
Enhanced Aggregate Estimation in Hidden Databases Using Back Tracking and Divide

and Conquire Algorithm

 A.Pavithra, Ms. S. Sangeetha M.C.A., M.phil,

 Research Scholar, Assistant Professor,

 Department of Computer Science, Department of Computer Science,

 Bharathidasan College of Arts and Science, Bharathidasan College of Arts and Science,

 Erode. Erode.

 apavithramca@gmail.com sangee.siva2011@gmail.com

Abstract— In this paper describe the problem of

estimating the size of a hidden database through its web

interface. In this propose system novel techniques which

use a small number of queries to produce unbiased

estimates with small variance. These techniques can also

be used for approximate query processing over hidden

databases. present theoretical analysis and extensive

experiments to illustrate the effectiveness of proposed

approach. Hidden databases are widely prevalent on the

web. They feature restrictive form-like interfaces which

allow users to form a search query by specifying the

desired values for one or a few attributes, and the system

returns a small number of tuples satisfying the user-

specified selection conditions. In this paper initiate a study

of estimating, without bias, the size and other aggregates

over a hidden database. For size estimation, our main

result is HD-UNBIASEDSIZE, an unbiased estimator with

provably bounded variance. For estimating other

aggregates, to extend HD-UNBIASED-SIZE to HD-

UNBIASED-AGG which produces unbiased estimations

for aggregate queries. In addition proposed methodology

also concentrates in finding the most favorable and fast

stirring items that interested and most wanted by the

users. Through the favorable items and customers viewed

items, the study tracks the frequent and fast selling items

over through the social networking applications and

shopping sites in a particular season or time period. To

estimate the size of a hidden database, on intuitive idea is

to perform tuple sampling.

 Keywords—Hidden Database, Web Interface, Aggregate

Estimation, fast Moving Analysis, Catch base Left Deep

tree

I. INTRODUCTION

 Data mining involves the use of sophisticated data

analysis tools to discover previously unknown, valid patterns

and relationships in large data set. These tools can include

statistical models, mathematical algorithm and machine

learning methods. Consequently, data mining consists of more

than collection and managing data, it also includes analysis

and prediction. Classification technique is capable of

processing a wider variety of data than regression and is

growing in popularity.

Web mining is the use of data mining techniques to

automatically discover and extract information from Web

documents and services. There are three general classes of

information that can be discovered by web mining:

 Web activity, from server logs and Web browser

activity tracking.

 Web graph, from links between pages, people and

other data.

 Web content, for the data found on Web pages and

inside of documents.

Web Mining versus Data Mining

 When comparing web mining with traditional data

mining, there are three main differences to consider:

 Scale – In traditional data mining, processing 1

million records from a database would be large job.

In web mining, even 10 million pages wouldn’t be a
big number.

 Access – When doing data mining of corporate

information, the data is private and often requires

access rights to read. For web mining, the data is

public and rarely requires access rights.

 Structure – A traditional data mining task gets

information from a database, which provides some

level of explicit structure. A typical web mining task

is processing unstructured or semi-structured data

from web pages. Even when the underlying

information for web pages comes from a database,

this often is obscured by HTML markup.

 Hidden databases are data repositories hidden behind the

only accessible through a restrictive web search interface.

Input capabilities provided by such a web interface range from

a simple keyword-search textbox to a complex combination of

textboxes, dropdown controls, checkboxes, etc. Once a user

specifies a search query of interest through the input interface,

the hidden database selects and returns a limited number of

tuples satisfying the user-specified search conditions.

ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)
Volume 2, Special Issue 19, October 2016

Special Issue 19 30 © IJARBEST PUBLICATIONS

mailto:apavithramca@gmail.com
mailto:sangee.siva2011@gmail.com

 The static webpages (connected by hyperlinks), the contents

of a hidden database cannot be easily crawled by traditional

web search engines. In fact, the restrictive web interface

prevents users from performing complete queries as they

would with the SQL language. For example, there are hardly

any web interfaces providing aggregate queries such as

COUNT and SUM functions. The lower query capability of a

hidden database surely reduces its usability to some extent.

 The aggregate estimation consists of two components: bias

and variance. The proposed methodology weighted sampling

is used to minimize variance. Dynamically adjust the

probability of sampling a query based on the query answers

we receive so far, in order to align the sampling process to

both the data distribution and the aggregate to be estimated,

and thereby reduce the variance of our aggregate estimations.

The main objective of the paper are,

 To produce unbiased aggregate estimations over the

hidden databases with checkbox interfaces, develop

the data structure of left-deep-tree and define the
concept of designated query to form an injective

mapping from tuples to queries supported by the web

interface.

 To produce unbiased aggregate estimations over the

hidden databases with checkbox interfaces, develop

the data structure of left-deep-tree and define the
concept of designated query to form an injective

mapping from tuples to queries supported by the web

interface.

 To reduce the variance of aggregate estimations,

develop the ideas of weighted sampling and special

tuple-crawling.

II. RELATED WORK

 Cheng Sheng et al [1] describe a hidden database

refers to a dataset that an organization makes accessible on the

web by allowing users to issue queries through a search

interface. In other words, data acquisition from such a source

is not by following static hyper-links.

 Instead, data are obtained by querying the interface,

and reading the result page dynamically generated.

This, with other facts such as the interface may

answer a query only partially, has prevented hidden

databases from being crawled effectively by existing

search engines.

 To extract all the tuples from a hidden database and

algorithms are provably efficient, namely, they

accomplish the task by performing only a small

number of queries, even in the worst case.

 They also establish theoretical results indicating that these

algorithms are asymptotically optimal i.e., it is impossible to

improve their efficiency by more than a constant factor. The

derivation of our upper and lower bound results reveals

significant insight into the characteristics of the underlying

problem. Extensive experiments confirm the proposed

techniques work very well on all the real datasets examined.

 Sriram Raghavan et al [2] describe a crawlers retrieve

content only from the publicly indexable Web, i.e., the set of

Web pages reachable purely by following hypertext links,

ignoring search forms and pages that require authorization or

prior registration. In particular, they ignore the tremendous

amount of high quality content “hidden” behind search forms,
in large searchable electronic databases. They address the

problem of designing a crawler capable of extracting content

from this hidden Web. They introduced a generic operational

model of a hidden Web crawler and described how this model

is realized in Hidden Web Exposer, a prototype crawler built

at Stanford. They introduced a new Layout-based Information

Extraction Technique (LITE) and demonstrated its use

automatically extracting semantic information from search

forms and response pages. They also present results from

experiments conducted to test and validate our techniques.

 Michael Benedikt [3] verified about systems whose

transitions consist of accesses to a Web-based data-source. An

access is a lookup on a relation within a relational database,

fixing values for a set of positions in the relation. AccLTL, is

based on a first-order extension of linear-time temporal logic,

interpreting access paths as sequences of relational structures.

We also present a lower-level automaton model, Aautomata,

which AccLTL specifications can compile into. They show

that AccLTL and A-automata can express static analysis

problems related to “querying with limited access patterns”
that have been studied in the database literature in the past,

such as whether an access is relevant to answering a query,

and whether two queries are equivalent in the accessible data

they can return. They proved decidability and complexity

results for several restrictions and variants of AccLTL, and

explain which properties of paths can be expressed in each

restriction.

 Jayant Madhavan et al [4] describe The Deep Web refers

to content hidden behind HTML forms. In order to get to such

content, a user has to perform a form submission with valid

input values. The name Deep Web arises from the fact that

such content was thought to be beyond the reach of search

engines. The Deep Web is also believed to be the biggest

source of structured data on the Web and hence accessing its

contents has been a long standing challenge in the data

management community .Over the past few years, they have

built a system that exposed content from the Deep Web to

web-search users of Google.com. The results of our surfacing

are now shown in over 1000 web-search queries per-second,

and the content surfaced is in over 45 languages and in

hundreds of domains.

 Bin He et al [5] describe the Internet– the Web has been

rapidly “deepened” by massive databases online: While the
surface Web has linked billions of static HTML pages, it is

believed that a far more significant amount of information is

“hidden” in the deep Web, behind the query forms of

searchable databases. Static URL links– They are assembled

into Web pages as responses to queries submitted through the

“query interface” of an underlying database. Because current
search engines cannot effectively “crawl” databases, such data
is believed to be “invisible, “and thus remain largely “hidden”
from users (thus often also referred to as the invisible or

hidden Web.). Using overlap analysis between pairs of search

Special Issue 19 31 © IJARBEST PUBLICATIONS

engines, a white paper estimated 43,000-96,000 “deep Web
sites” and an informal estimate of 7,500 terabytes of data– 500

times larger than the surface Web. With its myriad databases

and hidden content, this deep Web is an important yet largely-

unexplored frontier for information search– While they have

understood the surface Web relatively well, with various

surveys. This article reports our survey of the deep Web,

studying the scale, subject distribution, search-engine

coverage, and other access characteristics of online databases.

They noted that, while the 2000 study opens interest in this

area, it focuses on only the scale aspect, and its result from

overlap analysis tends to underestimate.

III. SYSTEM METHODOLOGY

A. Unbiased Estimation Algrithm

 The Unbiased Estimation Algorithm (UEA) presents a

solution for a novel problem: Aggregate Estimation for the

Hidden Database with Checkbox Interface. In the hidden

database with checkbox interface, a checkbox attribute is

represented as a checkbox in the web interface. For example,

in the home search website, features for a home are

represented by checkboxes. The checkbox interface has its

specialty. By checking the checkbox corresponding to a value

v1, it ensures that all returned tuples contain the value v1. But

it is impossible to enforce that no returned tuple contains v2

because unchecking v2 is interpreted as ”do-not-care” instead
of ”not-containing-v ” in the interface. If one considers a

feature of a products as a Boolean attribute, then the checkbox

interface places a limitation that only TRUE, not FALSE, can

be specified for the attribute also it is impossible to apply the

existing techniques which require all values of an attribute to

be specifiable through the input web interface. The unbiased-

weighted-crawl which performs only random drill-downs on a

novel structure of queries which refer to as a left-deep tree.

The weight adjustment and low probability crawl for

estimation accuracy.

 Estimating the number of tuples in a hidden database is by

itself an important problem. Many hidden databases today

advertise their (large) sizes on public venues to attract

customers. However, the accuracy of such a published size is

not (yet) verifiable, and sometimes doubtful, as the hidden

database owners have the incentive to exaggerate their sizes to

attract access. Furthermore, many hidden databases, do not

publicize their total sizes, while such information can be

useful to the general public as an economic indicator for

monitoring product growth. More generally, the ability to

approximately answer aggregate queries can enable a wide

range of third-party data analytics applications over hidden

databases. For example, aggregates may reveal the quality,

freshness, content bias and size of a hidden database, and can

be used by third-party applications to preferentially select a

hidden database with the best quality over other hidden

databases.

 However, applying capture-recapture over the existing

sampling techniques for hidden databases leads to two

problems, on estimation error and query cost, respectively.

First, the estimations generated this way are biased and may

have high variance

 Estimating the hidden database size, significant

obstacles are present for estimating aggregates over a

hidden database.

 The existing sampling-based techniques are not

designed to answer aggregate queries, but to sample

all tuples with equal probability. Thus, while these

techniques may support an estimation of AVG

queries, they cannot answer SUM or COUNT

queries.

 Weight adjustment and low probability crawl is used

for random drill-downs for estimation accuracy.

 The relative error occurred when the number of

queries issued increases through the checkbox

interfaces.

 The search results for the designated query are not

controlled by the top-k restriction and it overflowing

the search results.

B. Fast Moving Item Analysis (FMIA)

 The proposed methodology overlapping the queries in a

left-deep-tree data structure which imposes an order of all

queries. Based on the order, it is capable of mapping each

tuple in the hidden database to exactly one query in the tree,

which is referred as the designated query. By performing a

drill-down based sampling process over the tree and testing

whether a sample query is the designated one for its returned

tuple(s), it develops an aggregate estimation algorithm that

provides completely unbiased estimates for COUNT ,SUM

and AVG queries.

 In addition through the research analysis of a top-k

restriction on the number of returned tuples, and a limit on

the number of queries one can issue through the web interface.

Also, cache results of previous queries are maintained in web

server space per IP address per day. The proposed system

implement to ensure an unbiased estimation, the sum of

weights of edges under one node should equal to 1 and every

edge has a non-zero weight whenever there exists a tuple

with designated query being a node in the subtree under this

edge.

 A backtracking-enabled random walk produces no bias,

the variance of its estimation may be large when the

underlying data distribution is highly skewed. The objective of

weight adjustment is to reduce the estimation variance by

“aligning” the selection probability of tuples in the database

to the distribution of measure attribute (to be aggregated). For

our purpose of estimating the database size, the measure

attribute distribution is uniform (i.e., 1 for each tuple). Thus,

adjust the transitional probability in the random walk based on

the density distribution of “pilot” samples collected so far.
After eight adjustment, each random walk produces an

unbiased estimate with gradually reduced variance.

 Divide-&-conquer is proposed to address this problem

by carefully partitioning the database domain into a large

number of subdomains, such that the vast majority of tuples

belong to a small number of subdomains. Then, perform

random walks over certain subdomains and combine the

Special Issue 19 32 © IJARBEST PUBLICATIONS

results for estimation of the database size. The reduced size

mismatch between the (sub-) query space and the database

significantly reduces the final estimation variance, while only

a small number of subdomains need to be measured, leading to

very small increase on query cost.

 In this research proposed methodology also concentrates

in finding the most favorable Fast Moving Item Analysis

(FMIA) that got sale and also got the order for the purchase of

the particular item in the market. With these particular details

it is easier for the producers in finding the more frequent item

sale in particular area and the particular fast moving item

easily from particular time to time.

• Cache results of previous queries are maintained in

web server space and so eliminated the burden of

database server using tabu search algorithm.

• Initiate the study of unbiased estimation of the size

and other aggregates over a hidden database through

its restrictive web interface.

• In this thesis implement a backtracking-enabled

random walk technique to estimate hidden database

size and other aggregates without bias.

• In this thesis implement a two additional techniques,

weight adjustment and divide-&-conquer, to

reduce the estimation variance.

• To combine the three techniques to produce HD-

UNBIASEDSIZE, an efficient and unbiased

estimator for the hidden database size. Similarly,

propose HD-UNBIASED-AGG (AVG) which

supports various aggregate functions and selection

conditions.

• In this thesis provide a thorough theoretical analysis

and experimental studies that demonstrate the

effectiveness of proposed approach over real-world

hidden databases.

IV.BACKTRACKING FOR CATEGORICAL DATA

 First, Boolean attributes ensure that the sibling of an

underflowing node always overflow. There is no such

guarantee for categorical databases. Thus, to successfully

backtrack from an underflowing branch, we must find one

of its sibling branches that returns non-empty and count

the number of such non-empty siblings (in order to

compute p(q)). A Novel problem a non-empty branch

always exists given an overflowing parent node. A simple

backtracking approach is to query all branches to find the

(COUNT of) non-empty ones, and then randomly choose

a non-empty branch to follow.

 The other change required is the computation of

p(q). If the above-mentioned simple

backtracking is used, the computation of p(q)

becomes p(q) = 1/ Qhi=1−1 ci, where ci is the

number of non-underflowing branches for the i-

th predicate then route to the top-valid query q.

 The two changes for categorical databases do not

affect the unbiasedness of the estimation as the

proof of Theorem 1 remains unchanged. These

changes, however, do affect the query cost of the

drill-down process.

 In particular, if the above simple backtracking technique is

used, we must issue queries corresponding to all branches to

find the number of non-empty ones, leading to a high query

cost for large-fanout attributes.

 To reduce such a high query cost, to develop smart

backtracking which aims to avoid testing all branches of a

high fanout attribute. Consider a categorical attribute Ai with

possible values v1, . . . , vw (w = |Dom(Ai)|). Assume a total

order of the values which can be arbitrarily assigned for

cardinal or ordinal attributes. In the following, we describe the

random drill-down and the computation of p(q) with smart

backtracking, respectively.

Figure 4.4: Example of Backtracking

V. DIVIDE AND CONQUER
Divide-&-conquer, a variance reduction technique

which is independent of weight adjustment but can be

used in combination with it. As mentioned in the

introduction, divide-&-conquer provides the most

significant variance reduction especially for the worst-

case scenarios.

 Divide-&-conquer is effective on reducing the

estimation variance because it provides a significantly

better alignment between the selection probability

distribution for top-valid nodes and the measure attribute

distribution. To understand why, consider a Boolean

database with k = 1 and two top-valid nodes q and q0, at

the second level (i.e., as a child of the root) and the

bottom-level (i.e., n + 1-th level), respectively. Without

divide-&-conquer, at the first drill-down, q has selection

probability of 1/2 while q0 may have

selection probability as small as p(q0) = 1/2n. This forms

a striking contrast with the uniform distribution of the

measure attribute (i.e., | q| /m = | q0| /m = 1/m for each

top-valid node), leading to a bad alignment between the

two.

 The total number of queries issued by the divide-&-

conquer technique depends on the underlying data

distribution. While theoretically a large number of queries

may be issued, in practice the query cost is usually very

small due to two reasons:

o One can see from that even a very small r can

significantly improve the alignment and

thereby reduce the estimation variance.

o As the experimental results show, for real-

world hidden databases, even with a highly

skewed distribution, the top-valid nodes are

likely to reside on a small number of subtrees.

Special Issue 19 33 © IJARBEST PUBLICATIONS

 Furthermore, the following theoremshows that with

the same query cost divide-&-conquer can significantly

reduce the worst-case estimation variance. The random

drill-down approach can also generate unbiased SUM and

COUNT estimates for queries with conjunctive selection

conditions. In particular, a conjunctive query can be

considered as selecting a subtree which is defined with a

subset of attributes (as levels) and, for each attribute

involved, a subset of its values (as branches). The random

drill-down approach can be applied to the subtree directly

to generate unbiased estimations.

Algorithm: Back Tracking and Divide and Conquer

// Back Tracking LDT

1: q ← root node. p ← 1. i ← 1.

2: Randomly generate v ∈ {0, 1}.

3: Issue q 0 ← q ∧ (Ai = v). . for Step 1 (random drill-

down)

4: if q 0 underflows then

5: q ← q ∧ (Ai = 1 − v). Goto 2. . Backtracking

6: else if q 0 overflows then 7: Issue q ∧ (Ai = 1 − v). .

for Step 2 (computing p(q))

8: if q ∧ (Ai = 1 − v) is nonempty then

9: p ← p/2. . Update p(q)

10: end if

11: q ← q 0. i ← i + 1. Goto 2.

12: end if

 13: return m˜ ← | q| /p. .

 14: Return an estimation for database size

 // Divide and Conquer Algorithm LDT

for each column ci of pdb

if sum(ci) >= new_support

f1 = ii

else delete ci from pdb

for each row r

j of pdb

if sum(rj) < 2

delete r

j from pdb

for (k=2;| fk-1|>k-1;k++)

{

produce k-vectors combination for all columns of

bdb;

for each k-vectors combination {ci1,ci2, ci3 … ,cik }

{

b= ci1 • ci2 •.…•cik

if sum(b)>= new_support

A. Left Deep Tree Contruction

In this output form (Fig 5.1) is used to enabling the

aggregate queries over a hidden database with checkbox

interface by issuing a small number of queries (sampling)

through its web interface. In this output form, an aggregate

estimation algorithm is implemented and used that provides

completely unbiased estimates for COUNT and SUM queries.

B. Aggregate Estimation with Fast Moving Item

 In this form (Fig 5.2) aggregate estimation with fast

moving item , in this form every node is corresponding to a

query and a directed edge from a node to a child node

indicates that the query corresponding to this child node

includes all attributes item in the parent query and one

additional attribute item.

Fig 5.1 Left Deep Tree

Fig 5.2 Fast Moving Analysis

VI.RESULTS AND DISCUSSION

 The following table 6.1 shows the experimental results for

Left Deep Tree and Fast moving Item base Left Deep Tree

model. The table contains number of dataset query, average of

left Deep Tree query and Average of Fast Moving item tree

query. Find the aggregate estimation query is following

formula estimated,

 The following figure 6.1 shows the experimental results for

Left Deep Tree and Fast moving Item base Left Deep Tree

model. The figure contains number of dataset query, average

of left Deep Tree query and Average of Fast Moving item tree

query

LDT= qn ∑ i =3 n/i FMILDT= qn ∑ 2* n/3

Special Issue 19 34 © IJARBEST PUBLICATIONS

Table 6.1 Aggregate Estimation Analysis: LDT-FMILDT

S.NO Data set

Query

(n)

Left

Deep

Tree

(LDT)

Fast Moving Item

base

 Left Deep Tree

(FMI-LDT)

1 100 54 13

2 200 113 24

3 300 152 25

4 400 206 26

5 500 315 31

6 600 387 32

7 700 419 30

8 800 498 32

Fig 6.1: Aggregate Estimation Analysis: LDT-FMILDT

VII.CONCLUSION

 In this paper addresses a novel problem where checkboxes

exist in the web interface of a hidden database. To enable the

approximation processing of aggregate queries and develops

algorithm UNBIASED-WEIGHTED-CRAWL which

performs random drill-downs on a novel structure of queries

which we refer to as a left-deep tree and also propose weight

adjustment and low probability crawl to improve estimation

accuracy.

 In this paper have initiated an investigation of the unbiased

estimation of the size and other aggregates over hidden web

databases through its restrictive web interface. We proposed

backtrack-enabled random walk schemes over the query space

to produce unbiased es timates for SUM, COUNT and AVG

queries, including the database size. In this thesis fast moving

item analysis system also described the two ideas, weight

adjustment and capture & recapture, to reduce the estimation

variance. The proposed system are provided theoretical

analysis for estimation accuracy and query cost of the

proposed ideas. The described a comprehensive set of

experiments that demonstrate the effectiveness of proposed

approach over synthetic and real-world hidden databases.

VIII.FUTURE ENHANCEMENTS

 The paper has the scope for probing the hidden databases

since query probing techniques have been widely used in the

hidden database. The application become useful if the below

enhancements are made in future. In this area, there are three

key related subareas:

o Resource discovery, i.e., the discovery of hidden

database URLs from the web,

o Interface understanding, i.e., the proper understanding

of how to issue (supported) search queries through a

web interface and to extract query answers from the

returned web pages,

o Crawling, sampling and data analytics over hidden web

databases, which is the most related to our problem.

REFERENCE

[1] C. Sheng, N. Zhang, Y. Tao, and X. Jin, ―Optimal

algorithms for crawling a hidden database in the web,‖
Proc. VLDB Endowment, vol. 5, no. 11, pp. 1112–1123,
2012.

[2] Monster, Job search page [Online]. Available:
http://jobsearch. monster.com/ AdvancedSearch.aspx,
2011.

[3] Epicurious, Food search page [Online]. Available:
http://www.epicurious.com/
recipesmenus/advancedsearch, 2013.

[4] Homefinder, Home finder page [Online]. Available:
http://www.homefinder.com/search, 2013.

[5] A. Dasgupta, X. Jin, B. Jewell, N. Zhang, and G. Das,
Unbiased estimation of size and other aggregates over
hidden web databases,‖ in Proc. Int. Conf.Manage. Data,
2010, pp. 855–866.

[6] M. Benedikt, G. Gottlob, and P. Senellart, ―Determining
relevance of accesses at runtime,‖ in Proc. 30th ACM
SIGMOD-SIGACT-SIGART Symp. Principles Database
Syst., 2011, pp. 211–222.

[7] M. Benedikt, P. Bourhis, and C. Ley, ―Querying schemas
with access restrictions,‖ Proc. VLDB Endowment, vol. 5,
no. 7,pp. 634–645, 2012

[8] R. Khare, Y. An, and I.-Y. Song, ―Understanding deep
web search interfaces: A survey,‖ ACM SIGMOD Rec.,

vol. 39, no. 1, pp. 33–40, 2010

Special Issue 19 35 © IJARBEST PUBLICATIONS

