
ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

33

All Rights Reserved © 2016 IJARBEST

TASK OFFLOADING TO THE CLOUD BY USING CUCKOO MODEL

FOR MINIMIZING ENERGY COST

ANJALI V, Dr. S. SRINIVASAN

Department of Computer Science and Engineering, Anna University Regional campus Madurai- 625 019

INDIA (e-mail: anjali.malathi@gmail.com)

Abstract: The current needs for handy devices to complete tasks, tending these devices to

accommodate new changes in it. The increased usage of these devices caused them to face a

large amount of resource, memory and processing speed scarcity. Of all other constraints,

energy is the major problem for smartphones to carry out a task. The concept of offloading

gets into play for mobile devices i.e., the task or the computation which needs to be performed

involving more service in the android systems will be shifted to resourceful server (for ex

cloud) and getting back the results done from the cloud. This practice has been introduced

under a new field called Mobile Cloud Computing. There are different types of offloading in

MCC depending on the application which involved. The decision of whether to offload a

computation or not will depend on the task accounting to the energy spent by the device while

working with the application versus the amount of energy spent by the same device for

uploading the task to the cloud and getting the result back from the cloud. The types of

applications will also decide upon offloading. As this concept depicts energy is the major

constraint for whether to offload a task or not, there is a model called CUCKOO framework

which acts as an interface between the cloud and the android environment to support for the

task offloading to the cloud. Thus this framework bridges the gap between the smartphones as

well as the cloud environment so that that computation intensive task can be performed with

less amount of energy consumed. In this work two applications are used to detect the amount

of energy consumed in the cloud as well as the smartphones namely eyedentify and

Photoshoot.

KeyWords: Mobile Cloud Computing, Cuckoo Framework, Offloading, eyeDentify and

Photoshoot.

1. INTRODUCTION

In recent years, mobile devices such as smart phones

and tablets have been upgraded into more powerful

terminals with faster CPU, substantial memory, and

multiple sensors. Each of these devices is able to serve

the users’ request depending on individual applications.
However, the battery lifetime is still a major concern of

the modern mobile devices. From the users’ perspective,
they need better performance of their mobile devices,

which reflects on longer battery life and shorter

processing time of any kind of services. To overcome

this obstacle, mobile cloud computing is introduced.

Mobile Cloud Computing is the combination of cloud

computing, mobile computing and wireless networks to

bring rich computational resources to mobile users,

network operators, as well as cloud computing

providers. Each of the mobile devices is able to serve

the users’ request depending on individual applications.
However, the battery lifetime is still a major concern of

the modern mobile devices. To overcome this obstacle,

mobile cloud computing is introduced. Mobile Cloud

Computing is the combination of cloud computing,

mobile computing and wireless networks to bring rich

computational resources to mobile users, network

operators, as well as cloud computing providers. The

task offloading will offer a better service when it is

coupled with a framework called CUCKOO model.

Task offloading is a critical technique because in some

cases it increases the energy consumption of

smartphones. This technique can be four variants

depending on the task and data involved in the particular

application involved. In the first case, The input data is

available locally on the smartphone and task execution

occurs on the smartphone as well. This is the normal

case where no offloading occurs. The second case is

where the task execution happens on the cloud but the

task data exists locally on the smartphone. In this

scenario, the smartphone has to upload the task data to

the cloud and then download the task results. The third

scenario is where the task execution is performed

locally on the smartphone, but the task data exists on the

cloud. In this scenario, the smartphone needs to

download the task data and perform the task execution

locally. In this scenario, the input data is available on

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

34

All Rights Reserved © 2016 IJARBEST

the cloud and task execution occurs in the cloud as well.

Therefore, the smartphone just needs to download the

task results.

 The task offloading will offer a better service

when it is coupled with a framework called CUCKOO

model. The Cuckoo framework, which simplifies the

development of smartphone applications that benefit

from computation offloading and provides a dynamic

runtime system, that can, at runtime, decide whether a

part of an application will be executed locally or

remotely.

Fig 1. Overview of MCC

1.2 OBJECTIVE

Providing uninterrupted service to the

smartphone is evitable because of its energy

consumption and low resource. To enhance the

handheld device to next dimension a hybrid platform

called Mobile Cloud Computing is used to minimise

energy consumption is introduced. The cuckoo

framework is used to analyze the energy cost

consumption for task offloading to the cloud. Dynamic

offloading decisions based on cuckoo model are worked

out. The energy consideration for each of the cases is

calculated.

 ECuckoo <ELocal Execution

ECuckoo- Energy consumed by the smartphone using

Cuckoo framework (With Offloading)

ELocal Execution-Energy consumed by the

smartphone (Without Offloading)

1.3 SCOPE OF THE PROJECT

 The aim of the project is to reduce the amount

of energy consumed by the individual tasks in the

smartphones, So that the smartphones battery lifetime

can be enhanced. According to Moore’s law, the
number of transistors on an integrated circuit doubles

every two years. In contrast, battery capacity increases

only by 5% every year. This fact implies that the gap

between energy demand and supply grows by 4%

annually. This concept offers a better conjunction

between the battery life and the task handling. For a task

performed locally, it involves the energy consumption

based on the application. In my consideration,

2. RELATED WORK

The objective of the context sensitive

offloading scheme is to derive an optimal offloading

decision under the context of the mobile device and

cloud resources to provide better performance and less

battery consumption. The proposed framework adopts

client-server communication model, in which the cloud

resources (e.g. mobile device cloud, public cloud) are

servers and the mobile device is the client to access the

services on servers. On the client side, the framework

consists of three components, namely a context monitor,

a communication manager and a decision engine. On the

server side, it includes a server side communication

manager, a program profiler and a task manager. The

cost model consists of three parts, namely the task

execution time denoted by D, wireless channel energy

consumption denoted by E and monetary cost denoted

by M when related. Then the total cost of executing task

ti is as follows:

P(ti) = α1 * D(ti) + α2 * ρd * E(ti)

 In the context of cloud computing, in energy

trade-off analysis the critical aspect for mobile clients is

the trade-off between energy consumed by computation

and the energy consumed by communication. We need

to consider the energy cost of performing the

computation locally (Elocal) versus the cost of

transferring the computation input and output data

(Ecloud). If D is the amount of data to be transferred in

bytes and C is the computational requirement for the

workload in CPU cycles then

Ecloud =D/Deff

Elocal =C /Ceff

where Deff and Ceff are device specific data transfer

and computing efficiencies. The Deff parameter is a

measure for the amount of data that can be transferred

with given energy (in bytes per joule) whereas the Ceff

parameter is a measure for the amount of computation

that can be performed with given energy. With these we

can derive the relationship between computing and

communication for offloading to be beneficial

The basic idea of COSMOS is to achieve good

offloading performance at low monetary cost by sharing

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

35

All Rights Reserved © 2016 IJARBEST

cloud resources among mobile devices. Specifically, in

this paper our goal is to minimize the usage cost of

cloud resources under the constraint that the speedup of

using COSMOS against local execution is larger than

1−δ of the maximal speedup that it can achieve using
the same cloud service, where δ ∈ (0, 1). It consists of

three components: a COSMOS Master running on a VM

instance that manages cloud resources and exchanges

information with mobile devices; a set of active

COSMOS Servers each of which runs on a VM instance

and executes offloaded tasks; and a COSMOS Client on

each mobile device that monitors application execution

and network connectivity and makes offloading

decisions.

 Mobile cloud computing (MCC) enables the

development of computational intensive mobile

applications by leveraging the application processing

services of computational clouds. Contemporary

distributed application processing frame works use run

time partitioning of elastic applications in which

additional computing resources are occurred in runtime

application profiling and partitioning. Distributed

application processing is an important software level

technique for enabling computationally intensive mobile

applications on SMDs. A number of augmentation

algorithms have been proposed for alleviating the

resources limitations of SMDs — energy augmentation,

memory augmentation (AbebeandRyan,2012;

Guetal.,2003), and application processing augmentation.

The current APAs for elastic applications use a number

of strategies for separating the intensive components of

the mobile application

 In the following, Majid Altamimi et al

modelled the energy usage in two distinct cases,

namely, file upload and file download. For simplicity,

he assumed that the mobile device transceiver uses only

two power levels, namely, PRX when it is idle, in

backoff mode, or receiving and PTX when it is

transmitting. For File Download Case, the mobile

device is mostly receiving. Here, we address first the

general situation where there is no limitation on the file

download rate from the cloud. Next, we address the

situation where the cloud restricts the file download

rate. For every MAC frame to be received, the mobile

device has to send a CTS and an ACK frame. The

mobile device has to send a TCP ACK for every

received TCP segment. During downloading a file, a

smartphone will be receiving a data frame for a time T

+3SIFS+TPHY +TRTS and it has to wait for the AP

backoff time ʚ/t.

3. EXISTING SYSTEM

 Existing system consists of two major parts,

smartphones (i.e., user equipment, UE) and Cloud

Computing (CC), both linked to the Internet. The

smartphones are connected to the Internet through a

WLAN access point or a cellular data network base

station. These smartphones provide all of mobile

computing functionalities to the end users via different

applications. On the other hand, the CC part consists of

cloud data center and cloud provider, which are

accessible through the Internet. The cloud provides the

end users (e.g., smartphone users) with all of the CC

functionalities that are needed for mobile computing. In

the offloading technique, smartphones access the cloud

via the Internet. Therefore, offloading is considered as a

Network Related Application (NRA). At the beginning

of studying NRA, network interfaces (i.e., 3G/4G and

WLAN) should be considered because each of these

interfaces has its own characteristics, such as supported

data rate. As a result, each network interface consumes

unequal amount of energy. In addition, the Internet

protocols, namely, the Hypertext Transfer Protocol

(HTTP) and the File Transfer Protocol (FTP) need to be

taken into account. The network interfaces and

protocols are the major factors that affect the energy

costs of task offloading. They are taken into account for

energy cost modelling.

3.1 THE EXPERIMENT

 They experimentally evaluate the energy cost

on smartphones when the offloading technique is used

over different network interfaces and Internet protocols.

They conducted experiments in four broad experimental

scenarios related to the location of the task data. The

first scenario corresponds to S1, where there is a local

task execution and the task data exists on the

smartphone. The second scenario corresponds to S2,

where uploading the task data, doing the task

computation (encoding) by the cloud and downloading

the task result is presented by the “Upload + CC

encoding + Download”. The third scenario corresponds

to S3, where there is a local task execution and the task

data is downloaded from the cloud, as shown by the

“Download + Local encoding”. The fourth scenario

corresponds to S4, where the task data exists in the

cloud and the task executed on the cloud, and the task

result is simply downloaded, as presented by the “CC

encoding + Download”. For uploading and downloading

files to and from the cloud, we consider the energy

implications of: (i) using the HTTP and FTP protocols

at the application level; and (ii) using the 3G and

WLAN communications at the wireless interface level.

4. PROPOSED SYSTEM

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

36

All Rights Reserved © 2016 IJARBEST

 The proposed system is going to work in a

Mobile Cloud Computing environment as briefed out

earlier. The cloud environment is able to serve the

variety of requests from the users based on the needs of

them. Likewise the mobile device is able to serve the

users by installing the applications specific to the needs

of the users.

4.1 THE CLOUD MODELLING

 Even though the cloud environment is able to

support all kinds of users. But we need little

consideration before taking the smartphones to the

cloud. The general problems of the smartphones include

energy, speed and the memory. For all these

considerations the cloud environment is brought into

these devices to minimize the power consumed. The

cloud computing service model involves the provision,

by a service provider, of large pools of high

performance computing resources and high-capacity

storage devices that are shared among end users as

required. There are many cloud service models, but

generally, end users subscribing to the service have their

data hosted by the service, and have computing

resources allocated on demand from the pool. The

service provider’s offering may also extend to the
software applications required by the end user. To be

successful, the cloud service model also requires a high-

speed network to provide connection between the end

user and the service provider’s infrastructure.

 The deployment of a delegated application on

the virtual machine of the cloud server node is a

challenging aspect of runtime computational offloading.

Current COF focus on partitioning an elastic mobile

application dynamically and offloading the intensive

partitions at runtime. A critical feature of current COFs

is that the delegated application needs to be

reconfigured on the virtual device instance of on the

cloud server node. Therefore, the execution of the

offloaded applications to the cloud server nodes requires

the deployment of virtual phone instance(s) on the

virtual machine of the cloud data center. Because the

hardware architecture and operating system platform of

the mobile devices are different, the operating system

platforms implement platform-specific application

frameworks.

The communication links can be WiFi, 3G/4G.

In our proposed work, an interface is used to connect

between the smartphone and the cloud environment. So

the energy consumed in this case is minimized. This

interface is deployed in the ADSL layer of the android

devices so that the application is coupled with this

interface to make computations with regards to energy

consumption. Thus the amount of energy saved is

 Pc= C
M

-Pi× C
S

-Ptr× D
P

S : the speed of cloud to compute C instructions

M : the speed of mobile to compute C instructions

D : the data need to transmit

Pc : the energy cost per second when the mobile phone

is doing computing

Pi : the energy cost per second when the mobile phone

is idle.

Ptr: the energy cost per second when the mobile is

transmission the data.

4.2 CUCKOO FRAMEWORK

 Cuckoo Framework focus on minimizing effort

to enhance the performance and reduce the battery

usage of applications with heavy weight computation.

offering a very simple programming model that is

prepared for connectivity drops, supports local and

remote execution and bundles all code in a single

package. Integrating with existing development tools

that are familiar to developers. Automating large parts

of the development process. Offering a simple way for

the application user to collect remote resources,

including laptops, home servers and other cloud

resources. This model used the existing activity/service

model in Android that makes a separation between

compute intensive parts (services) and interactive parts

of the application (activities), through an interface

defined by the developer in an interface definition

language (AIDL). Otherwise an interface can easily be

extracted from the code. This interface will be

implemented as a local service that has, when used, a

proxy object at the activity.

 The Cuckoo framework provides two Eclipse

builders and an Ant build file that can be inserted into

an Android project’s build configuration in Eclipse. The
first Cuckoo builder is called the Cuckoo Service

Rewriter and has to be invoked after the Android Pre

Compiler, but before the Java Builder. The Cuckoo

Service Rewriter will rewrite the generated Stub for

each AIDL interface, so that at runtime Cuckoo can

decide whether a method will be invoked locally or

remote. The second Cuckoo builder is called the Cuckoo

Remote Service Deriver and derives a dummy remote

implementation from the available AIDL interface. This

remote interface has to be implemented by the

programmer. Next to generating the dummy remote

implementation, the Cuckoo Remote Service Deriver

also generates an Ant build file, which will be used to

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

37

All Rights Reserved © 2016 IJARBEST

build a Java Archive File (jar) that contains the remote

implementation, which is installable on cloud resources.

The Cuckoo Remote Service Deriver and the resulting

Ant file have to be invoked after the Java Builder, but

before the Package Builder, so that the jar will be part of

the Android Package file that results from the build

process.

4.3 INTELLIGENT OFFLOADING

 A part of the Cuckoo framework is a Resource

Manager application that runs on the smartphone. In

order to make a remote resource known to a phone, the

remote resource has to register its address to this

Resource Manager using a side channel. If a resource

has a display, starting a server will result in showing a

two dimensional barcode – a QR code on the resources’
screen. This QR code contains the address of the server.

Smartphones are typically equiped with a camera and

can scan this QR code using a special resource manager

application. If the resource does not have a visual

output, a resource description file can be copied from

the resource to the phone to register the resource. When

the resource is known to the Resource Manager

application, it can be used repeatedly for any application

that uses the Cuckoo computation offloading

framework.

4.3.1 eyeDentify

 Our first example application is eyeDentify, a

multimedia content analysis application that performs

object recognition of images captured by the camera of

a smartphone. The idea of the application is similar to

the Google Goggles application which can recognize

contact info, places, logos, landmarks, artworks, and

books. By offloading the computation needed for this

algorithm, we have shown that we can speed up the

computation with a factor of 60, reduce the battery

consumption with a factor of 40 and increase the quality

of the recognition.

4.3.2 PhotoShoot

 The second example that we will consider is a

distributed augmented reality game, called PhotoShoot,

with which we participated in the second worldwide

Android Developers Challenge and finished at the 6th

place in the category ’Games: Arcade & Action’. This
innovative game is a twoplayer duel that takes place in

the real world. Players have 60 seconds and 6 virtual

bullets to shoot at each other with the camera on their

smartphone (see Figure 4). Face detection will

determine whether a shot is a hit or not. The first player

that hits the other player will win the duel. The major

compute intensive operation in this game is the face

detection. The Android framework comes with a face

detection algorithm, so it is possible to create a local

implementation to detect faces in an image. Without

offloading, the slower the processor of the smartphone,

the longer it takes for the shot to be analyzed, which

gives the user of a slow smartphone a significant

disadvantage. Offloading can, however, be used to make

the game fair again.

5. SYSTEM ARCHITECTURE

 The System architecture describes how the

smartphone is connected to the internet and the cloud.

While if the system is connected to the internet it will

not be offloading the task rather it extracts the

information needed to perform computation.

5.1 OFFLOADING SCENARIO (eyeDentify)

This scenario deals with the computation of energy

consumed by the application during its working over the

particular task. These two tasks are computation

intensive since they involve image processing. At the

earliest results shows off little difference over things but

improves rapidly when there are huge records that need

to be processed. So the energy consumed in case of no

offloading scenario is that the task to be executed

locally on the smartphone itself. If Ttask is the time

taken for executing the compute intensive algorithm,

then time taken by the client for no-offloading scenario

is:

Tclient = Ttask

 The total energy consumption Eno_offload is given by:

Eno_offload = Eclient = Pclient * T client

5.2 OFFLOADING SCENARIO (Photoshoot)

 For offloading scenario, the task is executed on

remote server. Hence, in this case Tserver = Ttask and

total time returned at the client is given by.

Tclient = Ttask + Tcomm

Where, Tcomm is communication time for sending the

input file to server and getting the result back from

server. In this case, the offloading was done using Wi-Fi

as well as 3G interface. For offloading, total energy

consumption Eoffload_wifi and Eoffload_3G

respectively are given by:

Eoffload_wifi = Eclient + Einternet_wifi + Edatacenter

Eoffload_3G = Eclient + Ebase_station + Einternet_3G

+ Edatacenter

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

38

All Rights Reserved © 2016 IJARBEST

Here, Eclient = Energy consumed by the client device,

Edatacenter = Energy consumed at the datacenter.

Fig 2. Task offloading using Cuckoo framework

Einternet = Energy consumed by the internet

infrastructure

Energy consumption at the datacenter is given by:

Edatacenter = Eserver + Eoverhead

Where, Eoverhead = Energy consumed by HVAC,

power supply and other overheads at datacenter.

Fig 3. Amount of Time Spent By Offloaded Task

Versus Power Consumed By application 1.

6. IMPLEMENTATION

 This constitutes energy computation for both

the mobile as well as the cloud environment. This can

be done by installing the cloud environment using green

cloud and mobile environment can be brought into the

device using android SDK and eclipse with built- in java

configurations. The green cloud installs the cloud

environment along with its data center. The energy

consumption for the devices which are connected can

also be listed. So that the task installed in the cloud will

be represented the graph for parameters like

performance, response time, memory access, storage

access, failure rate etc.,. are drawn. While installing the

mobile environment power tutor application also needs

to be installed, which is helpful for Calculating energy

consumption of each of the applications.

The eclipse installing involves java RT

environment to be installed onto the device. But the

green cloud virtual disk is being coupled with the ns2,

eclipse and c, c++ coding. Power tutor represents with

all the parameters in the form of graphs. With all these

parameters of energy responses of all the applications

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

39

All Rights Reserved © 2016 IJARBEST

having graphs of all the cases are depicted. And from

the results the application is decided upon whether to

offload or not. In this case,

Fig 4. Power tutor Application

both the applications needs to be offloaded since they

are involving image processing.

7. CONCLUSION

 Task offloading is one of the emerging topics

in Mobile Cloud Computing. Task offloading serves as

better job of taking the task to be done on to the cloud

by creating communication link between the cloud and

the mobile device. The communication links also plays

a important role in task offloading. WiFi serves better

offloading than 3G/4G. Because they don’t deserve a
physical layer communication link as wifi. Likewise

offloading gives better yield when there are number of

tasks to be done. Cuckoo integrates with the popular

open source Android framework and the Eclipse

development tool. It provides a simple programming

model, familiar to developers, that allows for a single

interface with a local and a remote implementation.

Cuckoo will decide at runtime where the computation

will take place. Furthermore, the Cuckoo framework

comes with a generic remote server, which can host the

remote implementations of compute intensive services.

A smartphone application to collect the addresses of the

remote servers is also included. In this paper I evaluated

the Cuckoo framework with two real world smartphone

applications, an object recognition application and a

distributed augmented reality smartphone game and

showed that little work was required to enable

computation offloading for these applications using the

Cuckoo framework.

8.

FUTURE ENHANCEMENT

 As of wireless network is concerned security

breaches may occur. (1) Ensuring security for the

communication link can also be taken as a next step. (2)

Offloading from smartphone involves certain security

violation that can also be analysed and rectified. (3)

Sometimes incompatibility in both the device and cloud

system may result in different results, it should be

checked out and a fixed framework can also be devised.

(4) 5G communication link can also be tested. (5) This

offloading can also be extended as data, application

partitioning etc., in order to perform the variants of

offloading. This future enhancement may allow the

device to have a better scope in the Mobile Cloud

Computing environment. The energy as well as memory

and computation cost can also be reduced.

9. REFERENCES

[1]. A. P. Miettinen and J. K. Nurminen, “Energy

Efficiency of Mobile Clients in Cloud Computing,” in

Proc. of the 2nd USENIX conference on Hot topics in

cloud computing (HotCloud’10), 2010, p. 4.

[2] J. Paradiso and T. Starner, “Energy Scavenging for

Mobile and Wireless Electronics,” Pervasive

Computing, IEEE, vol. 4, no. 1, pp. 18 – 27, January-

March 2005.

[3] S. Robinson, “Cellphone Energy Gap: Desperately

Seeking Solutions,” Strategy Analytics, Tech. Rep.,

Mar. 30 2009.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 15, March 2016

40

All Rights Reserved © 2016 IJARBEST

[4] A. Kansal and F. Zhao, “Fine-Grained Energy

Profiling for Power- Aware Application Design,”

SIGMETRICS Perform. Eval. Rev., vol. 36, pp. 26–31,

Aug. 2008.

[5] N. Vallina-Rodriguez, P. Hui, J. Crowcroft, and A.

Rice, “Exhausting Battery Statistics: Understanding the

energy demands on mobile

 handsets,” in Proceedings of the second ACM

SIGCOMM workshop on Networking, systems, and

applications on mobile hand- helds, ser. MobiHeld ’10.
ACM, 2010, pp. 9–14.

[6] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer,

“Survey on Energy Consumption Entities on the

Smartphone Platform,” in Proc. IEEE 73rd

VehicularTechnology Conf., 2011, pp. 1–6.

[7] K. Naik, “A Survey of Software Based Energy

Saving Methodologies for Handheld Wireless

Communication Devices,” Dept. of ECE, University of

Waterloo, Waterloo, ON, Canada, Tech. Rep. 2010-13,

2010.

[8] X. Ma, Y. Zhao, L. Zhang, H. Wang, and L. Peng,

“When Mobile Terminals Meet the Cloud: Computation

Offloading as the Bridge,” Network, IEEE, vol. 27, no.

5, pp. 28–33, 2013.

[9] W. Zhang, Y. Wen, J. Wu, and H. Li, “Toward a

Unified Elastic Computing Platform for Smartphones

with Cloud Support,” Net- work, IEEE, vol. 27, no. 5,

pp. 34–40, 2013.

[10].ADC2.http://code.google.com/android/ad

c

[11]. G. O. Young, “Synthetic structure of

industrial plastics (Book style with paper title

and editor),” in Plastics, 2nd ed. vol. 3, J.

Peters, Ed. New York: McGraw-Hill, 1964,

pp. 15–64.

[12]ADT Eclipse plugin.

http://developer.android.com/sdk/eclipseadt.ht

ml.

[13] Android. http://developer.android.com/.

[14] Android Market.

http://www.android.com/market/.

[15] Apache Ant. http://ant.apache.org/.

