
ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

120

All Rights Reserved © 2016 IJARBEST

 DPRAR: Defect Prediction Using Relational Associational Rules

S. Sivaprasad
1,

V.Jyothsna
2

sriram.sivaprasad@gmail.com jyothsna1684@gmail.com

1
Department of IT, Sree Vidyanikethan Engineering College, Tirupathi, India.

2
 Department of IT, Sree Vidyanikethan Engineering College, Tirupathi, India

Abstract: Software defect prediction focus to automatically discover defective software modules, in order to help software testers

focus their time and effort on those modules which are likely to contain faults. Many machine learning algorithms have been used

for this classification task. A novel software defect prediction method, called DPRAR, which uses relational association rules to

classify modules for predicting whether a software module is or is not defective. Relational association rules are an expansion of

ordinal association rules, which are a particular type of association rules that describe numerical orderings between attributes that

usually occur over a dataset. DPRAR analyses how close the module is for faulty instances and the non-faulty instances. An

experimental evaluation of the proposed model on the open source NASA datasets, as well as an evaluation to similar existing

approaches is provided. The obtained results show that DPRAR classifier over performs, for most of the considered evaluation

measures which conforms potential than the existing machine learning based techniques for defect prediction.

Keywords – Software defect prediction, Software Metrics, Relational Associational rules, Data mining.

1. INTRODUCTION

Software quality -is considered of great importance

in the software engineering field. Thus, building software

of high quality is very expensive task. Consequently in

order to increase the efficiency and usefulness of quality

declaration and testing, software defect prediction is used

to find out defect-prone modules in a forthcoming

version of a software system and help assign the effort

on those modules.

Association rule mining–finding attribute value

conditions that occur repeatedly together in a dataset.

Ordinal association rules are described as an exact type

of association rules. Particular a set of records

represented as set of attributes, the ordinal association

rules identify ordinal relationships between verification

attributes that seize for a particular percentage of the

records. But, in real world datasets, attributes with

special domains and relationships between them, other

than ordinal, do really exist. Sometimes, ordinal

association rules are not strong sufficient to describe data

regularities. Accordingly, relational association rules

were introduced in [24] in order to be able to capture

different kinds of relationships between record attributes.

 The paper invests a novel classification model for

the problem of defect prediction, based on the plan of

discovering relational association rules within a dataset.

To find whether a software module is defective or not is

of main role for the maintenance and development of

software systems, as developers are always concerned in

improving the software quality. The results found by

evaluating the classification model proposed in this paper

do verify that applying relational association rule mining

for defect detection is capable and indicate the potential

of our suggestion. Moreover, the use of relational

association rules in discovery software entities as being

defective or not, is a new approach.

2. MOTIVATION

Identifying the software entities like classes, modules,

methods, and functions that are defective is of main

importance as it facilitates progress software

development and maintenance. Although many models

have been proposed in the software defect prediction

literature, this problem has not been completely solved

so for researchers are still focus on developing more

accurate defect predictors. Recent results show that

researchers should focus on improving the quality of the

data in order to overcome the limits of the existing

software prediction model.

 Relational association rules-- [24] were

introduced as an expansion to association rules, in

order to be capable to discover different kinds of

relations or correlations that exist between data in large

datasets. A software module as of a software system can

be characterized by a set of significant software metrics

values. These software metrics may be applicable for

deciding if a module is defective or not. Accordingly, a

software module can be visualized as a high

dimensional vector and the complete software system

can be represented as a dataset consisting of the high

dimensional vectors equivalent to the system’s software
modules. Within this dataset, where the records are the

(high dimensional) software modules and the features

are the software measurements, significant information

can be extracted from the software metrics values

characterizing the modules. Dissimilar types of

relationships between the numerical feature values can

be distinct and a relational association mining process

can be performed on the dataset representing the

software system. Such a mining process can offer

interesting patterns that would be useful for predicting

if a software module is defective or not.

 Our suggestion, we have started

from the perception that when deciding if a software

entity is defective, relational association rules may be

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

121

All Rights Reserved © 2016 IJARBEST

efficient, as relationships between the software metrics

values characterizing the software entities may be

applicable. These relationships may communicate

quantitative information that may exist in the vector

characterizing a software entity. It is possible that these

relationships could provide important information

regarding defective entities. While many methods for

software defect prediction do exist within the software

engineering text, recent researches are still passed out

for proposing more accurate software defect predictors

and for overcoming the drawbacks and limitations of

the presented models. Relational association rule

mining has not been applied so far for predicting if a

software entity is defective or not. Thus in this paper at

developing a novel method based on relational

association rules, whose usefulness will be shown

through the experimental results.

3. DEFECT PREDICTION

In that the aim of presenting the problem of defect

prediction and its importance, as well as presented

machine learning based approaches for solving the

consider problem.

3.1. Problem statement and relevance

The automated evaluation of software, in conditions of

defect prediction, is of main importance to the software

engineering community and researchers are endlessly

focusing on building accurate and responsible

predictors using legacy data. In order to bring high

quality software on time, software project managers,

quality managers and software developers require to

always focusing on detect and correct software defects

at all stages of the development process. Defects such

as faults or bugs represent a main issue in planning the

on-time-delivery and the quality of the released product

mainly during the maintenance and development of a

software project. The product quality is highly

connected with the defects. So high importance for

developers and project managers to declare a software

development with as only some errors as possible. In

this direction, software defect prediction helps in

finding, tracking and resolving software anomaly that

might have an achieve on human security and lives,

particularly in safety dangerous systems. Defect

prediction also allows changes to be made previously in

the software life-cycle, assuring this way a lesser

software cost and improving customer satisfaction .A

software defect shows any error or deficiency in a

software object or a software process and a major focus

is on finding those defects that manipulate project or

product performance. Several software defect predictors

use software metrics to measure the software quality in

order to predict software defects. Consequently,

software defect prediction is the duty of classifying

software modules into the fault-prone and the non-fault-

prone ones by using metric-based classification. Mainly

defect prediction techniques used in planning are based

on past data, hence rely on supervised classification.

3.2 RELATED WORK

Although association rules are generally used in an

unsupervised learning situation, different extensions for

classification are presented in the future. One of them is

the CBA method, presented in, where class association

rules, i.e. association rules whose following is a class

label, are mined. Presents an extension of this method,

called CBA2, where rules predicting various classes can

have a various minimum support, to solve the data

imbalance problem.

Ma et al. use in the CBA2 method for finding defective

software modules. Experiments on the NASA datasets

are performed and comparisons with additional rule

based classification methods are given. The authors also

inspect whether the association rule sets that were

provided based on the data from one software project

can be used to calculate defective software modules in

other, similar software projects.

Rodriguez et al. introduce in a Subgroup Discovery

(SD) algorithm named EDER-SD means Evolutionary

Decision Rules for Subgroup Discovery i.e based on

evolutionary estimation and generates rules describing

only fault-prone modules. The results performed on

datasets from NASA showed that the EDER-SD

algorithm shows well in the majority cases when

compared to three other well related SD algorithms.

Moreover rule-based methods, many different machine

learning algorithms have been useful to the problem of

defect prediction. Menzies et al., in which they compute

the Naive Bayes classifier (NBC), OneR and J48. They

have also experimented with different filters and

finished that, on average, logarithmic filtering and

Naive Bayes formed the best results on the 8 used

NASA datasets. Presents a literature study about a pair

of methods that are often used for defect prediction:

small equations, machine learning methods and defect

density prediction models. Likewise, Kaur et al. in

shortly current clustering, categorization and association

rule mining as software defect prediction methods.

Challagulla et al. evaluate some special predictor

models on four dissimilar real-time software defect data

sets that were in use from the NASA repository. The

experimental results have shown that a grouping of 1-

rule classification and Instance-based Learning using

regularity based Subset Evaluation technique provides a

relatively enhanced reliability in accuracy prediction

compared to other models.

Haghighi et al. gives a comparative analysis of 37

dissimilar classifiers in fault detection systems and use

the NASA datasets for performing an experiment. The

results show that, on average, the Bagging classifier

achieved a higher performance and accuracy evaluate to

the others.

A dissimilarity-based semi-supervised learning method,

called ROCUS, is presented by Jiang et al. i. They use

semi supervised learning because in defect prediction

there is a limited degree of labeled data, whereas

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

122

All Rights Reserved © 2016 IJARBEST

gathering unlabeled data is easy. They are also use

under-sampling to solve the class variation problem.

ROCUS is calculated on eight datasets from the NASA

repository and the results are compared to extra

methods which are either semi-supervised methods that

do not take into consideration the extreme data, or

class-imbalance learning methods that cannot utilize

unlabeled data.

4. RELATIONAL ASSOCIATION RULES:

BACKGROUND

In relational association rule mining the goal is to find

several relationships between the attributes that be liable

to hold over a large percentage of records, in binary

classification problem, then attribute A is in relation

with attribute B for a large number of positive instances,

next a record in which attribute A is not in relative with

attribute B may be a negative instance, possibly will not

mean very much if only one rule including B is not

satisfied, but it increases the possibility that the instance

in query belongs to the unconstructive class if many

such rules are broken. The following will briefly

evaluate the theory of relational association rules, as

well as the method for identifying the appropriate

relational association rules that hold within a dataset.

Let R={r1,r2,,…rn}be a set of instances (entities or

records in the relational model),anywhere every instance

is discriminate by a list of m attributes, (a1,. . . . am). We

denote by Ϸ (rj, aj) the cost of attribute ai for the instance

rj . Every attribute ai takes values from a domain Di,

which contains the empty value denoted by ɛ. Between

two domains Di and Dj relations can be defined (not

necessarily ordinal relations), such as: less or equal (≤)
(or), equal (=), greater or equal (≥), etc. We represent

by M the set of all possible relations that can be defined

on Di x Dj. A relational association rule is an expression

(ai1 , ai2 , ai3 , . . . ail) => (ai1 µ1 ai2 µ2 ai3…. µ l-l ail),

where {ai1,ai2,ai3,...,aiι }A={a1,….,am}, aij ≠aik, j,

k=1…..j ≠k and µ € M is a relation over Dij*Dij+1,Dij is

the domain of the attribute aij .if:

a)ai1,ai2,ai3,….ail occur concurrently (are non-empty) in

s% of the n instances, then we represent s the support of

the rule, and

b)we denote by R̍⊆ R the set of instances where

ai1,ai2,ai3,….ail occur together and the relations

Þ(rj,ai1) µ1 Þ(rj,ai2), Þ(rj,ai2) µ2 Þ(rj,ai3)….. Þ(rj,ail-1) µ l-1

Þ(rj,ail) hold for each instance rj from Rˈ;then we call
c=|Rˈ|/|R| the confidence of the rule.

We call the size of a relational association rule the

number of attributes in the rule. The size of a relational

association rule can be at mainly equivalent to the

number of the attributes relating the data. The users

usually need to discover interesting relational

association rules that embrace in a dataset, they are

concerned in relational rules which embrace in a

minimum number of instances i.e. , rules with support at

least smin, and confidence at smallest amount cmin (smin

and cmin are user-provided thresholds).

We defined a relational association rule in R interesting

if it’s maintain s is greater than or equal to(≥) a user-

specified minimum support, smin, and its confidence c is

larger than or equivalent to a user-specified minimum

confidence, cmin. We have previous introduced in [6] an

A-Priori [1] like algorithm, called DOAR (Discovery of

Ordinal Association Rules), that capably finds all

ordinal association rules (i.e. relational association rules

in which the relations are ordinal) of any span, that hold

over a dataset.

In the following a lengthy explanation of the

discovering interesting ordinal association rules will be

given [6]. The method of discovering interesting ordinal

association rules in a dataset will be complete in our

approach towards identifies relational association rules.

DOAR algorithm identifies ordinal association rules are

using an iterative process that consists in length-level

invention of candidate rules, followed by the

authentication of the candidates for minimum support

and confidence compliance. DOAR algorithm performs

various passes over the dataset R. First pass, it

calculates the support and confidence of the 2-length

rules and determines which of them are motivating, (i.e.

verify the minimum support and confidence

requirement). Each subsequent pass over the data

contains two phases. The first phase starts with a

beginning set of (k-1)-length (k ≥ 3) interesting rules,
found in the before pass. This set is used to generate

new possible k-length interesting rules, called candidate

rules.

The candidate building process is a key element of the

DOAR algorithm. In the second phase, a scan in excess

of the R data is performed in order to calculate the

actual support and confidence of the aspirant rules. At

the conclusion of this step, the algorithm maintains the

rules that are deemed interesting (have minimum

support and assure the confidence requirements), will be

used in the next iteration. The process ends when no

new interesting rules were found in the newest iteration.

The DOAR algorithm considerably prunes the

exponential search space of all achievable interesting

ordinal association rules, suitable to the candidate

generation method. The candidate generation restricts

the look for those regions of the find space where it is

feasible that motivating rules may exist, pruning out all

the regions where it is not possible to find any

interesting rules. The investigate space reduction

depends on the data being analyzed. The better the

number of interesting rules in the dataset is, the larger

the size of the candidate sets will be. We have

established that the proposed algorithm is exact and

complete. We have shown that it capably explores the

investigate space of the possible rules. Additional the

DOAR algorithm and its notional validation are given in

[6].

The DOAR algorithm is total in our approach towards

the DRAR algorithm (Discovery of Relational

Association Rules) for discovery interesting relational

association rules, i.e. association rules which are

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

123

All Rights Reserved © 2016 IJARBEST

capable to capture different types of relationships

between record attributes. Our present implementation

provides two functionalities:

Finds all interesting relational association rules of any

size.

Finds all maximal interesting relational association rules

of any size, i.e. if an attractive rule r of a certain length

can be extended with one attribute and it leftovers

interesting , only the extended rule is kept.

5. DISCOVERY OF ORDINAL ASSOCIATION

RULES -DOAR

The new algorithm, called as DOAR

(Discovery of Ordinal Association Rules), to determine

all the interesting ordinal rules of any length in a data

set. Algorithm is forced by the Apriori algorithm for

determining Boolean association rules in a transactional

data set. Particularly, rules identification is an iterative

procedure that consists in length-level generation of

candidate rules, followed by the authentication of the

candidates for minimum support and confidence

fulfillment.

The DOAR algorithm performs several passes over the

data set R. The first pass, it evaluates the support and

assurance of the 2-length rules and determines which of

them are motivating, i.e., validate minimum support and

confidence requirement. In each subsequent pass over

the data, we found with a seed set of interesting rules,

found in the previous pass. We use this set to produce

new achievable interesting rules, called candidate rules,

and we estimate the real support and confidence of these

candidates in the scan of the data, by the end of this

step, we maintain the rules that are deemed attractive,

which will be used in the after iteration. The process

stops when no new attractive rules were found in the

most recent iteration. The remainder of this section

explains in details and formalizes the most important

steps of the algorithm, discusses the complexity of the

algorithm.

The DOAR Algorithm

DOAR algorithm contains following steps:

• Ck is the set of k-length candidate rules ,a k-length

Candidate rule is a series of incomplete orderings

between k attributes, 2 ≤ k ≤ m;

• Lk is the place of the k-length interesting (i.e., support

And confidence larger than or equivalent with min_s

and min_c, correspondingly) ordinal rules found by

DOAR. It will be proved that Lk is equivalent to the set

of all k-length interesting ordinal association rules

presented in data, 2 ≤ k ≤ m. The DOAR algorithm starts

by generating C2, calculating the support and

confidence for each candidate rule in C2, and formative

L2. Intended for the set M = {≤, =, ≥} of partial ordering

relations between attributes and the binary candidate

rules (C2) are generated. The L2 set is determined by a

scan of the data and is the initial point of the following

steps in the iterative process engaged by DOAR.

Every iteration consists of two phases:

• Initial, DOAR generates the k-length candidate rules

Set, Ck (k≥3), by means of the set of (k-1)-length

interesting rules, Lk-1. The candidate creation process

is the input element of the algorithm.

 • In that case, a scan of the R data set is perform, as

computing the support and the confidence of each

candidate rule in Ck. The candidates in Ck that have

minimum support and convince the confidence

requirements are attractive ordinal association rules

and consequently are integrated in Lk.

At every iteration, candidates are generated by the

GenCandidates function (see [6]). The GenCandidates

task has dispute the Lk-1 set of (k-1)-length interesting

rules and precedes Ck, a superset of the set of the

exciting k-length rules. The elements of Ck are

sequences of incomplete orderings between k

attributes, defined as candidate k-length rules.

GenCandidates performs the candidates in Ck in the

following manner. Every unordered couple of rules

(rule1, rule2), rule1, rule2 ∈ Lk-1, which satisfy one of

the formats below, is combined into a candidate rule c.

To simplify the information in these formulas, we only

write from each rule the incomplete orderings

sequence (i.e., the right hand side of the rule).

.

6. METHODOLOGY

In that we introduce a novel supervised technique for

detecting software entities with the defects, based on

Relational Association Rule Mining, called as DPRAR

(Defect Prediction using Relational Association

Rules).

 THEORETICAL MODEL

The main idea of this approach is to describe the

entities (classes, modules, methods, functions) of a

software structure as a multidimensional vector and

whose elements are the values of different software

metrics applied to the specified entity. In order to give

a formal description, we regard as that a software

system S is a group of components (i.e entities)

S={s1,s2,…..,sn }. It is well known that software

metrics are broadly used to measure the software

quality. As we mean to identifying software entities

having defects, we regard as a set of software metrics

(the aspect set in a vector space model based approach)

applicable for deciding if a software entity is or not

defective. Therefore, we have a feature set of software

metrics SM={sm1,sm2,…,smk} and thus every entity si

€S from the software system can be indicated as a k-

dimensional vector, having as components the values

of the software metrics from SM, si=(Si1,Si2,…Sik) (sij

represents the value of the software metric smj applied

to the software entity Si).

7. OUR APPROACH
In that mostly focus on is a binary classification

problem. There are two achievable classes, represented

in the following by ‘‘+’’ and ‘‘-’’. By ‘‘+’’ we indicate

the class corresponding to software entities that having

defects, also the entities that be in the right place to the

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

124

All Rights Reserved © 2016 IJARBEST

‘‘+’’ class will be referred to as positive instances or

defects, by means of ‘‘-’’ we denote the class
equivalent to software entities that are not defective,

and the entities that be in the right place to the ‘‘-’’
class will be referred to as unconstructive instances or

non-defects.

The main task of our approach is the

subsequent. In a supervised learning scenario for

predicting faulty software entities, two sets contain

positive and negative instances are given. The vector

space model, these datasets consist of k-dimensional

software entities as of a software system. These are the

sets will be used for training the classifier. For the

period of training, the DRAR algorithm will be used.

We discover in the training datasets all the attractive

relational rules, with value to the user-provided

support and confidence thresholds. Once the training

was completed, when a new occurrence (software

entity) has to be classified (as ‘‘+’’ or ‘‘-’’), we
explanation as follows. Considering the rules exposed

in training in the set of positive and negative instances,

contains two scores, score+ (indicating the similarity

degree of the instance to the positive class) and score-

(indicating the parallel degree of the instance to the

negative class), and is computed. If score+ is greater

than score-, then the query occurrence will be

classified as a positive instance, or else it will be

classified as a negative instance.

The procedure takes place in two phases that

reveal the principles of a supervised learning algorithm

called training and testing. For the duration of training

a classification model will be built, in testing, the

model built during training will be applied for

classifying an hidden instance. The same as mentioned

above, we consider for training two datasets: DS+

consisting of positive k-dimensional instances

(software entities that are defective) and DS- consisting

of negative k-dimensional instances (software

instances are not defective). These datasets be use in

the training step of the DPRAR classifier and a

classification model consisting of the exposed

relational association rules is constructing. By the

classification time, as a new instance (software entity)

e has to be classified, the model academic during the

training step will be used for computing the parallel

degrees of the instance e to the positive and negative

classes, i.e. to expect if the query instance is or not

defective. In favor of classifying software entity is

defective or not, the following steps will be performed:

1. Data pre-processing.

2. Training/building the DPRAR classifier.

3. Testing and classification.

These are following will describe these steps.

7.1 DATA PRE- PROCESSING

In that, the training data are scaled to [0,1]

and a numerical analysis is passed out on the training

datasets DS+ and DS- in organize to discover a

separation of features that are correlated with the

target output. The numerical analysis on the features is

performed in arrange to reduce the dimensionality of

the input data, through eliminating features which do

not broadly influence the output value.

To find out the dependencies between

features and the objective output, the Spearman’s rank
correlation coefficient [24] is used. A Spearman

correlation of 0 between two variables are X and Y

indicates that there is no movement for Y to also

increase or decrease while X increases. The Spearman

correlation of 1 or -1 result when the two variables

should be compared is monotonically related, still if

their relationship is not linear. At the numerical

analysis step we take away from the feature set those

features that have no major influence on the target

output, i.e. are to some amount correlated with it.

In order to choose which features to

eliminate, explanation as follows. For every feature

(software metric) smi €SM we compute the Spearman

correlation (cor (smi, target)) among the feature and

the target output (defect or non-defect). Let us specify

by m the average is a value and stdeV the standard

deviation of the correlations among all features and

the target output. We regard as that a feature smi is

slightly interrelated with the target classification

output and will be eliminated from the feature set if

the total value of the correlation is less than m - stdeV,

i.e. abs (cor (smi, target)) < m – stdeV. The dataset

pre-processed likewise we can be used for

construction the relational association rule based

classification model.

7.2 TRAINING

In training, we describe a set of relations

between the feature values that are used in the

relational association rule mining process. Exactly, we

are focusing on identify relations between two

software metrics , dealings that would be relevant for

deciding but a software entity is defective or not, and

accordingly would be useful in the mining process.

After the relations are distinct, the interesting

relational association rules are revealed in the training

datasets. Exactly, the training contains of the following

steps:

 By the DRAR algorithm we can determine DS+,

the set of RAR+ relational association rules

consists of minimum support and confidence.

 By using DRAR algorithm we can calculate DS-

the set RAR- of relational association rules

consists of minimum support and confidence.

 For each rule r from the sets RAR+ and RAR-

strong-minded as indicated above, the support

(denoted by supp(r)) and the confidence

(denoted by conf (r)) of the rule are computed.

We indicate in the following by ratio(r) the

value obtained by separating the confidence of

the rule to its support, i.e.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

125

All Rights Reserved © 2016 IJARBEST

 Ratio (r) =
�௢௡�ሺ௥ሻ௦�௣௣ሺ௥ሻ .

7.3 CLASSIFICATION

 In classification phase, once the training

was completed and the DPRAR was built, once a

new software entity e has to be classified, we

calculate the scores score+ (e) (the similarity of e to

the positive class) and score- (e) (the similarity of e

to the Negative class). In calculating these scores we

started based on the perception that the similarity of

an instance e to the positive class, for example, is

very possible to be influenced by the rules from

RAR+ that are verified in the entity e but also by the

rules from RAR_ that are not confirmed in the entity

e. In this way, score+ measures simply how ‘‘close’’
the entity is to the positive instances, even though

how ‘‘far’’ it is from the negative ones.
We suggest the following steps for calculating the

scores:

 Find out n+ as the average values of ratio(r) for

each rule r from RAR+ that is verified in the

entity e and n- as the average values of ratio(r)

for each rule r from RAR- that is not verified in

the entity e.

 Calculate score+ as score+ = n++ n-.

 Determine m- as the average values of ratio(r)

for each rule r from RAR- that is verified in the

entity e and m+ as the average values of ratio(r)

for each rule r from RAR+ that is not verified in

the entity e.

 Calculate score- as score- = m- + m+.

The above offered score computation

method takes into consideration the strength of the

unproven and proven rules (by using the value of

ratio, which increase as the confidence of the rule

increases), although there are other potential for

score calculation as well as using only the number of

these rules, or calculating one single score, which

can be changed into a class label with the use of a

threshold. In the future we will examine extra score

calculation formulas. At the classification stage of a

new instance e if score+ > score_ then instance e

will be specified as a positive instance (Defect),

otherwise it will classify as a negative instance (non-

defect).

7.4 TESTING

In testing by using ‘‘leave-one-out’’
methodology we can evaluate the performance our

classifier. As for a binary classification task, the

confusion matrix for the two achievable outcomes

(negative and positive) is calculated. The confusion

matrix will be shown below.

.

 Fig. 1: Confusion matrix and performance metrics

 for discrete classifiers.

The Confusion matrix consists of the

number of true positives (TP) (TP – The no of real

positive instances predicted as positive), the number

of false positives (FP) (FP – the number of real

negative instances predicted as positive), the no of

true negatives (TN) (TN – the no of actual negative

instances predicted as negative) and the no of false

negatives (FN) (FN – the no of actual positive

instances predicted as negative).

The result gives us different evaluation measures

those values are computed based on the values from

the confusion matrix. Why, in order to better

compare our method to the presented ones, we are

going to use in this paper a combination of the

measures that be used in the previous to calculate

software defect predictors.

When taking into consideration the values

calculated from the confusion matrix, the subsequent

estimate measures for defect detectors will be used

in this paper:

1. The classification accuracy (represented by

“Acc”) communicates to the percentage of

instances that are classified correct (or) wrong

by a classifier,

 i .e., Acc =
��+����+��+��+�� .

2. The probability of detection (represented by

Pd), the classifier computes the amount of

actual positives which are predicted positive,

 i.e., Pd =
�� TP+FN .

3. The specificity of the classifier (represented by

“Spec”) calculates the proportion o actual

negatives which are predicted negative,

 i.e., Spec = TNTN+FP .

.

4. The classification precision (represented by

“Prec”) procedures the proportion of predicted

positives which are real positive,

 i.e., Prec =
TPTP+FP .

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

126

All Rights Reserved © 2016 IJARBEST

5. The Area under the ROC curve measure (AUC) is

represented as one of the best estimation measure to

compare different classifiers and it is recommended

as the most important accuracy indicator for relative

studies in software defect prediction. The ROC

(Receiver Operating Characteristics) curve is a two-

dimensional design of sensitivity vs. (1- specificity).

ROC curves are generally constructed for classifiers

which, in its place of directly returning the class of

an instance and return a score that is transformed

into a label using a threshold. Some cases, special

(sensitivity, 1-specificity) pairs are obtained for

every threshold, which are represented on the ROC

curve. In case of classifiers returning the class

directly, the ROC space has a single point. In this

point can be linked to the points at (0, 0) and (1, 1),

hence producing a curve, intended for which the

AUC measure can be computed.

 The ROC curves constructed for our

preferably, detectors have high Pd; specificity and

AUC. These measures have to be maximized in

order to achieve better detectors. In experimental

part of the paper (Section 8), these evaluation

measures will be used for comparing the results

given by the DPRAR classifier to the results of the

classifiers previously existing in the software

engineering literature.

.

8. EXPERIMENTAL EVALUATION

 The experimentally evaluating our

approach for defect discovery using relational

association rules, as well as providing a comparison

with other existing related approaches. The case

studies used in our experiment, the method used, as

well as the gained results are showed in the

following. The datasets used in our experiments are

open source and available at [13], a software

engineering repository made publicly available in

order to support repeatable, verifiable, and

improvable analytical models of software

engineering. These are the 13 public fault data

repositories, from those we will use 10, frequently

called NASA datasets, and were initially published

at NASA’s Independent Verification and Validation

(IV&V) Facility website [12]. They were taken over

by the PROMISE (Predictor Models In Software

Engineering) repository, which has recently moved

to a original address, and the older one is no longer

available. A latest study initiate that out of 208

defect prediction studies 58 used at least one NASA

dataset. In 2011 Gray et al. Describe that these

datasets need serious data cleaning earlier than

analysis, because they contain duplicated and

unpredictable instances, mainly the Promise version

of the datasets. Based on that Shepperd et al. in [18]

first present that the datasets on the unique IV&V

website and the ones at the Promise site are different

both in number of instances and number of

attributes. Then, they recognize possible problems

with attributes and instances and present an

algorithm that cleans the data; equally the

implementation and the cleaned datasets are

available online at the NASA – Software Defect

Datasets webpage [13]. There are really two cleaned

versions for each datasets: DS’- where duplicated

and inconsistent instances are kept, and DSˈˈ- where

duplicated and inconsistent instances are eliminated

as well. These cleaned datasets are presently

available in the Promise repository [9] as well. In all

our analysis we have used the DSˈˈ version of the

datasets, taken from [13].

In our evaluation we are focusing on detecting

software modules that are likely to be defective, thus

an entity is measured to be a module, which can be a

function, procedure or method, depending on the

programming language. We declare that the DPRAR

classifier is general, and it can also be used for

detecting potential defective application classes,

subprograms, etc., if a proper representation of these

entities is provided.

 The methodology represented as applied for

each case study. The first stage, the data pre-

processing stage that depends on the measured

dataset will be complete for each case study. The

previous steps of DPRAR, specifically building the

DPRAR classifier and the testing step are useful.

The datasets pre-processed as indicated above, are

used for building the DPRAR classifier. In support

of all the experiments, we have measured two

possible relations between the software metrics

characterize a software entity: ≤ and > (we have

measured that the relations are not defined between

zero valued software metrics) and we execute the

classification algorithm with minimum support

threshold Smin = 0.9 and dissimilar values for the

minimum confidence thresholds for the dataset

contains positive and negative instances. The

minimum confidence threshold consider for the

dataset DS+ is denoted by c
+

min and the minimum

confidence threshold considered for the dataset DS-

is denoted by c
-
min.

 While conducting the case studies, we used

a software framework that we have planned for

binary classification, based on the finding of

interesting relational association rules. This interface

implements the DRAR algorithm (a variation of the

DOAR algorithm previously introduced in [6])

developed for detecting relational association rules

in a dataset.

8.1. The CM1 dataset

The CM1 dataset shows a NASA spacecraft

instrument written in the C programming language.

It contains 42 positive instances i.e. defects and 285

negative instances i.e. non-defects, meaning that

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

127

All Rights Reserved © 2016 IJARBEST

there are 12.84% positive instances and 87.16%

negative instances. Every instance has 37 features

and the class label.

8.1.1. DPRAR results

Fig. 2 represents the complete values of the

correlations between the features (software metrics)

and the target output (defects or correct) designed

for the CM1 dataset.

 Fig. 2. Correlations for the CM1 dataset.

Case

study

C +

Min

C-

min

Len

Acc

Pd

Spe

c

Prec

Acc

CM1

0.92 0.94 Any 0.87 0.92 0.86 0.5 0.89

KC1

0.8 0.82 2 0.82 0.81 0.82 0.62 0.82

KC3

0.88 0.96 2 0.83 0.88 0.81 0.52 0.85

MC2

0.96 0.99 Any 0.89 0.77 0.96 0.91 0.86

 Table .1.Obtained results for datasets

8.2. The KC1 dataset

The KC1 dataset contains data in favour of a

C++ system implementing storage management for

receiving and processing ground data. It contains

314 positive instances (defects) and 869 negative

instances (non-defects), meaning that there are

26.54% positive instances i.e. defects and 73.46%

negative instances i.e. non defects. Every instance

has 21 features and the class label.

8.2.1. DPRAR results

Fig. 4 shows the absolute values of the

correlations between the features (software metrics)

and the target output (defects or correct) for the KC1

dataset. As a result of the analysis indicated we

concluded that the third feature (software metric)

loc_code_and_comment is somewhat correlated

with the target output and it should therefore be

removed from the feature set.

Table 1 presents the most excellent result obtained

by the DPRAR classifier for the KC1 dataset (pre-

processed as indicated below). We should point out

that the maximal interesting relational association

rules of various lengths (i.e. 2-length rules vs. any

length rules) were measured for this case study

collectively with different values for the minimum

confidence thresholds.

8.3. The KC3 dataset

The KC3 dataset contains data about a system

written in Java for processing and delivery of

dependency metadata. It contains 36 positive

instances (defects) and 158 negative instances (non-

defects), meaning that there are 18.56% positive

instances and 81.44% negative instances. Each

instance has 39 features and the class label.

8.3.1. DPRAR results

As a result of the analysis indicated, we

concluded that there is no slightly correlated feature

(software metric) the output for the KC3 dataset.

Consequently, the feature set remained the same and

no features were removed from it.

Table 1 presents the best result obtained by the

DPRAR classifier for the KC3 dataset (pre-

processed as shown below). We should declare that

the maximal interesting relational association rules

of various lengths (i.e. 2-length rules vs. any length

rules) were measured for this case study together

with different values for the minimum confidence

thresholds.

 Fig.3. Correlations for the KC1 dataset.

8.4. The MC2 dataset

The MC2 dataset contains data regarding a video

direction system, written in C/C++. It consists of 44

positive instances (defects) and 81 negative instances

(non-defects) that contain 35.2% positive instances

and 64.8% negative instances. Each instance has 39

features and the class label.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

128

All Rights Reserved © 2016 IJARBEST

 Fig. 4. Correlations for the MC2 dataset

8.4.1 DPRAR results

Fig. 4 represents the complete values of the

correlations among the features (software metrics)

and the target outputs (defect or correct) for the

MC2 dataset.

As a result of the analysis indicated that features

(software metrics) 4 (loc code and comment), 8

(cyclomatic density) and 32 (normalized cyclomatic

complexity) are somewhat correlated with the target

Output and they should consequently removed from

the feature set.

Table 1 presents the best result obtained by the

DPRAR classifier for the MC2 dataset (pre-

processed as indicated below). We should mention

that the maximal interesting relational association

rules of different lengths (2-length rules between

any length rules) were considered for this case study

mutually with dissimilar values for the minimum

confidence thresholds length rules) were considered

for this case study collectively with dissimilar values

for the minimum confidence thresholds.

9. Discussion

In that we aim at analyzing the method

proposed in this paper by emphasizing its

advantages and drawbacks, at the same time

comparing the DPRAR classifier to other similar

approaches existing in the software engineering

defect detection literature.

The subsequent provides a comparison between the

DPRAR method introduced in this paper and the

CBA2 method, the 1R classifier, the Bagging

classifier and the EDER-SD. The foremost reason

for selecting the CBA2; 1R; Bagging and the EDER-

SD methods for evaluation is that they were applied

on datasets from the NASA repository [36],

accordingly a evaluation of the obtained results is

potential is the majority cases. One more reason is

that CBA2 is a classification method based on

association rule mining (DPRAR), EDER-SD is rule

based (as DPRAR is) and 1R and Bagging were

identified as the classifiers with the maximum

accuracy among the classifiers that were

experimented on the NASA datasets. And also we

can conduct the comparison based on before results,

that it will show DPRAR classifier better

performance.

10. Conclusions and future work

We establish in this paper a classification

model based on relational association rule finding

for detecting in software systems software entities

that are possible to be defective. Experiments were

conducted in order to detect defective software

modules, and the achieve results have shown that

our classifier (DPRAR) is better than, or comparable

to the classifiers previously useful for software

defect detection, indicating the potential of our

proposal.

Further work in the relational association rules

invention will be made in order to discover and

regard as different types of relations between the

software metrics, relations that may be related in the

mining process. We will also examine how the size

of the rules and confidence of the relational

association rules discovered in the training data may

influence the accuracy of the classification task.

Instructions to hybridize our classification model, by

combining it with other machine learning based

predictive models [11] will be considered too. We

also plan to extend our model considering fuzzy

relational association rules [14] and investigate their

usefulness in software defect detection.

11. REFERENCES

1. R. Agrawal, R. Srikant, Fast algorithms for mining

association rules in large databases, in: Proceedings

of the 20th International Conference on Very

Large Data Bases, Morgan Kaufman Publishers Inc.,

San Francisco, CA, USA, 1994, pp. 487–499.

2. M. Baojun, K. Dejaeger, J. Vanthienen, B. Baesens,

Software defect prediction based on association rule

classification, Open Access publications from

Katholieke Universiteit Leuven

urn:hdl:123456789/296322, Katholieke Universiteit

Leuven (February 2011).

3. E. Baralis, L. Cagliero, T. Cerquitelli, P. Garza,

Generalized association rule mining with

constraints, Inform. Sci. 194 (2012) 68–84.

4. G.D. Boetticher, Advances in Machine Learning

Applications in Software Engineering, IGI Global,

2007 (Ch. Improving the Credibility of Machine

Learner Models in Software Engineering).

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

129

All Rights Reserved © 2016 IJARBEST

5. L.C. Briand, W.L. Melo, J. Wust, Assessing the

applicability of fault-proneness models across

object-oriented software projects, IEEE Trans.

Softw. Eng. 28 (7) (2002) 706–720.

6. A. Campan, G. Serban, T.M. Truta, A. Marcus, An

algorithm for the discovery of arbitrary length

ordinal association rules, DMIN (2006) 107–113.

7. D. Gray, D. Bowes, N. Davey, Y. Sun, B.

Christianson, The misuse of the NASA metrics data

program data sets for automated software defect

prediction,in: Proceedings of the Evaluation and

Assesment in Software Engineering, 2011, pp. 96–
103.

8. A. Marcus, J.I. Maletic, K.-I. Lin, Ordinal

association rules for error identification in data sets,

in: Proceedings of the Tenth International

Conference on Information and Knowledge

Management, CIKM ’01, ACM, New York, NY,
USA, 2001, pp. 589–591.

9. T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J.

Krall, F. Peters, B. Turhan, The promise repository

of empirical software engineering data, June 2012

<http://promisedata.googlecode.com>..

10. B. Minaei-Bidgoli, R. Barmaki, M. Nasiri, Mining

numerical association rules via multi-objective

genetic algorithms, Inform. Sci. 233 (2013) 15–24.

11. T.M. Mitchell, Machine Learning, McGraw-Hill,

New York, 1997.

12. NASA independent verification& validation facility

http://www.nasa.gov/centers/ivv/home/index.html>.

13. NASA software defect datasets <http://nasa-

softwaredefectdatasets.wikispaces.com/>.

14. Bin Pe, Suyun Zhao, Hong Chen, Xuan Zhou,

Dingjie Chen, FARP: Mining fuzzy association rules

from a probabilistic quantitative database, Inform.

Sci. 237 (2013) 242–260.

15. N.J. Pizzi, A fuzzy classifier approach to estimating

software quality, Inform. Sci. 241 (2013) 1–11.

16. M.S. Rawat, S.K. Dubey, Software defect prediction

models for quality improvement: a literature study,

Int. J. Comp. Sci. Iss. 9 (2) (2012) 288–296.

17. D. Rodriguez, R. Ruiz, J.C. Riquelme, J.S.N.

Aguilar-Ruiz, Searching for rules to detect defective

modules: a subgroup discovery approach, Inform.

Sci. 191 (2012) 14–30.

18. M. Shepperd, Q. Song, Z. Sun, C. Mair, Data

quality: some comments on the NASA software

defect data sets, IEEE Trans. Softw. Eng. 99 (2013)

1(PrePrints).

19. F. Simon, F. Steinbruckner, C. Lewerentz, Metrics

based refactoring, in: CSMR ’01: Proceedings of the
Fifth European Conference on Software

Maintenance and Reengineering, IEEE Computer

Society, Washington, DC, USA, 2001, pp. 30–38.

20. Q. Song, Z. Jia, M. Shepperd, S. Ying, J. Liu, A

general software defect proneness prediction

framework, IEEE Trans. Softw. Eng. 37 (3) (2011)

356–370.

21. S. Stehman, Selecting and interpreting measures of

thematic classification accuracy, Rem. Sens.

Environ. 62 (1) (1997) 77–89.

22. P.-N. Tan, M. Steinbach, V. Kumar, Introduction to

Data Mining, first ed., Addison-Wesley, Longman

Publishing Co., Inc., Boston, MA, USA, 2005.

23. G. Serban, A. Campan, I.G. Czibula, A

programming interface for finding relational

association rules, Int. J. Comput., Commun. Control

I (S.) (2006) 439– 444.

24. C. Spearman, The proof and measurement of

association between two things, Am. J. Psychol. 15

(1904) 72–101.

http://www.nasa.gov/centers/ivv/home/index.html

	1. INTRODUCTION

