

An Index based over Distributed Hash Tables for
Peer to Peer Systems

Mrs. D. Kavitha

P.hD. Research Scholar

Nandha Arts and Science College,

Koorapalyam Pirivu, Perundurai Road, Erode-52.

E-Mail : rkjaidanya46@gmail.com

 Cell :9095622299

 Abstract—Distributed Hash Tables are scalable, robust, and
self-organizing peer-to-peer systems that support exact match
lookups. This paper describes the design and implementation
of a Pre x Hash Tree - a distributed data structure that enables
more sophisticated queries over a DHT. The Pre x Hash Tree
uses the lookup interface of a DHT to construct a trie based
structure that is both efficient (updates are doubly logarithmic
in the size of the domain being indexed), and resilient (the
failure of any given node in the Pre x Hash Tree does not
affect the availability of data stored at other nodes).

Categories and Subject Descriptors
Comp. Communication Networks
Data Structures
Information Storage and Retrieval

General Terms
Algorithms, Design, Performance

Keywords
Distributed hash tables, data structures, range queries

1. INTRODUCTION
The explosive growth but primitive design of peer-to-peer
le-sharing applications such as Gnutella [7] and KaZaa
[29] inspired the research community to invent
Distributed Hash Tables (DHTs) [31, 24, 14, 26, 22, 23].
Using a structured overlay network, DHTs map a given
key to the node in the network holding the object
associated with that key; this lookup operation lookup(key)
can be used to sup-port the canonical put(key, value) and
get(key) hash table operations. The broad applicability of
this lookup interface has allowed a wide variety of system
to be built on top DHTs, including le systems [9, 27],
indirection services [30], event notification [6], content
distribution networks [10] and many others
DHTs were designed in the Internet style: scalability and
ease of deployment triumph over strict semantics. In
particular, DHTs are self-organizing, requiring no
centralized authority or manual configuration. They are
robust against node failures and easily accommodate new
nodes. Most importantly, they are scalable in the sense that
both latency (in terms of the number of hops per lookup)
and the local state required typically grow logarithmically
in the number of nodes; this is crucial since many of the
envisioned scenarios for DHTs involve extremely large
systems (such as P2P mu-

Dr. R. Ramkumar

Head / Computer Applications

Nandha Arts and Science College,

Koorapalyam Pirivu, Perundurai Road, Erode-52.

E-Mail : ramkumar2006@gmail.com
 Cell :9095910555

this lookup interface has allowed a wide variety of system
to be built on top DHTs, including le systems [9, 27],
indirection services [30], event notification [6], content
distribution networks [10] and many others.

DHTs were designed in the Internet style: scalability and
ease of deployment triumph over strict semantics. In
particular, DHTs are self-organizing, requiring no
centralized authority or manual configuration. They are
robust against node failures and easily accommodate new
nodes. Most importantly, they are scalable in the sense that
both latency (in terms of the number of hops per lookup)
and the local state required typically grow logarithmically
in the number of nodes; this is crucial since many of the
envisioned scenarios for DHTs involve extremely large
systems (such as P2P mu-
sic le sharing). However, DHTs, like the Internet, deliver
"best-e ort" semantics; put's and get's are likely to succeed,
but the system provides no guarantees. As observed by
others [36, 5], this conflict between scalability and strict
semantics appears to be inevitable and, for many large-
scale Inter-net systems, the former is deemed more
important than the latter.

While DHTs have enjoyed some success as a building
block for Internet-scale applications, they are seriously de
cient in one regard: they only directly support exact match
queries. Keyword queries can be derived from these exact
match queries in a straightforward but ine cient manner;
see [25, 20] for applications of this to DHTs. Equality joins
can also be supported within a DHT framework; see [15].
However, range queries, asking for all ob-jects with
values in a certain range, are particularly di cult to
implement in DHTs. This is because DHTs use hashing to
distribute keys uniformly and so can't rely on any structural
properties of the key space, such as an ordering among
keys.

Range queries arise quite naturally in a number of

ISSN (ONLINE): 2395-695X

ISSN (PRINT): 2395-695X

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

Volume 2, Special Issue 19, October 2016

Special Issue 19 187 © IJARBEST PUBLICATIONS

mailto:rkjaidanya46@gmail.com
mailto:ramkumar2006@gmail.com

Leaf

nodes Keys

0

 000*

00000

1

0 1

 00010

0

00010
0

1

 00100*

00100

1

 001010*
00101
0

0 1 0 1 00101

0

00101

0

2 001011*

00101

1

0 1 0 1

00101
1

 0011*

3

 01*

01000

0

 01010

1

0 1

10*

10001

0

4

10101

1

10111
1

0 1

110*

11000

0

11001

0

5

11001

1

0 1

11011
0

111*

11100

0

6

11101

0

Figure 1: Pre x Hash Tree

Special Issue 19 188 © IJARBEST PUBLICATIONS

potential application domains:

Databases Peer-to-peer databases [15] need to sup-
port SQL-type relational queries in a distributed
fashion. Range predicates are a key component in
SQL.

Distributed computing Resource discovery requires
locating resources within certain size ranges in a
decentralized manner.

Location-aware computing Many applications want
to locate nearby resources (computing, human
orcommercial) based on a user's current location,
which is essentially a 2-dimensional range query based
on geographic coordinates.

Scienti c computing Parallel N-body computations
[34] require 3-dimensional range queries for accu-rate
approximations.

In this paper, we address the problem of e ciently
supporting 1-dimensional range queries over a DHT. Our
main contribution is a novel trie-based dis-tributed data
structure called Pre x Hash Tree (hence-
forth abbreviated as PHT) that supports such queries. As a
corollary, the PHT can also support heap queries (\what is
the maximum/minimum ?"), prox-
imity queries (\what is the nearest element to X
?"), and, in a limited way, multi-dimensional ana-
logues of the above, thereby greatly expanding the
querying facilities of DHTs. PHT is e cient, in that
updates are doubly logarithmic in the size of the
domain being indexed. Moreover, PHT is self-
organizing and load-balanced. PHT also toler-ates
failures well; while it cannot by itself protect
against data loss when nodes go down1, the failure of any
given node in the Pre x Hash Tree does not a ect the
availability of data stored at other nodes.

But perhaps the most crucial property of PHT is that it is
built entirely on top of the lookup inter-face, and thus can
run over any DHT. That is, PHT uses only the
lookup(key) operation common to
all DHTs and does not, as in SkipGraph [1] and other
such approaches, assume knowledge of nor require
changes to the DHT topology or routing behavior. While
designs that rely on such lower-layer knowledge and
modi cations are appropriate for contexts where the DHT
is expressly deployed for the purpose of supporting range
queries, we ad-dress the case where one must use a pre-
existing DHT. This is particularly important if one wants
to make use of publicly available DHT services, such as
OpenHash [18].

The remainder of the paper is organized as fol-lows.
Section 2 describes the design of the PHT data structure.
Section 3 presents the results of an experimental
evaluation. Section 4 surveys related work and section 5
concludes.

2. DATA STRUCTURE
This section describes the PHT data structure, along with
related algorithms.

2.1 PHT Description
For the sake of simplicity, it is assumed that the do-main
being indexed is f0; 1gD , i.e., binary strings

1But PHT can take advantage of any replication or other
data-preserving technique employed by a DHT. of length
D, although the discussion extends nat-urally to other
domains. Therefore, the data set indexed by the PHT
consists of some number N of D-bit binary keys.

In essence, the PHT data structure is a binary trie built
over the data set. Each node of the trie is labeled with a pre
x that is de ned recursively: given a node with label l, its
left and right child nodes are labeled l0 and l1 respectively.
The root is labeled with the attribute being indexed, and
downstream nodes are labeled as above.

The following properties are invariant in a PHT.

1. (Universal pre x) Each node has either 0 or 2
children.

2. (Key storage) A key K is stored at a leaf node whose
label is a pre x of K .

3. (Split) Each leaf node stores atmost B keys.

4. (Merge) Each internal node contains atleast (B + 1)
keys in its sub-tree.

5. (Threaded leaves) Each leaf node maintains a pointer
to the leaf nodes on its immediate left and
and immediate right respectively.2

Property 1 guarantees that the leaf nodes of the PHT form
a universal pre x set 3. Consequently, given any key K 2
f0; 1gD , there is exactly one leaf node leaf (K) whose
label is a pre x of K . Prop-
erty 2 states that the key K is stored at leaf (K). Figure 1
provides an example of a PHT contain-ing N = 20 6-bit
keys with B = 4. The table on the right in Figure 1 lists the
20 keys and the leaf nodes they are stored in.

Properties 3 and 4 govern how the PHT adapts to the
distribution of keys in the data set. Fol-lowing the insertion
of a new key, the number of keys stored at a leaf node may
exceed the threshold B, causing property 3 to be violated.
To restore the invariant, the node splits into two child
nodes, and its keys are redistributed among the children
according to property 2. Conversely, following the deletion
of an existing key, the number of keys con-tained in a sub-
tree may fall below (B +1), causing property 4 to be
violated. To restore the invari-ant, the entire sub-tree is
merged into a single leaf node, where all the keys are
aggregated. Notice the shape of the PHT depends on the
distribution of keys; it is "deep" in regions of the domain
which are densely populated, and conversely, "shallow"

2 A pointer here would be the pre xes of neighboring
leaves and, as a performance optimization, the cached IP
address of their corresponding DHT nodes.
3 A set of pre xes is a universal pre x set if and only if for
every in nite binary sequence b, there is exactly one
element in the set that is a pre x of b. in regions of the
domain which are sparsely popu-lated. Finally, property 5
ensures that the leaves of the PHT form a doubly linked
list, which en-ables sequential traversal of the leaves for
answer-ing range queries.

Special Issue 19 189 © IJARBEST PUBLICATIONS

As described this far, the PHT structure is a fairly routine
binary trie. The novelty of PHT lies in how this logical trie
is distributed among the peers in the network; i.e., in how
PHT vertices are as-signed to DHT nodes. This is achieved
by hashing the pre x labels of PHT nodes over the DHT
iden-ti er space. A node with label l is thus assigned
4 to the peer to which l is mapped by the DHT, i.e., the
peer whose identi er is closest to HASH(l). This hash-
based assignment implies that given a la-bel, it is possible
to locate its corresponding PHT node via a single DHT
lookup. This \direct access" property is unlike the
successive link traversals as-sociated with typical data
structures and results in the PHT having several desirable
features that are discussed subsequently.

2.2 PHT Operations
This section describes algorithms for PHT opera-tions.

2.2.1 Lookup
Given a key K , a PHT lookup operation returns the unique
leaf node leaf (K) whose label is a pre x
of K . Because there are (D + 1) distinct pre xes
of K , there are (D + 1) potential candidates; an obvious
algorithm is to perform a linear scan of these (D + 1) nodes
until the required leaf node is reached. This is similar to a
top-down traversal of the trie except that a DHT lookup is
used to locate a PHT node given its pre x label.
Pseudocode for this algorithm is given below.

Algorithm: PHT-LOOKUP-LINEAR
input : A key K
output: leaf (K)

for i 0 to D do

/*Pi (K) denotes prefix of K of length i */

node DHT-LOOKUP(Pi (K));
if (node is a leaf node) then return node ;

end
return f ailure;

How can this be improved ? Given a key K , the above
algorithm tries di erent pre x lengths until the required leaf
node is reached. Clearly, linear search can be replaced by
binary search on pre x

4Assignment implies that the peer maintains the state as-
sociated with the PHT node assigned to it. Henceforth, the
discussion will use PHT node to also refer to the peer as-
signed that node.
 lengths. If the current pre x is an internal node of the PHT,

the search tries longer pre xes. Al-ternatively, if the current

pre x is not an internal node of the PHT, the search tries

shorter pre xes. The search terminates when the required

leaf node is reached. The decision tree to the left in Fig-ure

1 illustrates the binary search. For example. consider a

lookup for the key 001100. The binary search algorithm rst

tries the 3-bit pre x 001* (internal node), then the 5-bit pre

x 00110* (not an internal node), and then nally the 4-bit

pre x 0011*, which is the required leaf node. Pseudocode

for this algorithm is given below.

Algorithm: PHT-LOOKUP-BINARY
input : A key K

output: leaf (K)

lo 0;
hi D;
while (lo hi) do mid (lo +

hi)/2;
/*Pmid (K) denotes prefix of K of length mid

*/
node DHT-LOOKUP(Pmid (K));
if (node is a leaf node) then return node ; else

if (node is an internal node) then lo mid +
1;
else hi mid- 1;

end
end
return f ailure;

Binary search reduces the number of DHT lookups from
(D + 1) to blog (D + 1)c + 1 log D. Never-theless, linear
search is still signi cant for atleast two reasons. First,
observe that the (D + 1) DHT lookups in linear search can
be performed in paral-lel, as opposed to binary search,
which is inherently sequential. This results in two modes
of operation viz. low-overhead lookups using binary
search, and low-latency lookups using parallel search.
Second, binary search may fail ,i.e., be unable to correctly
locate the leaf node, as a result of the failure of
an internal PHT node 5 . On the other hand, lin-ear search
is guaranteed to succeed as long as the leaf node is alive,
and the DHT is able to route to it, and therefore provides a
failover mechanism. Note that both algorithms are
contingent on the fact that the DHT provides a mechanism
to locate any PHT node via a single lookup.

2.2.2 Range Query
Given two keys L and H (L H), a range query returns all
keys K contained in the PHT satisfying

5 Binary search will not be able to distinguish between the
failure of an internal node and the absence of an internal
node.

 0 1

0 1 0 1

0 1 0 1

 0 1

Parallel

0 1

 0 1

Sequential

Figure 2: Range queries

L K H . Range queries can be implemented in a PHT in
several ways; we present two simple algorithms.

Special Issue 19 190 © IJARBEST PUBLICATIONS

The rst algorithm is to locate leaf (L) using the PHT
lookup operation. Now the doubly linked list of threaded
leaves is traversed sequentially until the node leaf (H) is
reached. All values satisying the range query are retrieved.
This algorithm is simple and e cient; it initially requires log
D DHT lookups to locate leaf (L). It cannot avoid travers-
ing the remaining nodes to answer the query. The
disadvantage of this algorithm is that a sequential scan of
the leaf nodes may result in a high latency before the query
is completely resolved.

The second algorithm is to parallelize. Using the DHT,
locate the node whose label corresponds to the smallest pre
x range that completely covers the speci ed range. If this is
an internal node, then re-cursively forward the query
onward to those chil-dren which overlap with the speci ed
range. This process continuues until the leaf nodes
overlapping with the query are reached. If this is not an
inter-nal node, the required range query is covered by a
single leaf node, which can be located by binary search.

Figure 2 shows an example of range search. Con-sider a
query for the range [001001; 001011]. In the sequential
algorithm, a PHT lookup is used to lo-cate the node
containing the lower endpoint, i.e., node 00100 . After this
a traversal of the linked list forwards the query to the next
two leaves 001010 and 001011 , which resolves the query.
In the par-allel algorithm, we rst identify the smallest pre x
range that completely covers the query, which is
0010 . A single DHT lookup is used to directly jump to
this node, after which the query is for-warded in parallel
within the sub-tree, until all leaf nodes that overlap with
the search range are reached.

Note that in the parallel algorithm, it is sometimes
desirable to break the search query into two, and treat these
sub-queries independently. For exam-ple, a very small
range that contains the midpoint of the space, will result in
being the smallest pre x range containing it, thereby
potentially over-loading the root. To prevent this, we
observe that every range is contained in the union of two
pre-x ranges that are of roughly the same size as the query
(within a factor of 2). By handling these separately, it is
possible to ensure a search starts at a level in the PHT that
is appropriate for the query i.e. smaller queries start lower
down in the PHT.

2.2.3 Insert / Delete
Insertion and deletion of a key K both require a PHT
lookup operation to rst locate the leaf node leaf (K).
Insertion of a new key can cause this leaf node to split into
two children, followed by a redistribution of keys. In most
cases, the (B + 1) keys are distributed among the two
children such that each of them stores atmost B. However
it is possible that all (B + 1) keys are distributed to the
same child, necessitating a further split. In the worst case,
an insertion can cause splits to cascade
all the way to a depth D 6, making insertion costs
proportional to D. Similarly, in the worst case, deletion can
cause an entire sub-tree of depth D to collapse into a single
leaf node, incurring a cost proportional to D.

It is possible to reduce update costs and avoid problems of
multi-node coordination through stag-gered updates.
Only one split operation is allowed per insertion, and

similarly, only one merge oper-ation is allowed per
deletion. While this results in update costs reducing to log
D DHT lookups (the cost of a PHT lookup to locate the
leaf node), it also allows invariants 3 and 4 to be violated.
A leaf node can now store upto (B + D) keys. This is not
likely to be a problem because in most practical scenarios,
B >> D.

2.3 Tries versus Trees
This section compares the merits of a trie-based in-dex,
such as the PHT, with balanced tree-based in-dices, such as
the B-tree, with particular emphasis on implementation in a
distributed setting. This paper has described how the PHT
data structure can be built over a DHT; it is likewise
conceivable that a B-tree could be built over a DHT, with
the

6 This process must terminate because in the worst case, all
keys are identical, and it is assumed that identical keys are
distinguished by padding random bits at the end, and
appropriately increasing D.
 DHT being used to distribute B-tree nodes across peers in
the network. While the tree-based indices may be better in
traditional indexing applications like databases, we argue
the reverse is true for im-plementation over a DHT.

The primary di erence between the two approaches is as
follows: a trie partitions the space while a tree partitions
the data set. In other words, a trie node represents a
particular region of space, while a tree node represents a
particular set of keys. Because a trie uses space, which is
constant independent of the actual data set, there is some
implicit knowl-edge about the location of a key. For
example, in a trie, a key is always stored at a pre x of the
key, which makes it possible to exploit the mechanism the
DHT provides to locate a node via a single DHT lookup. In
a tree, this knowledge is lacking, and it not possible to
locate a key without a top-down traversal from the root.
Therefore, a tree index cannot use the random access
property of the DHT in the same manner. This translates
into several key advantages in favor of the PHT when
compared to a balanced tree index.

2.3.1 Efficiency
A balanced tree has a height of log N , and therefore a key
lookup requires log N DHT lookups. In addi-tion, updates
may require the tree to re-balanced. The binary search
lookup algorithm in the case of the PHT requires only log
D DHT operations, and updates have the same cost as well.
Comparing the cost of lookups in the case of an index
consisting of a million 32-bit keys, a tree index would
require 20 DHT lookups as compared to 6 for the PHT to
retrieve a key. Of course, multiway indexing could be used
to reduce the height of the tree, but this would also leave
the tree more vulnerable to faults in the indexing structure.
2.3.2 Load Balancing

As mentioned before, every lookup in a tree must goes
through the root, creating a potential bottle-neck. In the
case of a trie, binary search allows the

D
load to be spread over 2 2 nodes (assuming uniform
lookups), thus eliminating any bottleneck.

Special Issue 19 191 © IJARBEST PUBLICATIONS

2.3.3 Fault Resilience
In a typical tree-based structure, the loss of an in-ternal
node results in the loss of the entire sub-tree rooted at the
failed node. PHT however does not require top-down
traversals; instead one can directly \jump" to any node in
the PHT. Thus the failure of any given node in the PHT
does not af-fect the availability of data stored at other
nodes. In some sense, the indexing state in the trie is used
only as an optimization. For example, observe that correct
operation of the PHT is achievable using only the integrity
of the doubly-linked list of leaf nodes7. Both updates
(through linear search) and range queries (through
sequential traversal of the list) can be handled without the
help of the trie indexing structure. Contrast with a tree
where the indexing structure is indispensible for both
updates and queries, and is therefore vulnerable to failures.

2.4 PHT Enhancements
Until this point, we have discussed the use of PHTs for
satisfying unidimensional range queries. In this section,
we describe two re nements: functionality extensions to
support multi-dimensional searching, and performance
enhancements for scenarios with known or relatively
static data distributions.

2.4.1 Multi-dimensional Indexing via Linearization
There are a plethora of centralized indexing schemes for
supporting multidimensional range and near-neighbor
queries; multiple surveys have been pub-lished in this
area (e.g., [11, 28]). One class of heuristic
multidimensional indexing schemes maps
multidimensional data to a single dimension. This
approach is sometimes called linearization, or space-
lling curves, and well-known examples include the
Hilbert, Gray code, and \Z-order" curves [16]. A
multidimensional query is mapped to a unidimen-sional
range query that spans from the lowest to highest
linearization points of the original query. In general,
linearized queries return a superset of the matching data,
which has to be post- ltered. Recent linearization
schemes like the Pyramid [3] and iDistance [35]
techniques have been shown em-pirically to outperform
traditional space- lling curves as well as popular
multidimensional tree structures in high-dimensional
scenarios.

Though work on multidimensional indexing via lin-
earization schemes is largely heuristic, it has a strong
practical attraction: linearization can be imple-mented as
an overlay upon existing unidimensional range search
structures, which are typically more frequently
implemented and carefully debugged than specialized
multidimensional indexes. This argu-ment holds for PHTs
as well as for any distributed range search technique.
PHTs have the added ad-vantage that their underlying
substrate, DHTs, are rapidly emerging as a leading
distributed building block.

After mapping a d-dimensional query Qd into a
unidimensional query Q0, a PHT nds the answer set in
O(log D + djQ0j=Be) network hops, where jQ0j is the
size of the result set returned for the unidimensional
query Q0. Note that we have given no bound on the di
erence between jQ0j and jQdj,
and in the worst case jQ0j = n. This di erence captures
the ine cacy of the chosen linearization scheme; it is not

particular to PHTs per se.

7 This is somewhat similar to Chord whose correct
operation depends only on the integrity of the successor
pointers
2.4.2 Indexing Known Distributions
Relative to tree-based indexes, a disadvantage of PHTs is
that their complexity is expressed in terms of the log of
the domain size, D, rather than the size of the data set, N .
In many scenarios, however, data is from a known
distribution: for example, keywords in text search follow
well-known Zip an distributions, and range search queries
(e.g. text-
pre x queries like \Cali*") are quite natural. Here we
informally argue that for known distributions, the PHT
can be modi ed to run in O(log log N) expected hops.

We begin by examining the simple uniform distri-bution
over D-bit keys. For N data items drawn from this
distribution, the expected depth of a leaf in the PHT is
O(log N), with low variance. Hence for uniform
distributions, the expected number of hops with PHT-
LOOKUP-BINARY is O(log log N). This search
algorithm can be improved further via a search algorithm
that starts at pre x-length log N , and proceeds upward or
downward as necessary.

For known but non-uniform distributions, similar
performance can be achieved by \warping" the space
appropriately, remapping the original distribution to a
uniform distribution. For each data point drawn from the
original distribution, its rst bit is remapped to be 0 if it is
lower than the mid-point of the distribution's PDF, and 1
otherwise; this assignment proceeds recursively through all
D bits. The resulting set of mapped points are essentially
drawn from the uniform distribution, and a PHT built on
these points will have path lengths as described above.
Queries in the original space are mapped accordingly, and
will perform with O(log log N) expected hops.

For globally well-known distributions (e.g. terms in

spoken English), the warping function is more or less xed

and can be distributed as part of the PHT code. However,

in practice many data sets come from distributions that do

change, but quite slowly. For example, the distribution of

terms in lesharing applications will shift slightly as pop-

ularity shifts; some terms may suddenly become popular

when a new popular le is released, but most terms'

frequency will remain relatively static for long periods of

time. For such slowly-changing distributions, a gossip-

based scheme can be used to disseminate compressed

representations of the distribution to all nodes, and any

changes to the distribution can be re ected via periodic

remap-ping of the data and queries (perhaps as part of soft-

state refresh.)

We close this section by observing a general dual-ity. A
tree index is actually quite analogous to the pairing of a
trie-based scheme with a known dis-tribution: the \split-
keys" in a tree index capture the data distribution, and the
pointers in the tree index serve the same function as the
bits in the trie encoding. An advantage of the PHT
approach is the ability we noted above to \jump" into any
point of the trie via hashing; global knowledge of the dis-
tribution provides this uniformity in addressing. A similar
trick could be achieved in tree indexes as well, if every

Special Issue 19 192 © IJARBEST PUBLICATIONS

searcher had a fair approximation of the split keys in the
tree and the locations of the tree nodes in an identi er
space.

3. EVALUATION
This section presents a simulation-based evaluation of the
PHT data structure. Although these simu-lation results are
by no means comprehensive, we present them as
preliminary experimental evidence that the PHT is a viable
solution. A more complete evaluation, along with gaining
experience with de-ployment of a working prototype, is
the focus of our current e orts.

Our simulation setup is as follows. A PHT that indexes 30-
bit keys is created on top of a DHT consisting of 1000
nodes. Our focus is on evalu-ating the performance of the
data structure; for that reason we abstract away many of
the details of the DHT by using a stripped-down version of
the Chord protocol. 216 arti cially generated keys are
inserted into the PHT coming from a uniform distribution
over the entire 230 keyspace. We use an arti cially low
block size of B = 20 in order to generate a non-trivial
instance of the PHT.

3.1 Range queries
Recall that a range query is evaluated by travers-ing the
leaf nodes of the PHT. The complexity (and latency) of the
range query operation depends on the number of such
leaves, which is a function of the output, i.e., how many
keys actually satisfy the given query. In the ideal case, if
the output size is O and the block size is B, the number of
nodes traversed should be about d O

B e. To see how well
the PHT distributes keys among the leaf nodes, we
generate 1000 randomly generated queries of size varying
from 222 to 226 , measured how many leaf nodes were
required to be traversed. The results normalized to the
optimal number d O

B e are shown in figure 3. The number
of leaf nodes required to be traversed is roughly the same
in all cases: about 1.4 times the optimal value. To evaluate
the e ect of skewed distributions on the PHT structure, this
experiment was repeated with a Gaussian distri-bution
centered at the midpoint of the space to generate input
keys. For ranges that are close to the mean, where keys are
densely clustered, the PHT does well, actually out-
performing the uni-form case. For sparser regions, the
PHT does not do as well, but no worse than 1.6 the
optimal value. These results indicate that the PHT incurs
only a reasonably small constant factor of overhead (in
terms of nodes visited) more than the theoretically optimal
value.
3.2 Load balance
The next experiment attempts to verify the asser-tion that
the PHT spreads network load evenly, and therefore does
not have a bottleneck, unlike a binary tree. To test this
hypothesis, we generated 100,000 PHT lookups on
uniformly distributed keys and observed the distribution
of lookup tra c. By lookup tra c, we mean the DHT
queries generated by the binary search algorithm, and not
the under-lying DHT routing tra c. Figure 4 shows the
dis-tribution of lookup tra c over all the nodes in the
DHT. It can be seen that about 80 % of the nodes see less
than 400 lookups (out of 100,000). The rest of the nodes,
which correspond to PHT leaf nodes, receive more tra c,
but in no case higher than 1800. Contrast this with a B-
tree where each of the 100,000 messages must necessarily
go through the root. To test the e ect of network size, the
experiment was repeated for 1000, 2000 and 3000 nodes

respectively. As expected, a larger number of nodes
reduces the amount of per-node tra c, as PHT pre xes are
distributed among more nodes. However the actual PHT
leaf nodes continue to re-ceive higher amounts of tra c
than the rest of the nodes.

4. RELATED WORK
Building e cient data structures for searching is one of the
fundamental problems in computer sci-ence; [19, 8] are
good references. Our PHT pro-posal is particularly
reminiscent of Litwin's Trie Hashing [21], but has an
added advantage that the \memory addresses" where
buckets of the trie are stored are in fact the DHT keys
obtained by hash-ing the corresponding pre xes.

With respect to the problem of implementing range
search over peer-to-peer systems, Aspnes and Shah [1]
have proposed skip graphs, a distributed data structure
based on the skiplist that provides a range search solution.
However they do not provide a mapping from keys to
peers in a network; such a mapping is provided by
Awerbuch and Scheideler

In recent work, Karger and Ruhl [17] propose a
randomized protocol called item balancing that bal-ances
the distribution of items by having DHT nodes adaptively
change their identi ers. While providing excellent
theoretical properties, their so-lution relies on more than
just the hashtable in-terface of the underlying DHT,
which could poten-tially create a barrier to deployment. A
related protocol has been proposed by Ganesan and Bawa
[12].

Other related work includes a DHT-based caching
scheme [13] and a technique speci cally for the
CAN DHT based on space- lling curves [32].

Cone [4] is a trie-based data structure that is used to
evaluate aggregation operators, such as MIN, MAX and
SUM, over keys in a DHT. Although the PHT is also
based on a trie, it di ers from Cone in three signi cant
respects. First, Cone builds a trie over uniformly
distributed node identi ers. Second, Cone does not
support range queries. Fi-nally, Cone is a DHT
augmentation where as the PHT builds on top of the
DHT.

Waldvogel et al [33] have proposed an IP lookup
algorithm based on binary search of pre xes orga-nized
into hashtables based on pre x length. Al-though they are
solving longest pre x match, a di erent but related
problem, their binary search technique is similar to the
PHT lookup algorithm. The key distinguishing
characteristic is that the PHT operates in a distributed
setting, with an entirely di erent set of constraints and
issues, as opposed to an IP lookup algorithm that is
imple-mented in hardware in a high-speed router.5.

CONCLUSION

In their short existence, DHTs have become a widely used
tool for building large-scale distributed sys-tems. While
the lookup interface o ered by DHTs is broadly applicable,
it does not naturally support a very common feature in
database and other in-formation processing systems: range
queries. Our goal was to address this shortcoming but,
contrary to early e orts in the eld, subject to the constraint
that these queries only use the lookup interface and not

Special Issue 19 193 © IJARBEST PUBLICATIONS

rely on changes to or knowledge of the under-lying DHT
routing algorithm. This would ensure that the solution
would apply to any DHT, not just those speci cally
engineered for the task. To this end, we presented the
design and evaluation of Pre-x Hash Trees (PHT), a data
structure designed to support range queries. PHT has the
properties tra-ditionally required of large-scale Internet
systems: self-organizing, scalable, and robust in the
presence of failures. While it does not prevent loss of data
due to node outages, such failures do not prevent it from
producing results from the other nodes.

In short, we believe that PHT will enable general-purpose
DHTs to support a wider class of queries, and then
broaden the horizon of their applicability.

6. REFERENCES

[1] Aspnes, J., and Shah, G. Skip graphs. In

Fourteenth Annual ACM-SIAM Symposium on

Discrete Algorithms (Baltimore, MD, Jan 2003).

[2] Awerbuch, B., and Scheideler, C.

Peer-to-peer Systems for Pre x Search. In

ACM Symposium on Principles of Distributed

Computing (Boston, MA, July 2003).

[3] Berchtold, S., Bohm,• C., and Kriegel, H.-P. The

pyramid-technique: Towards breaking the curse of

dimensionality. In Proc.

ACM SIGMOD International Conference on

Management of Data (Seattle, WA, June 1998),

pp. 142{153.

[4] Bhagwan, R., Voelker, G., and Varghese, G. Cone:

Augmenting DHTs to Support Distributed Resource

Discovery. Tech. Rep. UCSD CS2002-0726,

Computer Science Department, University of

California, San Diego, November 2002.

[5] Blake, C., and Rodrigues, R. High Availability,

Scalable Storage, Dynamic Peer Networks: Pick

Two. In HotOS IX (May 2003).

[6] Cabrera, L., Jones, M. B., and Theimer, M.

Herald: Achieving a Global Event Noti cation

Service. In HotOS VIII (May 2001).

[7] Clip2. The Gnutella Protocol Speci cation v.0.4,

March 2001.

[8] Cormen, T., Stein, C., Rivest, R., and Leiserson, C.

Introduction to Algorithms. McGraw-Hill Higher

Education.

[9] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R.,

and Stoica, I. Wide-area Cooperative Storage with

CFS. In

Proceedings of the 18th ACM Symposium on

Operating Systems Principles (SOSP 2001)

(Lake Louise, AB, Canada, October 2001).

[10] Freedman, M. J., Freudenthal, E., and Mazieres, D.

Democratizing Content Publishing with Coral. In

Proceedings of the

USENIX/ACM Symposium on Networked

Systems Design and Implementation (NSDI), 2004

(San Francisco, CA, March 2003).

[11] Gaede, V., and Gunther,• O.

Multidimensional access methods. ACM

Computing Surveys 30, 2 (June 1998),

170{231.

[12] Ganesan, P., and Bawa, M. Distributed Balanced

Tables: Not Making a Hash of it All. Tech. rep.,

Computer Science Department, Stanford

University, 2003.

[13] Gupta, A., Agrawal, D., and Abbadi, A. E.

Approximate Range Selection Queries in Peer-to-

Peer Systems. In Proceedings of the First Biennial

Conference on Innovative Data Systems Research

(CIDR) (Asilomar,

CA, January 2003).

[14] Hildrum, K., Kubiatowicz, J. D., Rao, S., and Zhao,

B. Y. Distributed Object Location in a Dynamic

Network. In 14th

ACM Symposium on Parallel Algorithms and

Architectures (Aug. 2002).

[15] Huebsch, R., Hellerstein, J. M., Lanham, N., Loo, B.

T., Shenker, S., and Stoica, I. Querying the Internet

with PIER. In Proceedings of VLDB 2003 (Berlin,

Germany, September 2003).

[16] Jagadish, H. V. Linear clustering of objects with

multiple atributes. In Proc. ACM

SIGMOD International Conference on

Management of Data (Atlantic City, NJ, May

1990), pp. 332{342.

[17] Karger, D., and Ruhl, M. Simple E cient Load

Balancing Algorithms for Peer-to-Peer Systems. In

Proceedings of the

Third International Peer-to-Peer Systems

Workshop (IPTPS) (Feb. 2004).

[18] Karp, B., Ratnasamy, S., Rhea, S., and Shenker, S.

Spurring Adoption of DHTs with OpenHash, a Public

DHT service. In

Special Issue 19 194 © IJARBEST PUBLICATIONS

Proceedings of the Third International Peer-to-

Peer Systems Workshop IPTPS 2004

(Feb. 2004). Knuth, D. The Art of Computer

Programming. Addison-Wesley.

[19] Li, J., Loo, B. T., Hellerstein, J. M., Kaashoek, F.,

Karger, D., and Morris,

R. On the Feasibility of Peer-to-Peer Web

Indexing and Search. In Proceedings of the

2nd International Workshop on Peer-to-Peer

Systems (IPTPS). (Berkeley, CA, Feb. 2003).

[20] Litwin, W. Trie Hashing. In Proceedings of ACM

SIGMOD (Ann Arbor, MI, 1981).

[21] Malkhi, D., Naor, M., and Ratajczak,

D. Viceroy: A Scalable and Dynamic

Emulation of the Butter y. In ACM

Symposium on Principles of Distributed

Computing (July 2002).

[23] Maymounkov, P., and Mazieres, D.

Kademlia: A peer-to-peer information system based

on the xor metric. In 1st International

Workshop on Peer-to-Peer Systems

(Cambridge, MA, Mar. 2002).

Special Issue 19 195 © IJARBEST PUBLICATIONS

