
fully parallelism environment, the maximum 
theoretical speed up would be the same as the 
number of used cores, according to the Amdahl’s 
Law. 
 
 Speedup = base _ line /paral l el _ time  
 
 where base_line is the runtime spent with the 
sequential version and parallel _time is the total 
runtime achieved with its improved version. 
 

The k-NN algorithm implemented in spark 
produces ouput almost same as when implemented 
in sequential execution and the time complexity has 
been reduced to a great extent due to the in-
memory operations in spark frame work.The 
accuracy calculated using confusion matrix is 
88.76%.And the value of k influences the accuracy 
of the classification. 
  

V CONCLUSION AND FUTURE WORK 

 

CONCLUSION 

 

This work presented a Iterative MapReduce 
solution for the k-Nearest Neighbors algorithm 
based on Spark. It is denominated as kNN-IS. The 
proposed scheme is an exact model of the kNN 
algorithm that we have enabled to apply with large-
datasets. Thus, kNN-IS obtains the same accuracy 
as kNN. However, the kNN algorithm has two 
main issues when dealing with large-scale data: 
Runtime and Memory consumption. The use of 
Apache Spark has provided us with a simple, 
transparent and efficient environment to parallelize 
the kNN algorithm as an iterative MapReduce 
process.  
 
FUTURE WORK  

 

To tackle big datasets that contain missing values 
by using kNN-IS to impute them, and datasets with 
a very large number of features by using multi-
view approaches[10]. Also to extend the use of 
kNN-IS to instance selection techniques for big 
data, where it reports good results[11]. And also to 
extend the application of the presented kNN-IS 
approach to a big data semi-supervised learning 
context[12] as well as to implement adaptive k-NN 
which finds out the optimal k value for the training 
set thereby improving the performance of k-NN 
algorithm  
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