

Data Mining using HADOOP on Bio-NER

M.Usharani

M.Phil Research Scholar

Vellalar College for Women (Autonomous)

Erode India

usharanimanick@gmail.com

Mrs. P. Anitha, M.C.A., M.Phil., B.Ed.,
Department of Computer Applications

Vellalar College for Women (Autonomous)

Erode India

 anithavcw@gmail.com

Abstract

Biomedical named entity recognition (Bio-NER) is the critical

step in text mining, where the data redundancy and

performance of processing huge data is the challenging issue.

Conditional Random Field is the conditional probability model

used to overcome traditional FP-tree algorithm challenges,

even in CRF achieving better performance is nontrivial due to

internal sequential process. Here parallelism is introduced by

combining and parallelizing the Limited-Memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) and Viterbi algorithms

called parallel CRF or MRCRF (MapReduce CRF). The

MRLB (Map Reduce LBFGS) algorithm and MRVtb

(MapReduce Viterbi) algorithm enhance the parameter

estimation and no data redundancy. MRCRF algorithm

exhibits better performance improvement and information

accuracy compared to traditional systems. Additionally the

new IMRCRF (Improved Map Reduce CRF) shows better

performance in terms of processing huge data from several

nodes.

Keywords— Biomedical Named Entity Recognition,

Conditional Random Fields, Map Reduce.

I.INTRODUCTION

In the 21st century, it is increasingly inseparable from the

network, people visit dozens or even hundreds of pages, or

upload photos or speech every day, which makes the data

content on the network into a geometric growth, and the

traditional technical architecture has become increasingly

unable to meet the current needs of the vast amounts of data.

Therefore, researching massive data processing and storage

become more and more popular nowadays. Big data is a large

data that it becomes difficult to process the conventional

database systems. If the data is very large, moves very fast, or

doesn’t fit the structures of the database architectures. To gain

value from this data, choose another way to process the data.

Big Data in general is defined as high volume, velocity and

variety information assets that demand cost-effective,

innovative forms of information processing for enhanced

insight and decision making. Big Data is the frontier of the

firm’s ability to store, process and access large volume of data
it needs to operate effectively, make decisions, reduce risks,

and serve customers. However, the amount of data generated

can often be very large for a single computer to process in a

reasonable amount of time. Furthermore, the data itself may be

too big to store on a single machine. Therefore, in order to

reduce the time taken to process the data, and to allocate the

storage space for large files, it is necessary to write programs

that can execute on multiple computers and distribute the

workload among them.

II.HADOOP

Hadoop is the foundation for most big data architecture.

Apache hadoop is an open source java programming

framework for fast storing and fast processing large data sets

with cluster of commodity hardware. Cluster is a set of

machine in single LAN (Local Area Network). The Hadoop is

mainly constituted by the underlying distributed file system

HDFS (Hadoop Distributed File System) and MapReduce

layer of parallel programming model engine. Hadoop is used

by various universities and companies like Google, eBay,

Facebook, IBM, LinkedIn and Twitter.

Fig. 1.HDFS and MapReduce

A. HDFS

HDFS is a reliable distributed file system that provides high-

throughput and scalable access to data. MapReduce is a

distributed framework for executing the work in parallel.

Hadoop has the master/slave architecture for both processing

and storage. Figure 1 shows the HDFS and MapReduce.

HDFS is a specially designed file system for storing massive

amount of data sets with cluster of commodity hardware with

ISSN (ONLINE): 2395-695X

ISSN (PRINT): 2395-695X

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

Volume 2, Special Issue 19, October 2016

 Special Issue 19 108 © IJARBEST PUBLICATIONS

steaming access pattern. Steaming access pattern means write

once and read any number of times but don’t change content
of files in file system. HDFS differ from other file system by

its significant. HDFS is a very large distributed file system

which is highly fault-tolerant, provides high throughput access

to the large data and deployed on low-cost hardware. HDFS is

mainly used for storing data, and simply adding the number of

servers can achieve growth in storage capacity and computing

power.

B. MAP REDUCE

MapReduce can make full use of the computing resources of

each server's CPU, which efficiently handles with the stored

data and calculations. To address the above issues, Google

developed the Google File System (GFS), which is a

distributed file system architecture model for processing large

amount of data and created the MapReduce programming

model. The MapReduce programming model is for processing

the massive amount of data in parallel. Hadoop is open source

software which manage MapReduce framework, written in

Java, originally developed by Yahoo.

Fig .2. MapReduce Architecture

A MapReduce consists of two tasks namely the Map and

Reduce task. Each Map task takes key-value pair as input and

produce key-value pair as an output. The input data are split

into various input splits. Based on the number of input splits

Mapper will be assign. Record Reader is an interface between

input split and Mapper which is used to convert record into

key value pair. Mapper will read key value pair as an input

and produce key value pair as an output. Now the Reducer

will combine all the intermediate values associated with a

particular key. Both input pairs of Mapper and Reducer are

managed by the HDFS. The advantage of MapReduce is

highly scalable, transparent fault-tolerant processing and

automatic parallelization. Figure 2 shows the MapReduce

architecture. MapReduce has been adopted by Google,

Microsoft and Facebook.

 III.CONDITIONAL RANDOM FIELDS

Conditional random fields (CRF), is a type of conditional

probability model, has been widely applied in biomedical

named entity recognition .The advantage of the CRF model is

the ability to express long-distance-dependent and overlapping

features. CRF has shown empirical success recently in

Bio-NER, since it is free from the so-called label bias problem

by using a global normalization. However, when facing large-

scale data, the time efficiency of the CRF model with the

traditional stand-alone processing algorithm is not satisfactory.

For example, CRF takes approximately 45 hours (3.0GHz

CPU, 1.0G memory, and 400 iterations) to train only 400K

training examples. It is caused by the problem of CRF that the

model parameter estimation cycle is long, because it needs to

compute the global gradient for all features. The time

complexity and space complexity of the whole algorithm show

non-linear growth with the growth of the training data. To

efficiently handle large-scale data, faster processing and

optimization algorithms have become critical for biomedical

big data. Hence, it is vital to develop new algorithms that are

more suitable for parallel architectures. The CRF model needs

to consider three key steps, i.e., feature selection, parameter

estimation, and model inference. The parameter estimation

step is very time-consuming because of the large amount of

calculations especially when the training data set is large,

which becomes the most important reason that degrades the

performance of the CRF model. An optimization algorithm

called Limited memory BFGS (L-BFGS) is a popular method

that has been used to do parameter estimation of CRF.

However, since it is an iterative algorithm, achieving high

parallelism is not easy and demands considerable research

attention for developing new parallelized algorithms that will

allow them to efficiently handle large-scale data. It is a

challenging task to parallelize such a dependent iterative

algorithm. The task of making iterations independent of each

other and thus leveraging and boosting parallel architectures is

non-trivial. In this paper, we solve such an inter-dependent

problem with an efficient strategy. Current methods of

improving time efficiency of the CRF model focus on how to

reduce the model parameter estimation time. However, the

complexity of the model inference step increases quickly with

the increase of constraint length of training data set as well.

The model inference step can be performed using a modified

Viterbi algorithm. The Viterbi algorithm within the

MapReduce framework parallelizes the model inference step

with a simple strategy.

IV.CONDITIONAL RANDOM FIELDS USING

MAPREDUCE

Nowadays, FIM is most significantly employed by researchers

as a result of it's wide applied in planet to search out the

frequent itemsets. As a volume of information will increase

day by day, the issues of measurability and potency become a

lot of severe. As an answer to the current downside, we have a

tendency to style a parallel mining of frequent itemset

mistreatment CRF formula on MapReduce framework. during

this paper we have a tendency to incorporate CONDITIONAL

RANDOM FIELDS (CRF), instead of ancient FP-Tree. CRF

has major four blessings over ancient FP-tree like; it involves

solely 2 spherical of scanning that minimizes I/O overhead.

Then the CRF may b e a extremely improved thanks to

 Special Issue 19 109 © IJARBEST PUBLICATIONS

partition a information, that significantly reduces the search

area.

Fig. 3. Flow of the MapReduce CRF

 Next is the frequent items in each transaction are inserted as

nodes into the CRF for compressed storage. At last all

frequent itemsets are generated without traversing the tree

recursively by checking the leaves of each CRF which

significantly reduces computing time. The sequences of steps

followed are,

i. Datasets Partitioning

ii. MRLB

iii. MRViterbi

i. Datasets Partitioning

The CRF partitions the info set into M smaller sets and

allocates every partitioned off subset to one map task. within

the case of the Viterbi formula, the output of every map

operate may be a partial state sequence for the native partition.

Hence, we have a tendency to don't would like a combined

output, and that we will save the scale back stage. The output

of map that isn't any longer the intermediate result are going to

be directly output and becomes the ultimate result. In

MapReduce, the info set is split into several subsets, whose

size depends on the amount of map tasks which will be run in

parallel. to confirm the context {of every|of every} word in

each sentence of Bio-NER, one sentence can't be split into 2

map tasks. Additionally, so as to realize optimum resource

utilization and minimize the necessity for replication, we are

going to develop a load reconciliation technique to partition an

outsized dataset.

Where M denotes the amount of map tasks, and R resembles

N mod M. we will divide the coaching information into M

random subsets with about equal size. If N mod M = zero,

each map tasks has one input split with [N/M] sentences. If N

Mod M = zero, R map tasks have the input split with [N/M]

sentences et al have the input split with [N/M] sentences.

ii. MRLB

Parameter estimation for giant dataset, the model can hugely

increase the time consumption. Concerning ninetieth of the

full computation time of L-BFGS is employed for the

parameter estimation. If the parameter estimation is

accelerated, time consumption can slow down sharply.

Therefore, the most a part of parallelization of the L-BFGS

formula is parallelized objective operate gradient calculation.

We can extract the factor as follows,

iii. MRViterbi

The MRViterbi partitions the info set into M smaller sets so as

to balance the load and allocates every partitioned off subset

to one map task, every map optimizes a partition in parallel.

Within the Viterbi formula, the output of every map operate

may be a partial state sequence for the native partition. Hence,

no have to be compelled to mix the output and scale back

method time is saved. The output of map that isn't any longer

the intermediate result are going to be directly output and

becomes the ultimate result.

V.FREQUENT ITEMSET MINING

Frequent items are an item that occurs frequently in the

dataset. Frequent itemset mining (FIM) is a one of the core

data mining operation. Frequent itemset mining is mainly used

for market basket analysis. Consider an example a set of items

 Special Issue 19 110 © IJARBEST PUBLICATIONS

that contains bread and butter which always occurs frequently

together. A traditional frequent itemset mining algorithms are

Apriori and FP-growth algorithm. Apriori algorithm is a level-

wise iterative approach were k items are used to generate the

k+1 items. Apriori algorithm consists of two steps join step

and prune step. Initially candidate items are generated by

joining process after that by checking the minimum support

count frequent items will be generated. The process will be

repeated until all k frequent items generation. However it has a

disadvantage that many candidate items should generate which

increases the computing time. To overcome that a pattern

growth approach algorithm is proposed which significantly

reduce the size of candidate sets. FP-Growth algorithm adopts

a divide and conquers strategy for finding frequent itemsets. It

also has some disadvantage that frequent items are generated

by repeated scanning of database and recursive traversing of

tree.

i. Generating one Itemsets and K Itemsets

ii. Generating Frequent K Itemsets

i. Generating one Itemsets and K Itemsets

Phase1 consists of two round of scanning the database. At the

first round of scanning the database frequent one item will be

generated based on the minimum support count. At the second

round of scanning the database all k-items will be generated

by pruning the infrequent items from each transaction.

ii. Generating Frequent K Itemsets

Phase2 consists of a two process decompose each ‘h’ itemsets
into ‘k’ itemsets. After decomposing process the repetitive
construction of K-CRF-Tree and all ‘k’ frequent itemsets are
generated by checking the leaves of CRF-Tree where ‘k’ is
from M down to 2. After decomposing process ‘k’ itemsets are
generated that are used for the construction of K CRF Tree.

Initially the root is labelled as null.

Then each ‘k’ itemsets are inserted into the tree. If first
frequent item exists as one of the children of the root, then it

denote the child as a temporary 1
st
 root, if it is not exist then

add a new node for this item as a child of the root node and

denote it as temporary 1
st
 root. Then the s

th
 frequent item of

the k itemset, where ‘s’ is from 2 to k - 1, check if the s
th

frequent item exists as the children of the temporary (s-1)
th

root, then denote the child as a temporary s
th

 root. If it does not

exist, then add a new node under this item as a child of the

temporary (s-1)
th

 root and denote it as a temporary s
th

 root.

This process is repeated until K-CRF Tree is constructed. By

checking the leaf node all k frequent items will be generated.

VI. CATEGORICAL DATA

Three groups of key words in MEDLINE by using GoPubMed

are,

i. First group is biological-process and disease,

ii. Second group is cellular-component and disease,

iii. Third group is molecular-function and disease.

There are two effective parallel implementations currently,

i.e., the CRF based on MPI (Message Passing Interface) and

GPU (Graphics Processing Units). MPI and GPU are not

suitable for large volumes of data in data-intensive

applications. The drawback of MPI is communication delay in

a big data environment for data-intensive applications,

because a large amount of data are exchanged between a large

number of nodes, and network communications will spend

long time, such that the MPI method shows low performance.

Due to the capacity limits of global memory and the

bottleneck of data transmission for data intensive applications

in a big date environment, the GPU method also shows low

performance. Hadoop, an implementation of MapReduce, has

a master-slave file system HDFS, which is the underlying

support for the MapReduce data processing function. Hadoop

can easily realize the computation of data storage migration

computation”, thus greatly improve the computational

efficiency of the system. MapReduce deals with huge amount

of data, for data-intensive applications. Virtual machine

instances are used in a public cloud to run Hadoop

applications and the CPU instructions, memory space within a

virtual machine have to be translated and mapped to its

physical machine host. Therefore, the intermediate operation

degrades the efficiency of running Hadoop jobs, and deploys

them on physical machines directly. Meanwhile virtual

machine templates enables public cloud running in Hadoop

applications and more execution nodes can be instantiated.

Therefore, the scalability capacity will be much better, but this

is not the focus of this paper. To analyze the speed in a

efficient way, a local cluster interacts with the virtualization

hypervisor, reveals the real performance of Hadoop jobs.

 VII. RESULTS AND DISCUSSIONS

The experiment dataset is collected from different

groups of key words in MEDLINE by using GoPubMed. The

first group is biological process and disease, the second group

is cellular-componentand disease, and the third group is

molecular-function and disease. The unparallel CRF was

carried out on a single machine.There are two effective

parallel implementations currently, i.e., the CRF based on

Message Passing Interface and Graphics Processing Units.

However, they are not suitable for large volumes of data in

data-intensive applications.

A. Message Parsing Interface and GPU

The strongest weakness of MPI is communication

latency in a big data environment for data-intensive

applications, because a large amount of data are exchanged

between a large number of nodes, and network

communications will spend long time, such that the MPI

method shows low performance. Due to the capacity limits of

global memory and the bottleneck of data transmission for

data-intensive applications in a big data environment, the GPU

method also shows low performance. Hence, we have the

proposed algorithm compared with the sequential CRF

algorithm, but not compared with other parallel

implementations of the algorithm.

 Special Issue 19 111 © IJARBEST PUBLICATIONS

B. Hadoop to overcome weakness of MPI and GPU

Hadoop 2.6.0, YARN (Yet Another Resource

Negotiator) or MRv2 is a Next generation of map reduce,

fundamental idea is to split up the two major functionalities

Job Tracker, resource management and job scheduling into

separate deamons. The idea is to have a global

ResourceManager (RM) and per application

ApplicationMaster(AP). The ResourceManager and per-node

slave, the NodeManager (NM), cast the data-computation

framework. The ResourceManager is the ultimate authority

that arbitrates resources among all the applications in the

system. The per-application ApplicationMaster is a framework

specific library, engaged with the NodeManager(s) to execute

and monitor the tasks and it negotiate resources from the

ResourceManager.

Hadoop, an implementation of MapReduce, has a

master slave file system HDFS, which is the underlying,

support for the MapReduce data processing function. With the

HDFS, Hadoop can easily realize “computation to the data
storage migration”, thus greatly improve the computational
efficiency of the system. MapReduce can deal with huge

amount of data, especially for data-intensive

applications.Recognition of biomedical named entity using

conditional random fields in this paper is a data-intensive

application in the big data environment, so the Hadoop

method is a suitable method.

Virtual machine instances are usually used in a public

cloud to run Hadoop applications. The CPU instructions and

memory space within a virtual machine need to be translated

and mapped to its physical machine host. Therefore, this

intermediate operation degrades the efficiency of running

Hadoop jobs and deploy them on physical machines directly.

Meanwhile running Hadoop applications on a public cloud can

be enabled by virtual machine templates and more execution

nodes can be instantiated. Therefore, the scalability capacity

will be much better, but this is not the focus of this paper.

C. MRCRF implementation

 MRCRF is a combination of LBFGS and Virterbi

algorithms where the dataset is divided into different chunks

and the infrequent items are removed and merge the resultant

from different chucks into single. Frequent item set mining is

the process under these process and the non duplicate record

means the not highly refereed or the biomedical field not been

discussed or the documents not available for particular disease

or molecular combination etc., all over the system.To analyze

the speedup of IMRCRF in a more efficient way, a local

cluster with less interaction with the virtualization hypervisor

reveals the real performance of Hadoop jobs. A document of

100000 records uploaded respectively, the dataset is divided

into different chunks for mapreduce process. Minimum four

chucks are used to achieve the better performance.

D. PARAMETERS FOR EVALUATION

The performance for proposed methods can

be evaluated by using the following parameters. Parameters

which are considered for evaluating the experiments are:

i. Minimum support

ii. Scalability

i. Minimum Support Count

Minimum support count plays the important role in mining

frequent itemsets. When we increase the minimum support

threshold the running time of the proposed algorithm reduces.

A small minimum support slows down the performance of the

evaluated algorithms. This is because an increasing number of

items satisfy the small minimum support when the minsupport

is decreased; it takes an increased amount of time to process

the large number of items.

 Fig 4 Execution time of four different minimum support counts.

ii. Scalability

In this experiment, we evaluate the scalability of the proposed

algorithm when the size of input dataset grows dramatically.

The parallel mining process is slowed down by the excessive

data amount that has to be scanned twice. The increased

dataset leads to a long scanning time. An output of the second

MapReduce job are distributed and stored in intermediate files

based on the length of itemset; these files are accessed by the

third MapReduce job as an input. Further, the decomposed

results are written into these external files. In summary, the

scalability of the proposed algorithm is higher when it

comesto parallel mining of an enormous amount of data.

Fig 5 Running time of different sized datasets.

 Special Issue 19 112 © IJARBEST PUBLICATIONS

VIII.RELATED WORKS

There has been some prior works proposed in the literaturefor

accelerating CRF. These methods essentially gain acceleration

by omitting important information of labels and losing

accuracy. Pal et al. proposed a Sparse Forward Backward

(SFB) algorithm, in which marginal distribution is compressed

by approximating the true marginal using Kullback-Leibler

(KL) divergence [25]. Cohn proposed a Tied Potential (TP)

algorithm which constrains the labeling considered in each

feature function, such that the functions can detect only a

relatively small set of labels [2]. Both of these techniques

efficiently compute the marginal with significantly reduced

runtime, resulting in faster training and decoding of CRF.

Although these methods could reduce computational time

significantly, they train CRF only on a small data set. In order

to handle large data, Jeong et al. proposed an efficient

inference algorithm of CRF for large-scale natural language

data which unified the SFB and TP approaches [11]. Lavergne

et al. addressed the issue of training very large CRF,

containing up to hundreds output labels and several billion

features. Efficiency stems here from the sparsity induced by

the use of penalty term [15]. However, none of these works

described so far explore the idea of accelerating CRF in a

parallel or distributed setting and thus their performance is

limited by the resources of a single machine. Given that CRF

is weak in processing massive data, the idea of parallelization

is introduced into the algorithms. Xuan-Hieu et al. proposed a

high-performance training method of CRF on large-scale data

by using massively parallel computers [38]. In [19], a novel

distributed training method of CRF is proposed by utilizing

the clusters built from commodity computers. The method

employs Message Passing Interface (MPI) and improves the

time performanceon large datasets. Recently, in [21], an

efficient parallel inference on structured data with CRF based

on Graphics Processing Units (GPU) is introduced and it is

testified that the approach is both practical and economical on

very large data sets. These methods achieve significant

reduction in computational time without losing accuracy.

However, they are not suitable for a distributed cloud

environment, where usually the communication cost is higher.

In our approach,we overcome this limitation by a parallel

implementation of CRF based on MapReduce which is

suitable for huge data sets [32]. MapReduce is an excellent

model for distributed computing on large data sets, which was

introduced by Google in 2004. It is an abstraction that allows

users to easily create parallel applications while hiding the

details of data LI ET AL.: HADOOP RECOGNITION OF

BIOMEDICAL NAMED ENTITY USING CONDITIONAL

RANDOM FIELDS 3041 distribution, load balancing, and

fault tolerance. At present, it is popular in text mining of

various applications, especially natural language processing

(NLP) [8], [31], [37].Laclavik et al. presented a pattern of

annotation tool based on the MapReduce architecture to

process large amount of text data [13]. Lin and Dyer discussed

the processing method of data intensive text based on

MapReduce, such as parallelization of EM algorithm and

HMM model [18]. Palit and Reddy proposed two parallel

boosting algorithms, i.e., ADABOOST.PL and

LOGITBOOST.PL, scalable and parallel boosting with

MapReduce [26].

IX.CONCLUSION

To solve the scalability and efficiency in the existing parallel

mining algorithms for frequent itemsets for frequent itemsets,

we applied the parallel mining of frequent itemsets using

Frequent Itemset Ultrametric Tree on MapReduce framework.

We incorporate the Frequent Itemset Ultrametric Tree rather

than conventional FP trees, thereby achieving compressed

storage and avoiding the necessity to build conditional pattern

bases. The proposed algorithm integrates three MapReduce

jobs to accomplish parallel mining of frequent itemsets. At the

end of the third MapReduce job all frequent K itemsets are

generated. To evaluate the performance of the proposed

MRCRF algorithm on MapReduce framework we use

synthetic datasets in our experiments. The future research

direction is the distributed cache technique is used to store the

intermediate result of each MapReduce job which will

significantly improves performance of parallel mining of

frequent itemsets using MRCRF on MapReduce framework.

X.REFERENCES

[1] Chang E.Y., Li H., Wang Y., Zhang D. and Zhang M.

(2008), ‘PFP: Parallel FP-growth for query recommendation’,
in Proc. ACM Conf. Recommend.Syst., Lausanne,

Switzerland, pp. 107–114.

[2] Chang W.L., Chen P.L. and Lin K.W. (2011), ‘A novel
frequent pattern mining algorithm for very large databases in

cloud computing environments’, in Proc. IEEE Int. Conf.
Granular Comput. (GrC), Kaohsiung, Taiwan, pp. 399–403.

[3] Han J., Mao R., Pei J. and Yin Y. (2004), ‘Mining

frequent patterns without candidate generation: A frequent-

pattern tree approach’, Data Min. Knowl. Disc., vol. 8, no.
1, pp. 53–87.

[4] Hsueh S.C., Lin M.Y. and Lee P.Y. (2012), ‘Apriori-
based frequent itemset mining algorithms on MapReduce’,
in Proc. 6th Int. Conf. Ubiquit. Inf. Manage. Commun.

(ICUIMC), Danang, Vietnam, pp. 76:1–76:8.

[5] Hsu T.J., Tsay J.Y. and Yu J.R. (2009), ‘FIUT: A
new method for mining frequent itemsets’, Inf. Sci., vol.
179, no. 11, pp. 1724–1737.

[6] Li E., Liu L., Tang Z. and Zhang Y. (2007), ‘Optimization
of frequent itemset mining on multiple-core processor’, in
Proc. 33rd Int. Conf. Very Large Data Bases, Vienna, Austria,

2007, pp. 1275–1285.

[7] Tang P. and Turkia P.M. (2006), ‘Parallelizing frequent
itemset mining with FP-trees’, in Proc. 21st Int. Conf.
Comput. Appl., Seattle, WA, USA, pp. 30– 35.

 Special Issue 19 113 © IJARBEST PUBLICATIONS

	i.introduction
	ii.hadoop
	iii.conditional random fields
	iv.conditional random fields using mapreduce
	v.frequent itemset mining
	vi. categorical data
	viii.related works
	ix.conclusion
	X.REFERENCES

