
ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

DETECTING SIMPLE AND FILE CLONES IN SOFTWARE

*S.Ajithkumar, P.Gnanagurupandian,

M.Senthilvadivelan ,

Final year Information Technology

**Mr.K.Palraj ME, Assistant Professor,

Dept of Computer Science and

Engineering/Information Technology

Sri Vidya College of Engineering &

Technology, Virudhunagar.

ABSTRACT:

 The objective of this project is to

develop a clone detection tool which is useful

in software industries to detect the duplicate

codes where the duplicate codes cause many

problems during the maintenance phase. Our

proposed tool has the capability to detect both

the simple as well as files clones in software

and increase the reusability as well as

efficiency of the project files. The tool should

be platform independent one.

INTRODUCTION:

 A clone relation is defined as an

equivalence relation (i.e., reflexive, transitive,

and symmetric relation) on code portions. A

clone relation holds between two code portions

if (and only if) they are the same sequences.

For a given clone relation, a pair of code

portions is called clone pair if the clone relation

holds between the portions. An equivalence

class of clone relation is called clone class.

That is, a clone class is a maximal set of code

portions in which a clone relation holds

between any pair of code portions. For

example, suppose a file has the following 12

tokens: a x y z b x y z c x y d: We get the

following three clone classes:

C1. a x y z b x y z c x y d.

C2. a x y z b x y z c x y d.

C3. a x y z b x y z c x y d.

 Note that subportions of code

portions in each clone class also make clone

classes (e.g., Each of C3 is a subportion of C1).

In this paper, however, we are interested only

in the maximal portions of clone classes so we

only discuss the maximal portions (e.g., C1).

The three code portions in C2 constitute a

clone class since the third one is not a

subsequence of any code portions of C1. In our

approach, identifying the clone relation is made

for the transformed token sequences in order to

extract many clones whose token sequences are

slightly modified.

IMPLEMENTATION METHODOLOGY:

Architectural Design

The overall architecture of our proposal has

been given as follows:

Fig 1.7: Architectural Design

264

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

This depicts the flow of the project

from initial files to output clone pairs or clone

lines. This design also indicate input and output

of each phase of our tool.

 Here, the design of the project

is divided into input, process and the output.

The process involves the following modules.

 They are as follows:

Module 1: Preprocessing

 The input program files may

contain valuable and unnecessary statements.

For cloned detection process, these

unnecessary statements must be removed first.

So, we removed the unnecessary lines present

in the given input files. This module greatly

increase the efficiency of the tool.

Examples:

1. Comment line(//xxxx)

2. Header files(import java.xx,…)
3. Reading Statements(scanf(),

System.out.println()…)
4. Writing Statements(printf(),…)

Module 2: Lexical analysis

 In this module, we perform

tokenization on the preprocessed file. Our tool

can be able to split the statements into tokens.

Tokenization done perfectly on the files

follows proper indentation or improper

indentation. The tokens are then stored into the

temporary file. Here the characters like tab,

next line and space are also removed. Number

of tokens present in each line is calculated and

stored.

Module 3:Trasformation

 Here in this module we perform

the classification of tokens. Classify the tokens

based on return type, keyword, expression,

punctuation.

Example:

 int

 float ------ $t

 double

 public

 private ------ $a

 protected

Module 4: Match Detection

 Here the actual cloned tokens

are calculated from the transformed tokens.

 In this module compared the

transformed tokens in nth position with n-1

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

tokens of the same. If there is match we set the

values as 1 else 0.The cloned token is the linear

pattern of ones.

Module 5: Formatting

 The output of match detection

is cloned tokens which is not understandable

by the developer or coder so we format the

cloned tokens into cloned lines/cloned pairs

which is understandable by the user.

RESULT

The below figure shows the Front end

of the MNP miner tool. Through this user

can choose the input files.

Fig. Front End of MNP Miner

 The below figure shows the results after

detection of clone for the given files.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

Fig. Intermediate files after processing The

below figure shows the matched tokens and

cloned tokens in graphical representation

T

he below figure shows the Cloned files that are

opened in a text editor for editing the code.

 Fig. Cloned files in text editor

The below figure shows the Validation

checking of MNP Miner

Display error message if the user doesn’t enters
the threshold value.Display Error message if

user chooses improper file type other than C,

C++ and Java.

InvalidFile typeDisplay Error message if

character is entered as threshold value.

CONCLUSION

 Thus we proposed that by using

our clone mining tool we can able to reduce the

problems caused due to duplicate codes in the

maintenance phase. At the same time we

increase efficiency of the project by alerting

the developer that these cloned code can be

reused or generalized.

 Indirectly our project can be

used by lab technician or lab staff to monitor

whether any students copied their lab exercise.

Since the copied students change the variable

name and include some printf and scanf

statements our tool generalize the variable

names and removed the printf and scanf

statements.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

 Through our tool the

reusability and efficiency of the project is very

much since we alert the user about the

duplicate code which reduce the space and time

of the project as well as increase the problems

when the reconstruction is made to the codes.

APPLICATIONS

 Detecting clones in software files.

 Increase the reusability of software

files.

REFERENCES

1. Toshihiro Kamiya, Shinji Kusumoto,

Katsuro Inoue. CCFinder: A Multilinguistic

Token-Based Code Clone Detection System for

Large Scale Source Code. In: Proceedings of

the IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 28, NO. 7, JULY

2002.

2. Hamid Abdul Basit, Stan Jarzabek Detecting

Higher-level Similarity Patterns in Programs,

ACM SIGSOFT, Sept. 2005

3. Jarzabek, S. and Shubiao, L. Eliminating

Redundancies with a “Composition with

Adaptation” Meta-programming Technique. In

Proc. ESEC-FSE'03, European Software

Engineering Conference and ACM SIGSOFT

Symposium on the Foundations of Software

Engineering, ACM Press, September 2003,

Helsinki, pp. 237-246.

4. Java Technology at http://java.sun.com/

5. Mayrand J., Leblanc C., and Merlo E.

Experiment on the “automatic detection of

function clones in a software system using

metrics”. In Proc. Intl. Conference on

Software Maintenance (ICSM ’96), pp. 244-

254.

6. XVCL website at :

http://xvcl.comp.nus.edu.sg/overview_brochure

.php

7. Stan Jarzabek and Shubiao Li “Unifying

clones with a generative programming

technique”.

8. Used College forum for some doubts during

implementation of our algorithm in java

268

http://java.sun.com/
http://xvcl.comp.nus.edu.sg/overview_brochure.php
http://xvcl.comp.nus.edu.sg/overview_brochure.php

