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Abstract: Software defect prediction focus to automatically discover defective software modules, in order to help software testers 

focus their time and effort on those modules which are likely to contain faults. Many machine learning algorithms have been used 

for this classification task. A novel software defect prediction method, called DPRAR, which uses relational association rules to 

classify modules for predicting whether a software module is or is not defective. Relational association rules are an expansion of 

ordinal association rules, which are a particular type of association rules that describe numerical orderings between attributes that 

usually occur over a dataset. DPRAR analyses how close the module is for faulty instances and the non-faulty instances. An 

experimental evaluation of the proposed model on the open source NASA datasets, as well as an evaluation to similar existing 

approaches is provided. The obtained results show that DPRAR classifier over performs, for most of the considered evaluation 

measures which conforms potential than the existing machine learning based techniques for defect prediction. 
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1. INTRODUCTION    

Software quality -is considered of great importance 

in the software engineering field. Thus, building software 

of high quality is very expensive task. Consequently in 

order to increase the efficiency and usefulness of quality 

declaration and testing, software defect prediction is used 

to find out defect-prone modules in a forthcoming 

version of a software system and help assign the effort 

on those modules.  

Association rule mining–finding attribute value 

conditions that occur repeatedly together in a dataset. 

Ordinal association rules are described as an exact type 

of association rules. Particular a set of records 

represented as set of attributes, the ordinal association 

rules identify ordinal relationships between verification 

attributes that seize for a particular percentage of the 

records. But, in real world datasets, attributes with 

special domains and relationships between them, other 

than ordinal, do really exist. Sometimes, ordinal 

association rules are not strong sufficient to describe data 

regularities. Accordingly, relational association rules 

were introduced in [24] in order to be able to capture 

different kinds of relationships between record attributes. 

 The paper invests a novel classification model for 

the problem of defect prediction, based on the plan of 

discovering relational association rules within a dataset. 

To find whether a software module is defective or not is 

of main role for the maintenance and development of 

software systems, as developers are always concerned in 

improving the software quality. The results found by 

evaluating the classification model proposed in this paper 

do verify that applying relational association rule mining 

for defect detection is capable and indicate the potential 

of our suggestion. Moreover, the use of relational 

association rules in discovery software entities as being 

defective or not, is a new approach. 

 

 

 

2. MOTIVATION 

Identifying the software entities like classes, modules, 

methods, and functions that are defective is of main 

importance as it facilitates progress software 

development and maintenance. Although many models 

have been proposed in the software defect prediction 

literature, this problem has not been completely solved 

so for researchers are still focus on developing more 

accurate defect predictors. Recent results show that 

researchers should focus on improving the quality of the 

data in order to overcome the limits of the existing 

software prediction model. 

 

     Relational association rules-- [24] were 

introduced as   an expansion to association rules, in 

order to be capable to discover different kinds of 

relations or correlations that exist between data in large 

datasets. A software module as of a software system can 

be characterized by a set of significant software metrics 

values. These software metrics may be applicable for 

deciding if a module is defective or not. Accordingly, a 

software module can be visualized as a high 

dimensional vector and the complete software system 

can be represented as a dataset consisting of the high 

dimensional vectors equivalent to the system’s software 
modules. Within this dataset, where the records are the 

(high dimensional) software modules and the features 

are the software measurements, significant information 

can be extracted from the software metrics values 

characterizing the modules. Dissimilar types of 

relationships between the numerical feature values can 

be distinct and a relational association mining process 

can be performed on the dataset representing the 

software system. Such a mining process can offer 

interesting patterns that would be useful for predicting 

if a software module is defective or not. 

                         Our suggestion, we have started 

from the perception that when deciding if a software 

entity is defective, relational association rules may be 
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efficient, as relationships between the software metrics 

values characterizing the software entities may be 

applicable. These relationships may communicate 

quantitative information that may exist in the vector 

characterizing a software entity. It is possible that these 

relationships could provide important information 

regarding defective entities.  While many methods for 

software defect prediction do exist within the software 

engineering text, recent researches are still passed out 

for proposing more accurate software defect predictors 

and for overcoming the drawbacks and limitations of 

the presented models. Relational association rule 

mining has not been applied so far for predicting if a 

software entity is defective or not. Thus in this paper at 

developing a novel method based on relational 

association rules, whose usefulness will be shown 

through the experimental results. 

 

 

3.  DEFECT PREDICTION 

In that the aim of presenting the problem of defect 

prediction and its importance, as well as presented 

machine learning based approaches for solving the 

consider problem. 

 

3.1. Problem statement and relevance 

The automated evaluation of software, in conditions of 

defect prediction, is of main importance to the software 

engineering community and researchers are endlessly 

focusing on building accurate and responsible 

predictors using legacy data. In order to bring high 

quality software on time, software project managers, 

quality managers and software developers require to 

always focusing on detect and correct software defects 

at all stages of the development process. Defects such 

as faults or bugs represent a main issue in planning the 

on-time-delivery and the quality of the released product 

mainly during the maintenance and development of a 

software project. The product quality is highly 

connected with the defects. So high importance for         

developers and project managers to declare a software 

development with as only some errors as possible. In 

this direction, software defect prediction helps in 

finding, tracking and resolving software anomaly that 

might have an achieve on human security and lives, 

particularly in safety dangerous systems. Defect 

prediction also allows changes to be made previously in 

the software life-cycle, assuring this way a lesser 

software cost and improving customer satisfaction .A 

software defect shows any error or deficiency in a 

software object or a software process and a major focus 

is on finding those defects that manipulate project or 

product performance. Several software defect predictors 

use software metrics to measure the software quality in 

order to predict software defects. Consequently, 

software defect prediction is the duty of classifying 

software modules into the fault-prone and the non-fault-

prone ones by using metric-based classification. Mainly 

defect prediction techniques used in planning are based 

on past data, hence rely on supervised classification. 

3.2 RELATED WORK 

Although association rules are generally used in an 

unsupervised learning situation, different extensions for 

classification are presented in the future. One of them is 

the CBA method, presented in, where class association 

rules, i.e. association rules whose following is a class 

label, are mined. Presents an extension of this method, 

called CBA2, where rules predicting various classes can 

have a various minimum support, to solve the data 

imbalance problem.  

Ma et al. use in the CBA2 method for finding defective 

software modules. Experiments on the NASA datasets 

are performed and comparisons with additional rule 

based classification methods are given. The authors also 

inspect whether the association rule sets that were 

provided based on the data from one software project 

can be used to calculate defective software modules in 

other, similar software projects. 

Rodriguez et al. introduce in a Subgroup Discovery 

(SD) algorithm named EDER-SD means Evolutionary 

Decision Rules for Subgroup Discovery i.e based on 

evolutionary estimation and generates rules describing 

only fault-prone modules. The results performed on 

datasets from NASA showed that the EDER-SD 

algorithm shows well in the majority cases when 

compared to three other well related SD algorithms. 

Moreover rule-based methods, many different machine 

learning algorithms have been useful to the problem of 

defect prediction. Menzies et al., in which they compute 

the Naive Bayes classifier (NBC), OneR and J48. They 

have also experimented with different filters and 

finished that, on average, logarithmic filtering and 

Naive Bayes formed the best results on the 8 used 

NASA datasets.  Presents a literature study about a pair 

of methods that are often used for defect prediction: 

small equations, machine learning methods and defect 

density prediction models. Likewise, Kaur et al. in 

shortly current clustering, categorization and association 

rule mining as software defect prediction methods. 

Challagulla et al. evaluate   some special predictor 

models on four dissimilar real-time software defect data 

sets that were in use from the NASA repository. The 

experimental results have shown that a grouping of 1-

rule classification and Instance-based Learning using 

regularity based Subset Evaluation technique provides a 

relatively enhanced reliability in accuracy prediction 

compared to other models. 

Haghighi et al. gives a comparative analysis of 37 

dissimilar classifiers in fault detection systems and use 

the NASA datasets for performing an experiment. The 

results show that, on average, the Bagging classifier 

achieved a higher performance and accuracy evaluate to 

the others. 

A dissimilarity-based semi-supervised learning method, 

called ROCUS, is presented by Jiang et al. i. They use 

semi supervised learning because in defect prediction 

there is a limited degree of labeled data, whereas 
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gathering unlabeled data is easy. They are also use 

under-sampling to solve the class variation problem. 

ROCUS is calculated on eight datasets from the NASA 

repository and the results are compared to extra 

methods which are either semi-supervised methods that 

do not take into consideration the extreme data, or 

class-imbalance learning methods that cannot utilize 

unlabeled data. 

 

4. RELATIONAL ASSOCIATION RULES: 

BACKGROUND 

In relational association rule mining the goal is to find 

several relationships between the attributes that be liable 

to hold over a large percentage of records, in binary 

classification problem, then  attribute A is in relation 

with attribute B for a large number of positive instances, 

next a record in which attribute A is not in relative with 

attribute B may be a negative instance, possibly will not 

mean very much if only one rule including B is not 

satisfied, but it increases the possibility that the instance 

in query belongs to the unconstructive class if many 

such rules are broken. The following will briefly 

evaluate the theory of relational association rules, as 

well as the method for identifying the appropriate 

relational association rules that hold within a dataset. 

Let R={r1,r2,,…rn}be a set of instances (entities or 

records in the relational model),anywhere every instance 

is discriminate by a list of m attributes, (a1,. . . .  am). We 

denote by Ϸ (rj, aj) the cost of attribute ai for the instance 

rj . Every attribute ai takes values from a domain Di, 

which contains the empty value denoted by ɛ. Between 

two domains Di and Dj relations can be defined (not 

necessarily ordinal relations), such as: less or equal (≤) 
(or), equal (=), greater or equal (≥ ), etc. We represent 

by M the set of all possible relations that can be defined 

on Di x Dj. A relational association rule  is an expression 

(ai1 , ai2 , ai3 , . . .  ail ) => (ai1  µ1 ai2 µ2 ai3…. µ l-l ail), 

where {ai1,ai2,ai3,...,aiι }A={a1,….,am}, aij ≠aik, j, 

k=1…..j ≠k and µ € M is a relation over Dij*Dij+1,Dij is 

the domain of the attribute aij .if: 

a)ai1,ai2,ai3,….ail occur concurrently (are non-empty) in 

s% of the n instances, then  we represent s the support of 

the rule, and 

b)we denote by R̍⊆  R the set of instances where 

ai1,ai2,ai3,….ail   occur  together  and the relations 

Þ(rj,ai1) µ1 Þ(rj,ai2), Þ(rj,ai2) µ2 Þ(rj,ai3)….. Þ(rj,ail-1) µ l-1 

Þ(rj,ail) hold for each  instance rj from Rˈ;then we call 
c=|Rˈ|/|R| the confidence of  the rule. 
 

We call the size of a relational association rule the 

number of attributes in the rule. The size of a relational 

association rule can be at mainly equivalent to the 

number of the attributes relating the data. The users 

usually need to discover interesting relational 

association rules that embrace in a dataset, they are 

concerned in relational rules which embrace in a 

minimum number of instances i.e. , rules with support at 

least smin, and confidence at smallest amount cmin (smin 

and cmin are user-provided thresholds). 

We defined a relational association rule in R interesting 

if it’s maintain s is greater than or equal to(≥ ) a user-

specified minimum support, smin, and its confidence c is 

larger than or equivalent to a user-specified minimum 

confidence, cmin. We have previous introduced in [6] an 

A-Priori [1] like algorithm, called DOAR (Discovery of 

Ordinal Association Rules), that capably finds all 

ordinal association rules (i.e. relational association rules 

in which the relations are ordinal) of any span, that hold 

over a dataset. 

In the following a lengthy explanation of the 

discovering interesting ordinal association rules will be 

given [6]. The method of discovering interesting ordinal 

association rules in a dataset will be complete in our 

approach towards identifies relational association rules. 

DOAR algorithm identifies ordinal association rules are 

using an iterative process that consists in length-level 

invention of candidate rules, followed by the 

authentication of the candidates for minimum support 

and confidence compliance. DOAR algorithm performs 

various passes over the dataset R. First pass, it 

calculates the support and confidence of the 2-length 

rules and determines which of them are motivating, (i.e. 

verify the minimum support and confidence 

requirement). Each subsequent pass over the data 

contains two phases. The first phase starts with a 

beginning set of (k-1)-length (k ≥ 3) interesting rules, 
found in the before pass. This set is used to generate 

new possible k-length interesting rules, called candidate 

rules. 

The candidate building process is a key element of the 

DOAR algorithm. In the second phase, a scan in excess 

of the R data is performed in order to calculate the 

actual support and confidence of the aspirant rules. At 

the conclusion of this step, the algorithm maintains the 

rules that are deemed interesting (have minimum 

support and assure the confidence requirements), will be 

used in the next iteration. The process ends when no 

new interesting rules were found in the newest iteration. 

The DOAR algorithm considerably prunes the 

exponential search space of all achievable interesting 

ordinal association rules, suitable to the candidate 

generation method. The candidate generation restricts 

the look for those regions of the find space where it is 

feasible that motivating rules may exist, pruning out all 

the regions where it is not possible to find any 

interesting rules. The investigate space reduction 

depends on the data being analyzed. The better the 

number of interesting rules in the dataset is, the larger 

the size of the candidate sets will be. We have 

established that the proposed algorithm is exact and 

complete. We have shown that it capably explores the 

investigate space of the possible rules. Additional the 

DOAR algorithm and its notional validation are given in 

[6]. 

The DOAR algorithm is total in our approach towards 

the DRAR algorithm (Discovery of Relational 

Association Rules) for discovery interesting relational 

association rules, i.e. association rules which are 
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capable to capture different types of relationships 

between record attributes. Our present implementation 

provides two functionalities: 

Finds all interesting relational association rules of any 

size.  

Finds all maximal interesting relational association rules 

of any size, i.e. if an attractive rule r of a certain length  

can be extended with one attribute and it leftovers 

interesting , only the extended rule is kept. 

 

5. DISCOVERY OF ORDINAL ASSOCIATION 

RULES -DOAR 

The new algorithm, called as DOAR 

(Discovery of Ordinal Association Rules), to determine 

all the interesting ordinal rules of any length in a data 

set. Algorithm is forced by the Apriori algorithm for 

determining Boolean association rules in a transactional 

data set. Particularly, rules identification is an iterative 

procedure that consists in length-level generation of 

candidate rules, followed by the authentication of the 

candidates for minimum support and confidence 

fulfillment. 

The DOAR algorithm performs several passes over the 

data set R. The first pass, it evaluates the support and 

assurance of the 2-length rules and determines which of 

them are motivating, i.e., validate minimum support and 

confidence requirement. In each subsequent pass over 

the data, we found with a seed set of interesting rules, 

found in the previous pass. We use this set to produce 

new achievable interesting rules, called candidate rules, 

and we estimate the real support and confidence of these 

candidates in the scan of the data, by the end of this 

step, we maintain the rules that are deemed attractive, 

which will be used in the after iteration. The process 

stops when no new attractive rules were found in the 

most recent iteration. The remainder of this section 

explains in details and formalizes the most important 

steps of the algorithm, discusses the complexity of the 

algorithm. 

The DOAR Algorithm 

DOAR algorithm contains following steps: 

• Ck is the set of k-length candidate rules ,a k-length 

Candidate rule is a series of incomplete orderings 

between k attributes, 2 ≤ k ≤ m; 

• Lk is the place of the k-length interesting (i.e., support 

And confidence larger than or equivalent with min_s 

and min_c, correspondingly) ordinal rules found by 

DOAR. It will be proved that Lk is equivalent to the set 

of all k-length interesting ordinal association rules 

presented in data, 2 ≤ k ≤ m. The DOAR algorithm starts 

by generating C2, calculating the support and 

confidence for each candidate rule in C2, and formative 

L2. Intended for the set M = {≤, =, ≥} of partial ordering 

relations between attributes and the binary candidate 

rules (C2) are generated. The L2 set is determined by a 

scan of the data and is the initial point of the following 

steps in the iterative process engaged by DOAR. 

Every iteration consists of two phases: 

• Initial, DOAR generates the k-length candidate rules 

Set, Ck (k≥3), by means of the set of (k-1)-length 

interesting rules, Lk-1. The candidate creation process 

is the input element of the algorithm. 

 • In that case, a scan of the R data set is perform, as 

computing the support and the confidence of each 

candidate rule in Ck.  The candidates in Ck that have 

minimum support and convince the confidence 

requirements are attractive ordinal association rules 

and consequently are integrated in Lk. 

At every iteration, candidates are generated by the 

GenCandidates function (see [6]). The GenCandidates 

task has dispute the Lk-1 set of (k-1)-length interesting 

rules and precedes Ck, a superset of the set of the 

exciting k-length rules. The elements of Ck are 

sequences of incomplete orderings between k 

attributes, defined as candidate k-length rules. 

GenCandidates performs the candidates in Ck in the 

following manner. Every unordered couple of rules 

(rule1, rule2), rule1, rule2 ∈  Lk-1, which satisfy one of 

the formats below, is combined into a candidate rule c. 

To simplify the information in these formulas, we only 

write from each rule the incomplete orderings 

sequence (i.e., the right hand side of the rule). 

.  

6. METHODOLOGY 

In that we introduce a novel supervised technique for 

detecting software entities with the defects, based on 

Relational Association Rule Mining, called as DPRAR 

(Defect Prediction using Relational Association 

Rules). 

 

           THEORETICAL MODEL 

The main idea of this approach is to describe the 

entities (classes, modules, methods, functions) of a 

software structure as a multidimensional vector and 

whose elements are the values of different software 

metrics applied to the specified entity. In order to give 

a formal description, we regard as that a software 

system S is a group of components (i.e entities) 

S={s1,s2,…..,sn }. It is well known that software 

metrics are broadly used to measure the software 

quality. As we mean to identifying software entities 

having defects, we regard as a set of software metrics 

(the aspect set in a vector space model based approach) 

applicable for deciding if a software entity is or not 

defective. Therefore, we have a feature set of software 

metrics SM={sm1,sm2,…,smk} and thus every entity si 

€S from the software system can be indicated as a k-

dimensional vector, having as components the values 

of the software metrics from SM, si=(Si1,Si2,…Sik) (sij 

represents the value of the software metric smj applied 

to the software entity Si). 

 

7. OUR APPROACH 
In that mostly focus on is a binary classification 

problem. There are two achievable classes, represented 

in the following by ‘‘+’’ and ‘‘-’’. By ‘‘+’’ we indicate 

the class corresponding to software entities that having 

defects, also the entities that be in the right place to the 
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‘‘+’’ class will be referred to as positive instances or 

defects, by means of ‘‘-’’ we denote the class 
equivalent to software entities that are not defective, 

and the entities that be in the right place to the ‘‘-’’ 
class will be referred to as unconstructive instances or 

non-defects. 

The main task of our approach is the 

subsequent. In a supervised learning scenario for 

predicting faulty software entities, two sets contain 

positive and negative instances are given.  The vector 

space model, these datasets consist of k-dimensional 

software entities as of a software system. These are the 

sets will be used for training the classifier. For the 

period of training, the DRAR algorithm will be used. 

We discover in the training datasets all the attractive 

relational rules, with value to the user-provided 

support and confidence thresholds. Once the training 

was completed, when a new occurrence (software 

entity) has to be classified (as ‘‘+’’ or ‘‘-’’), we 
explanation as follows. Considering the rules exposed 

in training in the set of positive and negative instances, 

contains two scores, score+ (indicating the similarity 

degree of the instance to the positive class) and score- 

(indicating the parallel degree of the instance to the 

negative class), and is computed. If score+ is greater 

than score-, then the query occurrence will be 

classified as a positive instance, or else it will be 

classified as a negative instance. 

The procedure takes place in two phases that 

reveal the principles of a supervised learning algorithm 

called training and testing. For the duration of training 

a classification model will be built, in testing, the 

model built during training will be applied for 

classifying an hidden instance. The same as mentioned 

above, we consider for training two datasets: DS+ 

consisting of positive k-dimensional instances 

(software entities that are defective) and DS- consisting 

of negative k-dimensional instances (software 

instances are not defective). These datasets be use in 

the training step of the DPRAR classifier and a 

classification model consisting of the exposed 

relational association rules is constructing. By the 

classification time, as a new instance (software entity) 

e has to be classified, the model academic during the 

training step will be used for computing the parallel 

degrees of  the instance e to the positive and negative 

classes, i.e. to expect if the query instance is or not 

defective. In favor of classifying software entity is 

defective or not, the following steps will be performed: 

1. Data pre-processing. 

2. Training/building the DPRAR classifier. 

3. Testing and classification. 

These are following will describe these steps. 

 

7.1  DATA PRE- PROCESSING 

In that, the training data are scaled to [0,1] 

and a numerical analysis is passed out on the training 

datasets DS+ and DS- in organize to discover a 

separation of features that are correlated with the 

target output. The numerical analysis on the features is 

performed in arrange to reduce the dimensionality of 

the input data, through eliminating features which do 

not broadly influence the output value. 

To find out the dependencies between 

features and the objective output, the Spearman’s rank 
correlation coefficient [24] is used. A Spearman 

correlation of 0 between two variables are X and Y 

indicates that there is no movement for Y to also 

increase or decrease while X increases. The Spearman 

correlation of 1 or -1 result when the two variables 

should be compared is monotonically related, still if 

their relationship is not linear. At the numerical 

analysis step we take away from the feature set those 

features that have no major influence on the target 

output, i.e. are to some amount correlated with it.  

In order to choose which features to 

eliminate, explanation as follows. For every feature 

(software metric) smi  €SM we compute the Spearman 

correlation (cor (smi, target)) among the feature and 

the target output (defect or non-defect). Let us specify 

by m the average is a value and stdeV the standard 

deviation of the correlations among all features and 

the target output.   We regard as that a feature smi is 

slightly interrelated with the target classification 

output and will be eliminated  from the feature  set if 

the total value of the correlation is less than m - stdeV, 

i.e. abs (cor (smi, target)) < m – stdeV. The dataset 

pre-processed likewise we can be used for 

construction the relational association rule based 

classification model. 

 

7.2 TRAINING 

In training, we describe a set of relations 

between the feature values that are used in the 

relational association rule mining process. Exactly, we 

are focusing on identify relations between two 

software    metrics , dealings that would be relevant for 

deciding but a software entity is  defective or not, and 

accordingly would be useful in the mining process. 

After the relations are distinct, the interesting 

relational association rules are revealed in the training 

datasets. Exactly, the training contains of the following 

steps: 

 By the DRAR algorithm we can determine DS+, 

the set of RAR+ relational association rules 

consists of minimum support and confidence. 

 By using DRAR algorithm we can calculate DS- 

the set RAR- of relational association rules 

consists of minimum support and confidence. 

 For each rule r from the sets RAR+ and RAR- 

strong-minded as indicated above, the support 

(denoted by supp(r)) and the confidence 

(denoted by conf (r)) of the rule are computed. 

We indicate in the following by ratio(r) the 

value obtained by separating the confidence of 

the rule to its support, i.e. 
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                                          Ratio (r) =  
�௢௡�ሺ௥ሻ௦�௣௣ሺ௥ሻ . 

 

7.3 CLASSIFICATION 

 In classification phase, once the training 

was completed and the DPRAR was built, once a 

new software entity e has to be classified, we 

calculate the scores score+ (e) (the similarity of e to 

the positive class) and score- (e) (the similarity of e 

to the Negative class). In calculating these scores we 

started based on the perception that the similarity of 

an instance e to the positive class, for example, is 

very possible to be influenced by the rules from 

RAR+ that are verified in the entity e but also by the 

rules from RAR_ that are not confirmed in the entity 

e. In this way, score+ measures simply how ‘‘close’’ 
the entity is to the positive instances, even though 

how ‘‘far’’ it is from the negative ones. 
We suggest the following steps for calculating the 

scores: 

 Find out n+ as the average values of ratio(r) for 

each rule r from RAR+ that is verified in the 

entity e and n- as the average values of ratio(r) 

for each rule r from RAR- that is not verified in 

the entity e. 

 Calculate score+ as score+ = n++ n-. 

 Determine m- as the average values of ratio(r) 

for each rule r from RAR- that is verified in the 

entity e and m+ as the average values of ratio(r) 

for each rule r from RAR+ that is not verified in 

the entity e. 

  Calculate score- as score- = m- + m+. 

The above offered score computation 

method takes into consideration the strength of the 

unproven and proven rules (by using the value of 

ratio, which increase as the confidence of the rule 

increases), although there are other potential for 

score calculation as well as using only the number of 

these rules, or calculating one single score, which 

can be changed into a class label with the use of a 

threshold. In the future we will examine extra score 

calculation formulas. At the classification stage of a 

new instance e if score+ > score_ then instance e 

will be specified as a positive instance (Defect), 

otherwise it will classify as a negative instance (non-

defect). 

 

7.4 TESTING 

In testing by using ‘‘leave-one-out’’ 
methodology we can evaluate the performance our 

classifier. As for a binary classification task, the 

confusion matrix for the two achievable outcomes 

(negative and positive) is calculated. The confusion 

matrix will be shown below. 

.  

 

                 Fig. 1: Confusion matrix and performance metrics 

    for discrete classifiers. 

 

The Confusion matrix consists of the 

number of true positives (TP) (TP – The no of real 

positive instances predicted as positive), the number 

of false positives (FP) (FP – the number of real 

negative instances predicted as positive), the no of 

true negatives (TN) (TN – the no of actual negative 

instances predicted as negative) and the no of false 

negatives (FN) (FN – the no of actual positive 

instances predicted as negative). 

The result gives us different evaluation measures 

those values are computed based on the values from 

the confusion matrix. Why, in order to better 

compare our method to the presented ones, we are 

going to use in this paper a combination of the 

measures that be used in the previous to calculate 

software defect predictors. 

When taking into consideration the values 

calculated from the confusion matrix, the subsequent 

estimate measures for defect detectors will be used 

in this paper: 

 

1. The classification accuracy (represented by 

“Acc”) communicates to the percentage of 

instances that are classified correct (or) wrong 

by a classifier, 

 

                   i .e.,    Acc = 
��+����+��+��+�� . 

 

2. The probability of detection (represented by 

Pd),  the classifier computes the amount of 

actual positives which are predicted positive, 

 

                      i.e., Pd =  
�� TP+FN . 

 

3. The specificity of the classifier (represented by 

“Spec”) calculates the proportion o actual 

negatives which are predicted negative, 

 

                                     i.e., Spec =  TNTN+FP . 

. 

4. The classification precision (represented by 

“Prec”) procedures the proportion of predicted 

positives which are real positive, 

           

                 i.e., Prec   =  
TPTP+FP . 
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5. The Area under the ROC curve measure (AUC) is 

represented as one of the best estimation measure to 

compare different classifiers and it is recommended 

as the most important accuracy indicator for relative 

studies in software defect prediction. The ROC 

(Receiver Operating Characteristics) curve is a two-

dimensional design of sensitivity vs. (1- specificity). 

ROC curves are generally constructed for classifiers 

which, in its place of directly returning the class of 

an instance and return a score that is transformed 

into a label using a threshold. Some cases, special 

(sensitivity, 1-specificity) pairs are obtained for 

every threshold, which are represented on the ROC 

curve. In case of classifiers returning the class 

directly, the ROC space has a single point. In this 

point can be linked to the points at (0, 0) and (1, 1), 

hence producing a curve, intended for which the 

AUC measure can be computed. 

                 The ROC curves constructed for our 

preferably, detectors have high Pd; specificity and 

AUC. These measures have to be maximized in 

order to achieve better detectors. In experimental 

part of the paper (Section 8), these evaluation 

measures will be used for comparing the results 

given by the DPRAR classifier to the results of the 

classifiers previously existing in the software 

engineering literature. 

. 

8. EXPERIMENTAL EVALUATION 

  The experimentally evaluating our 

approach for defect discovery using relational 

association rules, as well as providing a comparison 

with other existing related approaches. The case 

studies used in our experiment, the method used, as 

well as the gained results are showed in the 

following. The datasets used in our experiments are 

open source and available at [13], a software 

engineering repository made publicly available in 

order to support repeatable, verifiable, and 

improvable analytical models of software 

engineering. These are the 13 public fault data 

repositories, from those we will use 10, frequently 

called NASA datasets, and were initially published 

at NASA’s Independent Verification and Validation 

(IV&V) Facility website [12]. They were taken over 

by the PROMISE (Predictor Models In Software 

Engineering) repository, which has recently moved 

to a original address, and the older one is no longer 

available.  A latest study initiate that out of 208 

defect prediction studies 58 used at least one NASA 

dataset. In 2011 Gray et al.  Describe that these 

datasets need serious data cleaning earlier than 

analysis, because they contain duplicated and 

unpredictable instances, mainly the Promise version 

of the datasets. Based on that Shepperd et al. in [18] 

first present that the datasets on the unique IV&V 

website and the ones at the Promise site are different 

both in number of instances and number of 

attributes. Then, they recognize possible problems 

with attributes and instances and present an 

algorithm that cleans the data; equally the 

implementation and the cleaned datasets are 

available online at the NASA – Software Defect 

Datasets webpage [13]. There are really two cleaned 

versions for each datasets: DS’- where duplicated 

and inconsistent instances are kept, and DSˈˈ- where 

duplicated and inconsistent instances are eliminated 

as well. These cleaned datasets are presently 

available in the Promise repository [9] as well. In all 

our analysis we have used the DSˈˈ version of the 

datasets, taken from [13]. 

In our evaluation we are focusing on detecting 

software modules that are likely to be defective, thus 

an entity is measured to be a module, which can be a 

function, procedure or method, depending on the 

programming language. We declare that the DPRAR 

classifier is general, and it can also be used for 

detecting potential defective application classes, 

subprograms, etc., if a proper representation of these 

entities is provided. 

           The methodology represented as applied for 

each case study. The first stage, the data pre-

processing stage that depends on the measured 

dataset will be complete for each case study. The 

previous steps of DPRAR, specifically building the 

DPRAR classifier and the testing step are useful. 

The datasets pre-processed as indicated above, are 

used for building the DPRAR classifier. In support 

of all the experiments, we have measured two 

possible relations between the software metrics 

characterize a software entity: ≤ and > (we have 

measured that the relations are not defined between 

zero valued software metrics) and we execute the 

classification algorithm with minimum support 

threshold Smin = 0.9   and dissimilar values for the 

minimum confidence thresholds for the dataset 

contains positive and negative instances. The 

minimum      confidence threshold consider for the 

dataset DS+ is denoted by c
+

min  and the minimum 

confidence threshold considered for the dataset DS- 

is denoted by c
-
min.  

  While conducting the case studies, we used 

a software framework that we have planned for 

binary classification, based on the finding of 

interesting relational association rules. This interface 

implements the DRAR algorithm (a variation of the 

DOAR algorithm previously introduced in [6]) 

developed for detecting relational association rules 

in a dataset. 

 

 

8.1.  The CM1 dataset 

The CM1 dataset shows a NASA spacecraft 

instrument written in the C programming language. 

It contains 42 positive instances i.e. defects and 285 

negative instances i.e. non-defects, meaning that 
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there are 12.84% positive instances and 87.16% 

negative instances. Every instance has 37 features 

and the class label. 

8.1.1.  DPRAR results 

Fig. 2 represents the complete values of the 

correlations between the features (software metrics) 

and the target output (defects or correct) designed 

for the CM1 dataset. 

 

 
 

                Fig. 2. Correlations for the CM1 dataset. 

 

  
 

Case 

study 

 

C + 

Min 

 

C- 

min 

 

Len 

 

Acc 

 

Pd 

 

Spe

c 

 

Prec 

 

Acc 

 

CM1 

0.92 0.94 Any 0.87 0.92 0.86 0.5 0.89 

 

KC1 

0.8 0.82 2 0.82 0.81 0.82 0.62 0.82 

 

KC3 

0.88 0.96 2 0.83 0.88 0.81 0.52 0.85 

 

MC2 

0.96 0.99 Any 0.89 0.77 0.96 0.91 0.86 

                 Table .1.Obtained results for datasets 

8.2. The KC1 dataset 

The KC1 dataset contains data in favour of a 

C++ system implementing storage management for 

receiving and processing ground data. It contains 

314 positive instances (defects) and 869 negative 

instances (non-defects), meaning that there are 

26.54% positive instances i.e. defects and 73.46% 

negative instances i.e. non defects. Every instance 

has 21 features and the class label. 

8.2.1.  DPRAR results 

Fig. 4 shows the absolute values of the 

correlations between the features (software metrics) 

and the target output (defects or correct) for the KC1 

dataset. As a result of the analysis indicated we 

concluded that the third feature (software metric) 

loc_code_and_comment is somewhat correlated 

with the target output and it should therefore be 

removed from the feature set. 

Table 1 presents the most excellent result obtained 

by the DPRAR classifier for the KC1 dataset (pre-

processed as indicated below). We should point out 

that the maximal interesting relational association 

rules of various lengths (i.e. 2-length rules vs. any 

length rules) were measured for this case study 

collectively with different values for the minimum 

confidence thresholds. 

8.3. The KC3 dataset 

The KC3 dataset contains data about a system 

written in Java for processing and delivery of 

dependency metadata. It contains 36 positive 

instances (defects) and 158 negative instances (non-

defects), meaning that there are 18.56% positive 

instances and 81.44% negative instances. Each 

instance has 39 features and the class label. 

8.3.1. DPRAR results 

As a result of the analysis indicated, we 

concluded that there is no slightly correlated feature 

(software metric) the output for the KC3 dataset. 

Consequently, the feature set remained the same and 

no features were removed from it. 

Table 1 presents the best result obtained by the 

DPRAR classifier for the KC3 dataset (pre-

processed as shown below). We should declare that 

the maximal interesting relational association rules 

of various lengths (i.e. 2-length rules vs. any length 

rules) were measured for this case study together 

with different values for the minimum confidence 

thresholds. 

 

             

               

              Fig.3. Correlations for the KC1 dataset. 

8.4. The MC2 dataset 

The MC2 dataset contains data regarding a video 

direction system, written in C/C++. It consists of 44 

positive instances (defects) and 81 negative instances 

(non-defects) that contain 35.2% positive instances 

and 64.8% negative instances. Each instance has 39 

features and the class label. 
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              Fig. 4. Correlations for the MC2 dataset 

 

 

8.4.1 DPRAR results 

Fig. 4 represents the complete values of the 

correlations among the features (software metrics) 

and the target outputs (defect or correct) for the 

MC2 dataset. 

As a result of the analysis indicated that features 

(software metrics) 4 (loc code and comment), 8 

(cyclomatic density) and 32 (normalized cyclomatic 

complexity) are somewhat correlated with the target 

Output and they should consequently removed from 

the feature set. 

Table 1 presents the best result obtained by the 

DPRAR classifier for the MC2 dataset (pre-

processed as indicated below). We should mention 

that the maximal interesting relational association 

rules of different lengths ( 2-length rules between 

any length rules) were considered for this case study 

mutually with dissimilar values for the minimum 

confidence thresholds  length rules) were considered 

for this case study collectively with dissimilar values 

for the minimum confidence thresholds. 

 

9. Discussion 

In that we aim at analyzing the method 

proposed in this paper by emphasizing its 

advantages and drawbacks, at the same time 

comparing the DPRAR classifier to other similar 

approaches existing in the software engineering 

defect detection literature.  

The subsequent provides a comparison between the 

DPRAR method introduced in this paper and the 

CBA2 method, the 1R classifier, the Bagging 

classifier and the EDER-SD. The foremost reason 

for selecting the CBA2; 1R; Bagging and the EDER-

SD methods for evaluation is that they were applied 

on datasets from the NASA repository [36], 

accordingly a evaluation of the obtained results is 

potential is the majority cases. One more reason is 

that CBA2 is a classification method based on 

association rule mining (DPRAR), EDER-SD is rule 

based (as DPRAR is) and 1R and Bagging were 

identified as the classifiers with the maximum 

accuracy among the classifiers that were 

experimented on the NASA datasets. And also we 

can conduct the comparison based on before results, 

that it will show DPRAR classifier better 

performance. 

 

10. Conclusions and future work 

We establish in this paper a classification 

model based on relational association rule finding 

for detecting in software systems software entities 

that are possible to be defective. Experiments were 

conducted in order to detect defective software 

modules, and the achieve results have shown that 

our classifier (DPRAR) is better than, or comparable 

to the classifiers previously useful for software 

defect detection, indicating the potential of our 

proposal. 

Further work in the relational association rules 

invention will be made in order to discover and 

regard as different types of relations between the 

software metrics, relations that may be related in the 

mining process. We will also examine how the size 

of the rules and confidence of the relational 

association rules discovered in the training data may 

influence the accuracy of the classification task. 

Instructions to hybridize our classification model, by 

combining it with other machine learning based 

predictive models [11] will be considered too. We 

also plan to extend our model considering fuzzy 

relational association rules [14] and investigate their 

usefulness in software defect detection. 
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