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 Abstract—Distributed Hash Tables are scalable, robust, and 
self-organizing peer-to-peer systems that support exact match 
lookups. This paper describes the design and implementation 
of a Pre x Hash Tree - a distributed data structure that enables 
more sophisticated queries over a DHT. The Pre x Hash Tree 
uses the lookup interface of a DHT to construct a trie based 
structure that is both efficient (updates are doubly logarithmic 
in the size of the domain being indexed), and resilient (the 
failure of any given node in the Pre x Hash Tree does not 
affect the availability of data stored at other nodes). 
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1. INTRODUCTION   
The explosive growth but primitive design of peer-to-peer 
le-sharing applications such as Gnutella [7] and KaZaa 
[29] inspired the research community to invent 
Distributed Hash Tables (DHTs) [31, 24, 14, 26, 22, 23]. 
Using a structured overlay network, DHTs map a given 
key to the node in the network holding the object 
associated with that key; this lookup operation lookup(key) 
can be used to sup-port the canonical put(key, value) and 
get(key) hash table operations. The broad applicability of 
this lookup interface has allowed a wide variety of system 
to be built on top DHTs, including le systems [9, 27], 
indirection services [30], event notification [6], content 
distribution networks [10] and many others   
DHTs were designed in the Internet style: scalability and 
ease of deployment triumph over strict semantics. In 
particular, DHTs are self-organizing, requiring no 
centralized authority or manual configuration. They are 
robust against node failures and easily accommodate new 
nodes. Most importantly, they are scalable in the sense that 
both latency (in terms of the number of hops per lookup) 
and the local state required typically grow logarithmically 
in the number of nodes; this is crucial since many of the 
envisioned scenarios for DHTs involve extremely large 
systems (such as P2P mu-                                                 
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this lookup interface has allowed a wide variety of system 
to be built on top DHTs, including le systems [9, 27], 
indirection services [30], event notification [6], content 
distribution networks [10] and many others. 

 
DHTs were designed in the Internet style: scalability and 
ease of deployment triumph over strict semantics. In 
particular, DHTs are self-organizing, requiring no 
centralized authority or manual configuration. They are 
robust against node failures and easily accommodate new 
nodes. Most importantly, they are scalable in the sense that 
both latency (in terms of the number of hops per lookup) 
and the local state required typically grow logarithmically 
in the number of nodes; this is crucial since many of the 
envisioned scenarios for DHTs involve extremely large 
systems (such as P2P mu-  
sic le sharing). However, DHTs, like the Internet, deliver 
"best-e ort" semantics; put's and get's are likely to succeed, 
but the system provides no guarantees. As observed by 
others [36, 5], this conflict between scalability and strict 
semantics appears to be inevitable and, for many large-
scale Inter-net systems, the former is deemed more 
important than the latter. 

 
While DHTs have enjoyed some success as a building 
block for Internet-scale applications, they are seriously de 
cient in one regard: they only directly support exact match 
queries. Keyword queries can be derived from these exact 
match queries in a straightforward but ine cient manner; 
see [25, 20] for applications of this to DHTs. Equality joins 
can also be supported within a DHT framework; see [15]. 
However, range queries, asking for all ob-jects with 
values in a certain range, are particularly di cult to 
implement in DHTs. This is because DHTs use hashing to 
distribute keys uniformly and so can't rely on any structural 
properties of the key space, such as an ordering among 
keys. 

 
Range queries arise quite naturally in a number of 

ISSN (ONLINE): 2395-695X 

ISSN (PRINT): 2395-695X 

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST) 

Volume 2, Special Issue 19, October 2016 

Special Issue 19      187 © IJARBEST PUBLICATIONS

mailto:rkjaidanya46@gmail.com
mailto:ramkumar2006@gmail.com


   

Leaf 

nodes Keys  

0 

  000* 

00000

1  

0 1 

 00010

0 

 

   

    
00010
0  

1 

  00100* 

00100

1  

  001010* 
00101
0  

0 1 0 1 00101

0 

 

     

    

00101

0  

2   001011* 

00101

1  

0 1 0 1 

00101
1  

  
   0011*   

3 

  01* 

01000

0  

   01010

1 

 

0 1 

   

 

10* 

10001

0 

 

    

4 

   

10101

1  

   
10111
1  

0 1  

110* 

11000

0 

 

    

    

11001

0  

5    

11001

1  

0 1 

  
11011
0  

 

111* 

11100

0 

 

    

6 

   

11101

0  

     

 

Figure 1: Pre  x Hash Tree 
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potential application domains: 
 
Databases Peer-to-peer databases [15] need to sup-
port SQL-type relational queries in a distributed 
fashion. Range predicates are a key component in 
SQL. 
 
Distributed computing Resource discovery requires 
locating resources within certain size ranges in a 
decentralized manner. 
 
Location-aware computing Many applications want 
to locate nearby resources (computing, human 
orcommercial) based on a user's current location, 
which is essentially a 2-dimensional range query based 
on geographic coordinates. 
 
Scienti c computing Parallel N-body computations 
[34] require 3-dimensional range queries for accu-rate 
approximations. 
 
In this paper, we address the problem of e ciently 
supporting 1-dimensional range queries over a DHT. Our 
main contribution is a novel trie-based dis-tributed data 
structure called Pre x Hash Tree (hence-  
forth abbreviated as PHT) that supports such queries. As a 
corollary, the PHT can also support heap queries (\what is 
the maximum/minimum ?"), prox- 
imity queries (\what is the nearest element to X  
?"), and, in a limited way, multi-dimensional ana-
logues of the above, thereby greatly expanding the 
querying facilities of DHTs. PHT is e cient, in that 
updates are doubly logarithmic in the size of the 
domain being indexed. Moreover, PHT is self-
organizing and load-balanced. PHT also toler-ates 
failures well; while it cannot by itself protect   
against data loss when nodes go down1, the failure of any 
given node in the Pre x Hash Tree does not a ect the 
availability of data stored at other nodes. 
 
But perhaps the most crucial property of PHT is that it is 
built entirely on top of the lookup inter-face, and thus can 
run over any DHT. That is, PHT uses only the 
lookup(key) operation common to  
all DHTs and does not, as in SkipGraph [1] and other 
such approaches, assume knowledge of nor require 
changes to the DHT topology or routing behavior. While 
designs that rely on such lower-layer knowledge and 
modi cations are appropriate for contexts where the DHT 
is expressly deployed for the purpose of supporting range 
queries, we ad-dress the case where one must use a pre-
existing DHT. This is particularly important if one wants 
to make use of publicly available DHT services, such as 
OpenHash [18]. 
 
The remainder of the paper is organized as fol-lows. 
Section 2 describes the design of the PHT data structure. 
Section 3 presents the results of an experimental 
evaluation. Section 4 surveys related work and section 5 
concludes. 

 

2.  DATA STRUCTURE  
This section describes the PHT data structure, along with 
related algorithms. 

 

2.1  PHT Description  
For the sake of simplicity, it is assumed that the do-main 
being indexed is f0; 1gD , i.e., binary strings  
 
1But PHT can take advantage of any replication or other 
data-preserving technique employed by a DHT. of length 
D, although the discussion extends nat-urally to other 
domains. Therefore, the data set indexed by the PHT 
consists of some number N of D-bit binary keys. 
 
In essence, the PHT data structure is a binary trie built 
over the data set. Each node of the trie is labeled with a pre 
x that is de ned recursively: given a node with label l, its 
left and right child nodes are labeled l0 and l1 respectively. 
The root is labeled with the attribute being indexed, and 
downstream nodes are labeled as above. 
 
The following properties are invariant in a PHT. 
 
1. (Universal pre x ) Each node has either 0 or 2 
children.  
 
2. (Key storage) A key K is stored at a leaf node whose 
label is a pre x of K .  
 
3. (Split ) Each leaf node stores atmost B keys.  

 
4. (Merge) Each internal node contains atleast (B + 1) 
keys in its sub-tree.  

 
5. (Threaded leaves) Each leaf node maintains a pointer 
to the leaf nodes on its immediate left and  
and immediate right respectively.2 
 
Property 1 guarantees that the leaf nodes of the PHT form 
a universal pre x set 3. Consequently, given any key K 2 
f0; 1gD , there is exactly one leaf node leaf (K ) whose 
label is a pre x of K . Prop-  
erty 2 states that the key K is stored at leaf (K ). Figure 1 
provides an example of a PHT contain-ing N = 20 6-bit 
keys with B = 4. The table on the right in Figure 1 lists the 
20 keys and the leaf nodes they are stored in. 
 
Properties 3 and 4 govern how the PHT adapts to the 
distribution of keys in the data set. Fol-lowing the insertion 
of a new key, the number of keys stored at a leaf node may 
exceed the threshold B, causing property 3 to be violated. 
To restore the invariant, the node splits into two child 
nodes, and its keys are redistributed among the children 
according to property 2. Conversely, following the deletion 
of an existing key, the number of keys con-tained in a sub-
tree may fall below (B +1), causing property 4 to be 
violated. To restore the invari-ant, the entire sub-tree is 
merged into a single leaf node, where all the keys are 
aggregated. Notice the shape of the PHT depends on the 
distribution of keys; it is "deep" in regions of the domain 
which are densely populated, and conversely, "shallow" 
 
2 A pointer here would be the pre xes of neighboring 
leaves and, as a performance optimization, the cached IP 
address of their corresponding DHT nodes.  
3 A set of pre xes is a universal pre x set if and only if for 
every in nite binary sequence b, there is exactly one 
element in the set that is a pre x of b.  in regions of the 
domain which are sparsely popu-lated. Finally, property 5 
ensures that the leaves of the PHT form a doubly linked 
list, which en-ables sequential traversal of the leaves for 
answer-ing range queries. 
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As described this far, the PHT structure is a fairly routine 
binary trie. The novelty of PHT lies in how this logical trie 
is distributed among the peers in the network; i.e., in how 
PHT vertices are as-signed to DHT nodes. This is achieved 
by hashing the pre x labels of PHT nodes over the DHT 
iden-ti er space. A node with label l is thus assigned  
4 to the peer to which l is mapped by the DHT, i.e., the 
peer whose identi er is closest to HASH(l). This hash-
based assignment implies that given a la-bel, it is possible 
to locate its corresponding PHT node via a single DHT 
lookup. This \direct access" property is unlike the 
successive link traversals as-sociated with typical data 
structures and results in the PHT having several desirable 
features that are discussed subsequently. 

 

2.2  PHT Operations  
This section describes algorithms for PHT opera-tions. 

 

2.2.1 Lookup  
Given a key K , a PHT lookup operation returns the unique 
leaf node leaf (K ) whose label is a pre x 
of K .  Because there are (D + 1) distinct pre  xes  
of K , there are (D + 1) potential candidates; an obvious 
algorithm is to perform a linear scan of these (D + 1) nodes 
until the required leaf node is reached. This is similar to a 
top-down traversal of the trie except that a DHT lookup is 
used to locate a PHT node given its pre x label. 
Pseudocode for this algorithm is given below. 

 

Algorithm: PHT-LOOKUP-LINEAR  
input  : A key K  
output: leaf (K ) 
 
for i 0 to D do  

/*Pi (K ) denotes prefix of K of length i */ 
 

node DHT-LOOKUP(Pi (K )); 
if (node is a leaf node) then  return node ; 

end 
return f ailure; 

 
How can this be improved ? Given a key K , the above 
algorithm tries di erent pre x lengths until the required leaf 
node is reached. Clearly, linear search can be replaced by 
binary search on pre x 
 
4Assignment implies that the peer maintains the state as-
sociated with the PHT node assigned to it. Henceforth, the 
discussion will use PHT node to also refer to the peer as-
signed that node. 
 lengths. If the current pre x is an internal node of the PHT, 

the search tries longer pre xes. Al-ternatively, if the current 

pre x is not an internal node of the PHT, the search tries 

shorter pre xes. The search terminates when the required 

leaf node is reached. The decision tree to the left in Fig-ure 

1 illustrates the binary search. For example. consider a 

lookup for the key 001100. The binary search algorithm rst 

tries the 3-bit pre x 001* (internal node), then the 5-bit pre 

x 00110* (not an internal node), and then  nally the 4-bit 

pre  x 0011*, which is the required leaf node. Pseudocode 

for this algorithm is given below. 

 

Algorithm: PHT-LOOKUP-BINARY  
input  : A key K 

 
output: leaf (K ) 
 
lo 0; 
hi D; 
while (lo hi) do mid (lo + 

hi)/2;  
/*Pmid (K ) denotes prefix of K of length mid 

*/ 
node DHT-LOOKUP(Pmid (K ));  
if (node is a leaf node) then return node ; else  

if (node is an internal node) then lo mid + 
1; 
else hi mid- 1;  

end 
end  
return f ailure; 

 

Binary search reduces the number of DHT lookups from 
(D + 1) to blog (D + 1)c + 1 log D. Never-theless, linear 
search is still signi cant for atleast two reasons. First, 
observe that the (D + 1) DHT lookups in linear search can 
be performed in paral-lel, as opposed to binary search, 
which is inherently sequential. This results in two modes 
of operation viz. low-overhead lookups using binary 
search, and low-latency lookups using parallel search. 
Second, binary search may fail ,i.e., be unable to correctly 
locate the leaf node, as a result of the failure of  
an internal PHT node 5 . On the other hand, lin-ear search 
is guaranteed to succeed as long as the leaf node is alive, 
and the DHT is able to route to it, and therefore provides a 
failover mechanism. Note that both algorithms are 
contingent on the fact that the DHT provides a mechanism 
to locate any PHT node via a single lookup. 
 

2.2.2 Range Query  
Given two keys L and H (L H ), a range query returns all 
keys K contained in the PHT satisfying 
 
5 Binary search will not be able to distinguish between the 
failure of an internal node and the absence of an internal 
node.    
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Figure 2: Range queries 
 
L K H . Range queries can be implemented in a PHT in 
several ways; we present two simple algorithms. 
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The rst algorithm is to locate leaf (L) using the PHT 
lookup operation. Now the doubly linked list of threaded 
leaves is traversed sequentially until the node leaf (H ) is 
reached. All values satisying the range query are retrieved. 
This algorithm is simple and e cient; it initially requires log 
D DHT lookups to locate leaf (L). It cannot avoid travers-
ing the remaining nodes to answer the query. The 
disadvantage of this algorithm is that a sequential scan of 
the leaf nodes may result in a high latency before the query 
is completely resolved. 
 
The second algorithm is to parallelize. Using the DHT, 
locate the node whose label corresponds to the smallest pre 
x range that completely covers the speci ed range. If this is 
an internal node, then re-cursively forward the query 
onward to those chil-dren which overlap with the speci ed 
range. This process continuues until the leaf nodes 
overlapping with the query are reached. If this is not an 
inter-nal node, the required range query is covered by a 
single leaf node, which can be located by binary search. 
 
Figure 2 shows an example of range search. Con-sider a 
query for the range [001001; 001011]. In the sequential 
algorithm, a PHT lookup is used to lo-cate the node 
containing the lower endpoint, i.e., node 00100 . After this 
a traversal of the linked list forwards the query to the next 
two leaves 001010 and 001011 , which resolves the query. 
In the par-allel algorithm, we rst identify the smallest pre x 
range that completely covers the query, which is 
0010 . A single DHT lookup is used to directly jump to 
this node, after which the query is for-warded in parallel 
within the sub-tree, until all leaf nodes that overlap with 
the search range are reached. 
 
Note that in the parallel algorithm, it is sometimes 
desirable to break the search query into two, and treat these 
sub-queries independently. For exam-ple, a very small 
range that contains the midpoint of the space, will result in 
being the smallest pre x range containing it, thereby 
potentially over-loading the root. To prevent this, we 
observe that every range is contained in the union of two 
pre-x ranges that are of roughly the same size as the query 
(within a factor of 2). By handling these separately, it is 
possible to ensure a search starts at a level in the PHT that 
is appropriate for the query i.e. smaller queries start lower 
down in the PHT. 

 

2.2.3 Insert / Delete  
Insertion and deletion of a key K both require a PHT 
lookup operation to rst locate the leaf node leaf (K ). 
Insertion of a new key can cause this leaf node to split into 
two children, followed by a redistribution of keys. In most 
cases, the (B + 1) keys are distributed among the two 
children such that each of them stores atmost B. However 
it is possible that all (B + 1) keys are distributed to the 
same child, necessitating a further split. In the worst case, 
an insertion can cause splits to cascade  
all the way to a depth D 6, making insertion costs 
proportional to D. Similarly, in the worst case, deletion can 
cause an entire sub-tree of depth D to collapse into a single 
leaf node, incurring a cost proportional to D. 
 
It is possible to reduce update costs and avoid problems of 
multi-node coordination through stag-gered updates. 
Only one split operation is allowed per insertion, and 

similarly, only one merge oper-ation is allowed per 
deletion. While this results in update costs reducing to log 
D DHT lookups (the cost of a PHT lookup to locate the 
leaf node), it also allows invariants 3 and 4 to be violated. 
A leaf node can now store upto (B + D) keys. This is not 
likely to be a problem because in most practical scenarios, 
B >> D. 

 

2.3  Tries versus Trees  
This section compares the merits of a trie-based in-dex, 
such as the PHT, with balanced tree-based in-dices, such as 
the B-tree, with particular emphasis on implementation in a 
distributed setting. This paper has described how the PHT 
data structure can be built over a DHT; it is likewise 
conceivable that a B-tree could be built over a DHT, with 
the 
 
6 This process must terminate because in the worst case, all 
keys are identical, and it is assumed that identical keys are 
distinguished by padding random bits at the end, and 
appropriately increasing D. 
 DHT being used to distribute B-tree nodes across peers in 
the network. While the tree-based indices may be better in 
traditional indexing applications like databases, we argue 
the reverse is true for im-plementation over a DHT. 
 
The primary di erence between the two approaches is as 
follows: a trie partitions the space while a tree partitions 
the data set. In other words, a trie node represents a 
particular region of space, while a tree node represents a 
particular set of keys. Because a trie uses space, which is 
constant independent of the actual data set, there is some 
implicit knowl-edge about the location of a key. For 
example, in a trie, a key is always stored at a pre x of the 
key, which makes it possible to exploit the mechanism the 
DHT provides to locate a node via a single DHT lookup. In 
a tree, this knowledge is lacking, and it not possible to 
locate a key without a top-down traversal from the root. 
Therefore, a tree index cannot use the random access 
property of the DHT in the same manner. This translates 
into several key advantages in favor of the PHT when 
compared to a balanced tree index. 
 

 

2.3.1 Efficiency  
A balanced tree has a height of log N , and therefore a key 
lookup requires log N DHT lookups. In addi-tion, updates 
may require the tree to re-balanced. The binary search 
lookup algorithm in the case of the PHT requires only log 
D DHT operations, and updates have the same cost as well. 
Comparing the cost of lookups in the case of an index 
consisting of a million 32-bit keys, a tree index would 
require 20 DHT lookups as compared to 6 for the PHT to 
retrieve a key. Of course, multiway indexing could be used 
to reduce the height of the tree, but this would also leave 
the tree more vulnerable to faults in the indexing structure.  
2.3.2 Load Balancing  

As mentioned before, every lookup in a tree must goes 
through the root, creating a potential bottle-neck. In the 
case of a trie, binary search allows the 

D 
load to be spread over 2 2 nodes (assuming uniform 
lookups), thus eliminating any bottleneck. 
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2.3.3 Fault Resilience  
In a typical tree-based structure, the loss of an in-ternal 
node results in the loss of the entire sub-tree rooted at the 
failed node. PHT however does not require top-down 
traversals; instead one can directly \jump" to any node in 
the PHT. Thus the failure of any given node in the PHT 
does not af-fect the availability of data stored at other 
nodes. In some sense, the indexing state in the trie is used 
only as an optimization. For example, observe that correct 
operation of the PHT is achievable using only the integrity 
of the doubly-linked list of leaf nodes7. Both updates 
(through linear search) and range queries (through 
sequential traversal of the list) can be handled without the 
help of the trie indexing structure. Contrast with a tree 
where the indexing structure is indispensible for both 
updates and queries, and is therefore vulnerable to failures. 

 

2.4  PHT Enhancements  
Until this point, we have discussed the use of PHTs for 
satisfying unidimensional range queries. In this section, 
we describe two re nements: functionality extensions to 
support multi-dimensional searching, and performance 
enhancements for scenarios with known or relatively 
static data distributions. 

 

2.4.1 Multi-dimensional Indexing via Linearization  
There are a plethora of centralized indexing schemes for 
supporting multidimensional range and near-neighbor 
queries; multiple surveys have been pub-lished in this 
area (e.g., [11, 28]). One class of heuristic 
multidimensional indexing schemes maps 
multidimensional data to a single dimension. This 
approach is sometimes called linearization, or space-
lling curves, and well-known examples include the 
Hilbert, Gray code, and \Z-order" curves [16]. A 
multidimensional query is mapped to a unidimen-sional 
range query that spans from the lowest to highest 
linearization points of the original query. In general, 
linearized queries return a superset of the matching data, 
which has to be post- ltered. Recent linearization 
schemes like the Pyramid [3] and iDistance [35] 
techniques have been shown em-pirically to outperform 
traditional space- lling curves as well as popular 
multidimensional tree structures in high-dimensional 
scenarios. 
 
Though work on multidimensional indexing via lin-
earization schemes is largely heuristic, it has a strong 
practical attraction: linearization can be imple-mented as 
an overlay upon existing unidimensional range search 
structures, which are typically more frequently 
implemented and carefully debugged than specialized 
multidimensional indexes. This argu-ment holds for PHTs 
as well as for any distributed range search technique. 
PHTs have the added ad-vantage that their underlying 
substrate, DHTs, are rapidly emerging as a leading 
distributed building block. 
 
After mapping a d-dimensional query Qd into a 
unidimensional query Q0, a PHT nds the answer set in 
O(log D + djQ0j=Be) network hops, where jQ0j is the 
size of the result set returned for the unidimensional 
query Q0. Note that we have given no bound on the di 
erence between jQ0j and jQdj,  
and in the worst case jQ0j = n. This di erence captures 
the ine cacy of the chosen linearization scheme; it is not 

particular to PHTs per se. 
 
7 This is somewhat similar to Chord whose correct 
operation depends only on the integrity of the successor 
pointers  
2.4.2 Indexing Known Distributions  
Relative to tree-based indexes, a disadvantage of PHTs is 
that their complexity is expressed in terms of the log of 
the domain size, D, rather than the size of the data set, N . 
In many scenarios, however, data is from a known 
distribution: for example, keywords in text search follow 
well-known Zip an distributions, and range search queries 
(e.g. text-  
pre x queries like \Cali*") are quite natural. Here we 
informally argue that for known distributions, the PHT 
can be modi ed to run in O(log log N ) expected hops. 
 
We begin by examining the simple uniform distri-bution 
over D-bit keys. For N data items drawn from this 
distribution, the expected depth of a leaf in the PHT is 
O(log N ), with low variance. Hence for uniform 
distributions, the expected number of hops with PHT-
LOOKUP-BINARY is O(log log N ). This search 
algorithm can be improved further via a search algorithm 
that starts at pre x-length log N , and proceeds upward or 
downward as necessary. 
 
For known but non-uniform distributions, similar 
performance can be achieved by \warping" the space 
appropriately, remapping the original distribution to a 
uniform distribution. For each data point drawn from the 
original distribution, its rst bit is remapped to be 0 if it is 
lower than the mid-point of the distribution's PDF, and 1 
otherwise; this assignment proceeds recursively through all 
D bits. The resulting set of mapped points are essentially 
drawn from the uniform distribution, and a PHT built on 
these points will have path lengths as described above. 
Queries in the original space are mapped accordingly, and 
will perform with O(log log N ) expected hops. 
 
For globally well-known distributions (e.g.  terms in 

spoken English), the warping function is more or less xed 

and can be distributed as part of the PHT code. However, 

in practice many data sets come from distributions that do 

change, but quite slowly. For example, the distribution of 

terms in lesharing applications will shift slightly as pop-

ularity shifts; some terms may suddenly become popular 

when a new popular le is released, but most terms' 

frequency will remain relatively static for long periods of 

time. For such slowly-changing distributions, a gossip-

based scheme can be used to disseminate compressed 

representations of the distribution to all nodes, and any 

changes to the distribution can be re ected via periodic 

remap-ping of the data and queries (perhaps as part of soft-

state refresh.) 
 
We close this section by observing a general dual-ity. A 
tree index is actually quite analogous to the pairing of a 
trie-based scheme with a known dis-tribution: the \split-
keys" in a tree index capture the data distribution, and the 
pointers in the tree index serve the same function as the 
bits in the trie encoding. An advantage of the PHT 
approach is the ability we noted above to \jump" into any 
point of the trie via hashing; global knowledge of the dis-
tribution provides this uniformity in addressing. A similar 
trick could be achieved in tree indexes as well, if every 
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searcher had a fair approximation of the split keys in the 
tree and the locations of the tree nodes in an identi er 
space. 
 

3. EVALUATION   
This section presents a simulation-based evaluation of the 
PHT data structure. Although these simu-lation results are 
by no means comprehensive, we present them as 
preliminary experimental evidence that the PHT is a viable 
solution. A more complete evaluation, along with gaining 
experience with de-ployment of a working prototype, is 
the focus of our current e orts. 
 
Our simulation setup is as follows. A PHT that indexes 30-
bit keys is created on top of a DHT consisting of 1000 
nodes. Our focus is on evalu-ating the performance of the 
data structure; for that reason we abstract away many of 
the details of the DHT by using a stripped-down version of 
the Chord protocol. 216 arti cially generated keys are 
inserted into the PHT coming from a uniform distribution 
over the entire 230 keyspace. We use an arti cially low 
block size of B = 20 in order to generate a non-trivial 
instance of the PHT. 
 

3.1  Range queries  
Recall that a range query is evaluated by travers-ing the 
leaf nodes of the PHT. The complexity (and latency) of the 
range query operation depends on the number of such 
leaves, which is a function of the output, i.e., how many 
keys actually satisfy the given query. In the ideal case, if 
the output size is O and the block size is B, the number of 
nodes traversed should be about d O

B e.  To see how well  
the PHT distributes keys among the leaf nodes, we 
generate 1000 randomly generated queries of size varying 
from 222 to 226 , measured how many leaf nodes were 
required to be traversed. The results normalized to the 
optimal number d O

B e are shown in figure 3. The number 
of leaf nodes required to be traversed is roughly the same 
in all cases: about 1.4 times the optimal value. To evaluate 
the e ect of skewed distributions on the PHT structure, this 
experiment was repeated with a Gaussian distri-bution 
centered at the midpoint of the space to generate input 
keys. For ranges that are close to the mean, where keys are 
densely clustered, the PHT does well, actually out-
performing the uni-form case. For sparser regions, the 
PHT does not do as well, but no worse than 1.6 the 
optimal value. These results indicate that the PHT incurs 
only a reasonably small constant factor of overhead (in 
terms of nodes visited) more than the theoretically optimal 
value.  
3.2  Load balance  
The next experiment attempts to verify the asser-tion that 
the PHT spreads network load evenly, and therefore does 
not have a bottleneck, unlike a binary tree. To test this 
hypothesis, we generated 100,000 PHT lookups on 
uniformly distributed keys and observed the distribution 
of lookup tra c. By lookup tra c, we mean the DHT 
queries generated by the binary search algorithm, and not 
the under-lying DHT routing tra c. Figure 4 shows the 
dis-tribution of lookup tra c over all the nodes in the 
DHT. It can be seen that about 80 % of the nodes see less 
than 400 lookups (out of 100,000). The rest of the nodes, 
which correspond to PHT leaf nodes, receive more tra c, 
but in no case higher than 1800. Contrast this with a B-
tree where each of the 100,000 messages must necessarily 
go through the root. To test the e ect of network size, the 
experiment was repeated for 1000, 2000 and 3000 nodes 

respectively. As expected, a larger number of nodes 
reduces the amount of per-node tra c, as PHT pre xes are 
distributed among more nodes. However the actual PHT 
leaf nodes continue to re-ceive higher amounts of tra c 
than the rest of the nodes. 

4.  RELATED WORK  
Building e cient data structures for searching is one of the 
fundamental problems in computer sci-ence; [19, 8] are 
good references. Our PHT pro-posal is particularly 
reminiscent of Litwin's Trie Hashing [21], but has an 
added advantage that the \memory addresses" where 
buckets of the trie are stored are in fact the DHT keys 
obtained by hash-ing the corresponding pre xes. 
 
With respect to the problem of implementing range 
search over peer-to-peer systems, Aspnes and Shah [1] 
have proposed skip graphs, a distributed data structure 
based on the skiplist that provides a range search solution. 
However they do not provide a mapping from keys to 
peers in a network; such a mapping is provided by 
Awerbuch and Scheideler   
 
In recent work, Karger and Ruhl [17] propose a 
randomized protocol called item balancing that bal-ances 
the distribution of items by having DHT nodes adaptively 
change their identi ers. While providing excellent 
theoretical properties, their so-lution relies on more than 
just the hashtable in-terface of the underlying DHT, 
which could poten-tially create a barrier to deployment. A 
related protocol has been proposed by Ganesan and Bawa 
[12]. 
 
Other related work includes a DHT-based caching 
scheme [13] and a technique speci cally for the 
CAN DHT based on space-  lling curves [32]. 

 
Cone [4] is a trie-based data structure that is used to 
evaluate aggregation operators, such as MIN, MAX and 
SUM, over keys in a DHT. Although the PHT is also 
based on a trie, it di ers from Cone in three signi cant 
respects. First, Cone builds a trie over uniformly 
distributed node identi ers. Second, Cone does not 
support range queries. Fi-nally, Cone is a DHT 
augmentation where as the PHT builds on top of the 
DHT. 
 
Waldvogel et al [33] have proposed an IP lookup 
algorithm based on binary search of pre xes orga-nized 
into hashtables based on pre x length. Al-though they are 
solving longest pre x match, a di erent but related 
problem, their binary search technique is similar to the 
PHT lookup algorithm. The key distinguishing 
characteristic is that the PHT operates in a distributed 
setting, with an entirely di erent set of constraints and 
issues, as opposed to an IP lookup algorithm that is 
imple-mented in hardware in a high-speed router.5.   
 
CONCLUSION 
  
In their short existence, DHTs have become a widely used 
tool for building large-scale distributed sys-tems. While 
the lookup interface o ered by DHTs is broadly applicable, 
it does not naturally support a very common feature in 
database and other in-formation processing systems: range 
queries. Our goal was to address this shortcoming but, 
contrary to early e orts in the eld, subject to the constraint 
that these queries only use the lookup interface and not 
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rely on changes to or knowledge of the under-lying DHT 
routing algorithm. This would ensure that the solution 
would apply to any DHT, not just those speci cally 
engineered for the task. To this end, we presented the 
design and evaluation of Pre-x Hash Trees (PHT), a data 
structure designed to support range queries. PHT has the 
properties tra-ditionally required of large-scale Internet 
systems: self-organizing, scalable, and robust in the 
presence of failures. While it does not prevent loss of data 
due to node outages, such failures do not prevent it from 
producing results from the other nodes. 
 
In short, we believe that PHT will enable general-purpose 
DHTs to support a wider class of queries, and then 
broaden the horizon of their applicability. 
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