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Abstract— Infinite Impulse response (IIR) digital filters are used 

widely in many applications. In this paper, a new approach to the 

design of  general IIR filters by minimizing the maximum phase error 

subjected to prescribed or simultaneously minimized maximum 

magnitude error. Here the desired frequency response is acquired by 

prescribed magnitude and phase responses. The sequential 

constrained Least Square method and Levy-Sanathanan-Koerner 

strategy are used to convert the non-convex constraints into convex 

constraints. The sequential constrained least-squares (SCLS) method 

has a higher possibility of obtaining better solutions than a direct 

minimization method when applied to the non-convex minimax 

design of IIR filters. The MMPE design of frequency selective filters 

subject to prescribed or simultaneously minimized maximum 

magnitude error is also considered. 

 

Keywords: Optimization, L-SK strategy, MMPE method, ECG 

noise removal.  

 

I.INTRODUCTION 

Digital filters such as Infinite impulse response (IIR) digital 

filters with prescribed magnitude and phase responses have 

been used in many applications, such as digital 

communications, phase equalization, implementation of digital 

and multirate filters, etc. [1], due to their low implementation 

complexity and good numerical property. The major 

difficulties for designing an IIR digital filter are its 

nonlinearity and stability problems. Large number of 

procedures are available for designing IIR digital filters which 

approximate the given magnitude and phase responses 

simultaneously. To approximate a given frequency response 

with prescribed magnitude and phase characteristics by a 

general IIR filter,the minimization of maximum frequency 

response error (MMFRE) [2], without imposing constraints on 

any other types of errors. Since the frequency response error 

constraint is circular in the complex plane of frequency 

response, maximum phase errors obtained by these methods 

are almost as large as maximum magnitude errors. The elliptic 

error constraint with a major axis along the desired frequency 

response has also been used in the design of two-dimensional 

FIR filter with prescribed phase error to reduce the magnitude 

error [1], with reducing the group delay also. 

A major challenge in the optimal design of infinite impulse 

response (IIR) filters is the nonconvexity of the resulting 

optimization problem. For constrained least-squares (CLS) 

and least p-power error designs, several algorithms based on 

modified versions of the Steiglitz–McBride (SM) strategy [3] 

were presented to convert the nonconvex problems into a 

series of standard convex problems such as quadratic 

programming (QP) [4]-[6], , and second-order conic 

programming (SOCP) [7] problems. In another category of 

design methods, the minimax problem was converted into a 

sequence of minimization problems of other type. The design 

procedure in [4], used an iterative reweighting technique [7] to 

convert the minimax design into a sequence of weighted LS 

problems, which were then solved by the multistage method 

[3]in which both magnitude and phase are optimized using a 

weighted and sampled least-squares criterion. A new convex 

stability domain defined by positive realness for ensuring the 

stability of the filter and adapt the Steiglitz–McBride (SM), 

Gauss–Newton (GN), and classical descent methods to the 

new stability domain.. The design algorithm in [4] used a 

bisection technique to iteratively locate the minimum FR-error 

upper bound and to get in each  iteration a nonconvex 

feasibility problem, which was then solved by relaxing into a 

semi-definite programming (SDP) problem. 

An iterative linear programming approach is presented to 

design stable IIR digital filters with prescribed magnitude and 

phase responses [2]. At each iteration, the complex error of the 

frequency response is transformed into a linear form by 

treating the denominator polynomial obtained from the 
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preceding iteration as a part of the weighting function, and the 

poles restricted inside the unit circle by using a set of linear 

constraints. After solving the standard linear programming 

problem at each iteration, the design algorithm converges to 

the minimax solution which proved to be a better design 

results than the conventional linear programming method. 

 

II.PROPOSED METHOD 

 

In this paper, two elliptic constraints are imposed on the 

frequency response of an IIR filter, one to minimize the 

maximum phase error, and the other to constrain the 

maximum magnitude error. Several methods have been 

proposed to convert      non-convex circular frequency 

response error constraints into convex ones. Levy– 

Sanathanan – Koerner (L-SK) strategy is used in this paper to 

convert the non-convex equations to convex ones. This 

method  replace the denominator of the frequency response 

error constraint with an estimate obtained in the previous 

iteration .  

 

Using  L-SK strategy, we also replace the denominators of the 

two elliptic constraints with their previous estimates. The 

resultant constraint for magnitude error is convex, but the 

constraint for phase error is still non-convex. To this end, we 

combine the L-SK strategy with a sequential constrained least-

squares (SCLS) method, resulting in a convex optimization 

problem. 

 

III. METHODOLOGY 

 

The main purpose of this project is to design a digital IIR filter 

with minimum phase error, find the coefficient values of the 

designed filter and approximate it with the desired frequency 

response. As an input we have our desired frequency response 

as a array of values. So we need to approximate a given 

frequency with prescribed magnitude and phase response 

characteristics by designing a digital IIR filter with minimum 

phase and magnitude error. First of all we need to approximate 

a desired frequency response D(w) by the actual frequency 

response G(e
jw 

) of the IIR filter. The G(w) is assumed and is 

taken as any type of the classical IIR filters. Here we  

represents the digital angular  frequency and j is the imaginary 

unit. 

 

3.1. Formulation of Constrained Least Square Design for the 

Phase and Magnitude Error.    

Now we need to formulate the complex error and phase error 

constrained least squares design. 

        The frequency response error is given by: 

                  E(w) = G(e
jw 

)- D(w)  (1) 

        The corresponding   magnitude and phase error  is given 

by: 

                  Em(w) =| G(e
jw 

)| - D(w)  (2) 

                  Ep(w) =α(w) – Ф(w)  (3) 

α(w) & Ф(w) are the phases of the G(ejw 
) and D(w). 

       The frequency response error can be approximated by 

setting an upper bound ρμ 
                          | Em(w)| =| G(e

jw 
)| - |D(w)|  (4) 

         Where  Ωp and Ωs  represent the passband and stopband 

of the filter. 

The boundary of the above constraint at an arbitrary frequency 

is circular in the complex plane of   G(e
jw 

)  , as shown by the 

dotted circle in Fig.3.1.  

 

 

 

 

 

 

 

  

 

                 

 

 

Fig.3.1.Frequency response error constraints                               

 

From the figure we define a transformed frequency error 

response error as: 

                    

                   Ē (w)=e-jФ(w)  
E(w)   (5) 

   

From the fig:1,  we define a transformed frequency response 

error as: 

                           

                  |Re[Ē (w)] + jȜ Im[Ē (w)]| ≤ ρ  (6 ) 

Here ρ is the magnitude error 
 

 Where Ȝ  > 0 is the ratio of  the major axis  to minor  

axis  of the ellipse. 

 If  Ȝ >1,the constraint (6) imposes a tighter limit on the 
magnitude error than the phase error and vice versa. 

 If  Ȝ =1,the ellipse degenerates to a circle and the 
elliptical constraint reduces to the circular constraint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.2. Frequency  response error constraints. 
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In order to  control the magnitude and phase error more 

flexibly, we  consider another frequency response with ellipse 

centered at  [|D(w)| + ρ] e-jФ(w)  ,
major axis of length

     
|D(w)| + 

ρ along D(w) and a minor axis  of length γ as shown in fig 2. 
                                                                                                                                                          

                  Ĕ (w) = e
-jФ(w)  

G(e
jw 

) - [|D(w)| + ρ] (7) 

The error constraint defined by the dotted ellipse is: 

                 |  | ≤ γ     (8) 

If the ρ and γ are very small then its intersection of ellipses is 
very close to exact sector domain of the magnitude error and 

phase error constraints |Em(w)|≤ ρ   and  |Ep(w)| ≤ γ.From the 
constraints (6) and (8) we can control the maximum 

magnitude error and phase error . 

   The magnitude error and phase error  can be controlled by 

the equations; 

     Ĕ m(w) =    |Re[E(w)] + jȜ Im[E(w)]|     (9) 

     

     Ĕ p(w)=     γ     (10) 

Now we consider an digital IIR filter; 

   

               G(z)=      (11) 

 

B(z,b) and A(z,a) are the numerator and denominator 

polynomials of the filter’s transfer function described by: 

              

B (z,b)=b0 + b1z
-1

 + b2z
-2

 +……….+ bMz
-M 

 

A (z,a)= 1 + 
 
a1

 
z

-1
 +a2 z

-2 +……….+ aNz
-N     

 

Where  a=[ a1, a2,…….., aN]
T
 and b=[ b0, b1, b2,…….., bM]

T
 

Now, introduce two complex function vectors: 

    n(w)= e
-jФ(w)  

[1, e
-jw  ,…….., e-jMw  

]
T
 

    d(w)=- |D(w)|[ e
-jw  

, e
-j2w  ,……, e-jNw  

]
T
  

 

Thus, the frequency response : 

           G(e
jw 

,b,a)=    =  e
jФ(w)  

n
T
(w)b / A(e

jw
,a)     (12) 

  By considering the new filter coefficients, we redesign the 

equations for transformed   response error  Ē (w), magnitude 
error    Ĕ m(w), phase error  Ĕ p(w) as: 

           

          Ē (w, b, a) =  - |D(w)| =   (13) 

 

           Ĕ m (w, b, a) =Re  (14) 

 

               

Ĕp(w,γ,b,a)=Re{  (15) 

Where, 

 

Ē n(w,b,a)=n
T
(w)b +d

T
(w)a -|D(w)| 

Ĕ n(w, ρ ,b, a)= nT
(w)b +d

T(w, ρ) a –[|D(w)|+ ρ] 
~ 

d(w, ρ) = –[|D(w)|+ ρ] [ e-jw  
, e

-j2w  ,……, e-jNw  
]

T
  

The above equations are in non -convex   state, so in order  to 

convert it into convex state ,we apply the LSK strategy to the 

denominator by replacing the denominator A(e
jw

, a) with an 

estimate  in the iterative procedure. 

 

3.2. LSK Strategy 

Here we assume the procedure  is currently in the k
th 

 iteration 

and the coefficient vector a obtained in the (k-1)th iteration  is 

a(k-1).By the LSK strategy, we replace the denominator by its 

estimate Ak-1=A(e
jw

,a(k-1)). 

   The transformed frequency error; 

           

          Ē (w, b, a, k) =     (16) 

Modified magnitude error is: 

           

      Ĕ m (w, b, a,k)= Re   (17)                        

Modified phase error is: 

                            

    Ĕp(w,γ,b,a,k)  =  Re   

      (18)  

The iteration is continued untill the constraints: 

                    

                  |  Ē (w, b, a, k)| ≤ ρ 

                                       

                  | Ĕ m (w, b, a,k)| ≤ ρ 

                      

                   | Ĕ p(w, γ ,b, a,k)| ≤ ρ 

 

Thus, if this criterion  is satisfied, the equations will be in 

convex state. 

 

3.3. MMPE  method 

 

3.3.1 MMPE with Prescribed Magnitude Error (MMPE-PME) 

 

In εεPE method, we preset a magnitude error bound ρ which 
is subjected to the constraints: 

         minį                                                                                                                         
s.t:    | Ĕ p (w, γ(w), ρ, b, a, )| ≤ γ(w)=Wp

-1(w) į 

            

         | Ĕ m (w, b, a,)| ≤ ρ          
            

         | Ē (w, b, a, )| ≤ ρ 

 

 Wp(w) >0 is a phase error weight function 

 į ,b,a ЄR(r),where R(r) is the filter’s stability domain. 
 

By applying LSK strategy to the subjected constraints and 

replacing the denominator we convert it into convex 

constraints. 

       min į   
s.t: | Ĕ p (w, γ(w), ρ, b, a,k)| ≤ γ(w)=Wp

-1(w) į       
      | Ĕ m (w, b, a,k)| ≤ ρ          
      | Ē (w, b, a,k )| ≤ ρ 
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Now in the above constraints,1
st
 one  is not in convex form 

because γ(w)  varies with decision variable  į. Inorder to 
convert this a method called Sequential Constrained Least 

Square(SCLS) is defined. 

 

3.3.1.1. SCLS method 

 

 The SCLS method starts from a sufficiently large upper 

bound ρ0,then reduces ρn  by a factor of θ<1 in each successive 

iterative step until the CLS problem  is feasible in the n
th

 

iteration with  but infeasible in the (n+1)th iteration with ρn+1= 

ρmin, and finally uses a bisection technique to search in the 

interval[ ρmin, ρmax] for a minimum upper bound under which 

problem  is feasible. 

 

Now in this, we denote by[ įn|n=0,1,…..n] an upper-bound 

sequence produced by the SCδS method, and let γn(w) = įn 

/Wp(w)  and  ρn= max(įn , ρ).If we use generalized positive 
realness condition   for describing the stability constraint  a 

ЄR(r), then the core sub problem can be solved by εεPE-

PME method which is given by: 

 

         min 0.5(a
T
a + b

T
b) 

           

s.t.:  | Ĕ p (w, γn(w), ρn, b, a,k)| ≤ γn(w)    

           

        | Ĕ m (w, b, a,k)| ≤ ρn 

       

        | Ē (w, b, a,k )| ≤ ρn 

        Re{e
-jψ

k-1
(w) 

A(re
jw,a)}>İ 

    İ >0 is sufficiently a small number. 
Since all the constraints are in convex form we can solve   this 

by Goldfarb-Idnani algorithm for Complex-error and Phase-

error Constrained   Least-Squares  (CPCLS-GI). 

 

3.3.1.2. Goldfarb-Idnani  algorithm. 

 

For the finite positive-definite QP subject to , , Goldfarb and 

Idnani presented a very efficient and stable primal-dual 

algorithm . The algorithm starts with the unconstrained 

minimizer of the problem, and successively adds the most 

violated constraints to an active set until a solution is found. 

Since the number of constraints,M , is finite, the most violated 

constraint at an iterative point can be simply identified by the 

index υ satisfyingμ  
Aυ

T 
- bυ =max(A1

T – b1,,A2
T – b2,……..,AM

T – bM)      , i.e., we 

choose as the most violated constraint. In each step, the 

minimizer of the objective function subject to the new active 

set of constraints is computed. If an iterate satisfies all 

constraints, the optimal solution is found, and the algorithm 

terminates. If necessary, a constraint can be dropped from the 

active set if no longer considered as an active one. 

 

3.3.2 MMPE-PME Design Algorithm 

 

The solution starts by setting įe
* ≥0 be the expected value of 

minimax phase error  į* 
,and LS solution be (bLS,aLS ) based on 

LSK method with Zero initial condition: 

           

                         (bLS;aLS )=arg min ∑ |E(w)|2 

The procedure for 
  
MMPE-PME design is described as: 

Step 1) Let b(0)= bLS,a(0)= aLS and 

            į0=ȝ max =| G(ejw  
,b(0),a(0)) - D(w)| 

 where ȝ  is a real number chosen to ensure į0 to be 

sufficiently large. Let 

             įmax= į0, įmin= įe
*
,k=0,n=0,k0=0. 

  

Step 2) δet γ0(w)= į0/Wp(w)  and  ρ0=max(į0, ρ) 
  

Step 3) Let k=k-1. Solve problem (11) for b(k) and a(k) using     

CPCLS-GI. If (11) is infeasible,       

             let įmin= įn ,b(k)=b(k-1),a(k)=a(k-1) and go to Step 5. 

 

Step 4) If  || a(k)-a(k-1)|| > Δ||a(k-1)||  and  (k-kn) < K, where 

0< Δ<1   is a small real number  and k>0 is a 

sufficiently large integer, go back to Step 3; 

otherwise, let   įmax= įn. 

 

Step 5) If (įmax-įmin) ≤ υ įmin, where 0< υ <1 is a small number 
defining the design tolerance, terminate. 

 

Step 6) Let n=n+1,kn=k. If   įmin =  įe
*, let įn = θ įn-1, where 

0<θ<1 is a given shrinking factor.           
             Otherwise, let  įn = 0.5(įmax+įmin). 

 

Step 7) δet γn(w)= įn/Wp(w ), ρn=max(įn, ρ) . Go to Step 3. 

 

 

The above procedure has an outer loop (SCLS) consisting of 

Steps 2–7 and an inner loop (L-SK) consisting of Steps 3–4. 

 

It can be shown that the SCLS loop terminates after: 

 

           nmax=int  

 

 

outer iterations. The L-SK loop may not converge for some ρn 

and γn .To this end, we regard the ρn  and γn  as feasible and 

get out from the L-SK loop if  K successive problems (11) are 

feasible. Therefore, the above procedure terminates within 

K.nmax  inner iterations. 

 

IV. RESULT 

 

The   result obtained in designing the IIR filter with prescribed 

magnitude and phase responses is given below. Here the order 

taken is M=N=6. 
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Fig: 4.1 IIR filter response 

 

V. APPLICATION IN ECG SIGNAL RESTORATION 

 

It is well known that biomedical signals carry important 

information about the behavior of the living systems under 

study. With the analysis of the Electrocardiogram (ECG) 

signal it may be possible to predict heart problems or monitor 

patient recovery after a heart intervention. A proper processing 

of these signals enhances their physiological and clinical 

information. The quality of biomedical signal is degraded 

mainly by many sources of noise such as power line 

interference (PLI), baseline drift, muscle contraction etc. The 

designed Chebyshev Type I digital filter of this paper can be 

used to overcome degradation by improving ECG signal 

quality for quality clinical diagnosis. Removing noise from the 

biomedical signal is still challenging and a rapidly expanding 

field with a wide range of applications in ECG noise 

reduction. 

Fig.6.1 shows the basic ECG waveform with schematic 

representation of a single cycle of ECG corresponding to one 

heart beat. 

 
 

 
Fig 5.1: Schematic representation of a single cycle of ECG 

corresponding to one heart beat. 

ECG Data Signal 222txt (ML II) take from Physionet Bank 

ATM as a input signal in analysis of removing noise by using 

IIR Filter Design techniques. 
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Fig: 5.2 ECG Signal 
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Fig: 5.3 Noisy and filtered ECG signals 

 

 

From the result, it is seen that the filters reduces the low and 

high frequency components. The power line noise is also 

reduced. 

 

VI. CONCLUSION 

This paper has presented two minimax phase error design 

methods that aim at minimizing the maximum phase error of 

an IIR filter, subject to an upper bound constraint on the 

magnitude error or simultaneous minimization of the 

maximum magnitude error. In both methods, the magnitude 

and phase errors are controlled by two elliptic constraints on 

the frequency response, which are both nonconvex in the 

coefficient vector space. The nonconvex constraints are 

converted into convex ones by using the SCLS method and L-

SK strategy. Design examples have shown that the minimax 

phase error design methods have obtained smaller or 

sometimes much smaller phase errors and group delay errors 
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than the PCLS, SCLS, and AP-based design methods, 

sometimes at the sacrifice of a slight increase of magnitude 

error. Also, the minimax phase error design methods may 

obtain smaller transition-based magnitude overshoot than the 

SCLS method. Finally an application in ECG signal 

restoration is showed. 
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