
ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

112

All Rights Reserved © 2016 IJARBEST

 A Framework for Automatic Checking Loop Invariants using

 Mutation, Dynamic Analysis and Static Checking

 P.Sasidhar reddy
1,

C.Silpa
2

psasi580@gmail.com

silpa.c8@gmail.com

1
Department of IT, Sree Vidyanikethan Engineering College, Tirupati, India

 2
Department of IT, Sree Vidyanikethan Engineering College, Tirupathi, India

Abstract:Automatic program verification, proving program correct still requires substantial expert manual effort. One of the

biggest burden is providing loop invariants properties that hold for every iteration of a loop. Compared to other requirement

elements such as pre -and post conditions, loop invariants tend to be difficult to understand and to express. The proposed system

automates the functional verification of incomplete correctness of programs with loops by inferring the required loop invariants. In

this approach it combines complementary techniques such as test case generation, dynamic invariant detection, and static

verification. This approach can be implemented by a tool called DYNAMATE. DYNAMATE improves the flexibility of loop

invariant inference by combining static (proving) and dynamic (testing) techniques. The DYNAMATE tool presented in this

process combines different techniques with the overall goal of providing fully automatic verification of programs with loops

Keywords– Loop Invariants, Mutation testing,, Dynamic analysis, Static checking, Dynamate

1. Introduction
 Verifiers that can confirm programs correct against

their full functional specification require, for programs with

loops extra annotations in the form of loop invariants. For

programs with loops, one of the biggest burdens is providing

loop invariants property that hold for every iteration of a loop

Compared to pre- and post conditions, it is much more

difficult to write loop invariants, In this approach evolution

automation of full program verification through loop

invariants[1]. This approach is based on included of static

(program proving) and dynamic(testing) techniques The

current DynaMate prototype combine the EvoSuite[6] test

case generator, the Daikon invariant detector[7] and the

ESC/Java2 static verifier[8]. Fully automatic verifiers such as

cccheck or BLAST fail to establish the correctness of the

annotated program., auto-active verifiers such as ESC/Java2

succeed,

In Exiting system Verifiers that can confirm programs correct

against their full functional specification require programs

with loopsPrograms with loops, one of the main burdens is

providing loop invariants properties that hold for every

iteration of a loop. this mainly drawback Loop invariants

should be complicated to analyze. The proposed system

automates the functional verification of partial truth of

programs with loops by inferring the required loop

invariantsIn this approach it combines complementary

techniques such as test case generation, dynamic invariant

detection, and static verificationThis approach can be

implement by a tool called DYNAMATE, a fully automatic

verifier for Java programs with loops. DYNAMATE

improves the flexibility of loop invariant inference by

integrate static (proving) and dynamic (testing) techniques

this advantage of Identify Loop invariants program with easy

analysis Dynamate is best performance with other tool. our

DYNAMATE prototype automatically discharged 97% of all

proof program, resulting in automatic complete correctness

proofs of 25 out of the 28 methods—outperforming a number

of state-of-the-art tools for fully automatic verification.

1.1Evo suite

This new approach in the EVOSUITE tool, and compared it

to the common approach of addressing one goal at a time.

Evaluated on open source librariesThe EVOSUITE tool

implements the approach presented ingenerating JUnit test

suites for Java code.EVOSUITE works on the byte-code

level

and collect allnecessary information for the test cluster from

the byte-codevia Java indicationDuring test generation,

EVOSUITE considers one toplevel class at a time. The class

and all its unnamed and member classes are instrumented at

byte-code level to keep track of called methods and branch

distances during execution. To produce test cases as

compliable JUnit source code, EVOSUITE accesses only the

public interfaces for test generation; any subclasses are also

careful part of the unit under test to allow testing of abstract

classes. To execute the tests throughout the search,

EVOSUITE uses Java Reflection.

This technique to automate test generation. shown that

optimizing whole test suites toward a coverage criterion is

superior to the traditional approach of targeting one coverage

goal at a FRASER AND ARCURI: WHOLE TEST SUITE

GENERATION time. In our experiments, this results in

significantly betteroverall coverage with smaller test suites.

1.1.2 Diakon

Daikon is an execution of dynamic detection of likely

invariants; that is, the Daikon invariant detector reports likely

program invariants. An invariant is a assetsthat holds at a

certain point or points in a program; these are often seen in

declare statements, documentation, and formal

specifications.Dynamic invariant detection runs a program,

http://www.evosuite.org/
http://groups.csail.mit.edu/pag/daikon/
http://kindsoftware.com/products/opensource/ESCJava2/

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

113

All Rights Reserved © 2016 IJARBEST

observes the values that the program computes,and then

information properties that were true over the observed

executions. Daikon can detect property in C, C++, C#, Eiffel,

F#, Java, Perl, and Visual Basic programs

Shortcut for the impatient: skip directly to the fitting

instructions

for[Unix/Linux/MacOSXinstallation,Windows

installation]

This section gives gradually instructions for installing

Daikon.Here is an summary of the steps. Details appear

below;

select the instructions for youroperating system.

1. Download Daikon.

2. Place three commands in your shell initialization file.

3. Optionally, modify your installation.

4. Optionally, compile Daikon and construct other tools.

Requirements for running Daikon In order to run Daikon,

you must have a Java 7 (or later) JVM (Java Virtual

Machine).You must also have a Java 7 (or later) compiler

 Fig 1 :Daikon’s Infrastructure

Daikon proposes to automatically determine program

invariants and report them in a meaningful manner

 Original Program Instrumented Program

 I,s=0,0print b,n

 Do i!=n I,s =0,0

 I=i+1,s=s+b[i] print I,s,n,b[i]

 od do i!=n

 i=i+1,s=s+b[i]

 do

 Trace File

Invariants

1.) n >= 0

2.) s = SUM(B)

3.) i >= 0

1.1.3 ESC/java2
ESC/Java2 is a tool for staticverification program

specifications. It expandssignificantly upon ESC/Java, on

which it is built. It is reliable with the definition of JMLand

of Java 1.4. It adds additional static checking to that in

ESC/Java; most considerably, itadds support for checking

frame conditions and annotations containing method calls.

Thisdocument describes the position of the final release of

ESC/Java2, along with some notesregarding the details of

that implementation

JML should be easy to use for any Java programmer

JML assertions are added as comments in .java file, between

/*@ . . . @*/, or after //@,Properties are specified as Java

boolean expressions, extended with a few operators (\old,

\forall, \result,. . .). using a a small number of keywords

(requires, ensures, signals, assignable, pure, invariant, non

null, . . .)

The goal of the ESC/Java2 work is to expand the use of

ESC/Java by

a. updating the parser of ESC/Java so that it is consistent with

the present definition of JML and Java,

b. packaging the updated tool so that it is more easily

available to a big set of users, consistent with the source code

license provisions of the ESC/Java source code,

c. and extending the choice of JML annotations that can be

checked by the tool, where possible and where consistent

with the engineering goals of ESC/Java.

the status of their implementation in ESC/Java2, the degree

to which the annotation is logically checked, and any

differences between ESC/Java2and JML.

1.2 overview of the dynamate
DYNAMATE inputs a program M and its specification—a

precondition P and a post condition Q. Two outcomes of the

algorithm are possible: achievement means that

DYNAMATE has found a set of valid loop invariants that are

sufficient to statically verify M beside its specification (P,Q);

failure means that DYNAMATE cannot find new valid loop

invariants, and those found are insufficient for static

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

114

All Rights Reserved © 2016 IJARBEST

verification. DYNAMATE’s main loop starts by executing
the test case generator, which produces a new set T. of test

cases that implement M with inputs satisfying the

precondition P. The loop feds on the whole set TS of test

cases generated so far to the dynamic invariant detector,

which outputs a set of candidate loop invariants I To find out

which candidates are indeed valid, DYNAMATE calls the

static verifier on the program annotated with all candidates I

the verifier income a set of proved candidates J (a subset of

I), which DYNAMATE adds to the set Inv of established

loop invariants. Then, using the current Inv, it calls the static

verifier again, this time trying a full rightness proof of M

against (P,Q). If verification succeeds, DYNAMATE

terminates with success a static verifier that is sound but

incomplete, unproved candidates in I n INV are not

necessarily invalid.

Algorithm: dynamate

Require: program M, precondition p,postcondtionq,

TS (set of test case)

INV (set of verified loop invariants

C (set of candidate)

While static verification can’t prove (M,P,Q,INV)
T  execute test case generator on (M,TS)

If I has not changed then

Return (“failure”,IVN)

End if

M’ annotate M with candidate invariants I

J statically check valid invariants of (M’,P)
INV  INV U J

C I\INV

End while

 Return (“success”,INV)

1.2.1Running Example: Binary Search

binarySearch0, a helper method declared in class

java.util.Arrays in the standard Java

private static int binarySearch0(int[] a,intfromIndex,int

toIndex,int key)

 {

 int low = fromIndex, high = toIndex - 1;

 while (low <= high)

 {

 // midpoint of [low..high]

 int mid = low + ((high -low)/2);

 int midVal = a[mid];

 if (midVal < key)

 low = mid+1;

 else if (midVal > key)

 high = mid - 1;

 else return mid; // key found

 }

 return -(low + 1); // key not found

 }

Fig. 2. Binary search method in java.util.Arrays

Fig. 1 shows binarySearch0, a helper method declared inclass

java.util.Arrays in the standard Java API.

 . /*@

 @ requires a != null;

@ requires TArrays.within(a, fromIndex, toIndex);

 @ requires TArrays.sorted(a, fromIndex, toIndex);

 @

 @ ensures \result _=>0 =) a[\result] = key;

 @ ensures \result < 0

 @ =) :TArrays.has(a, fromIndex, toIndex,

key);

 @*/

Fig. 3. Pre- and postcondition of binarySearch0.

Fig. 1 shows binarySearch0, a helper method declared in

class java.util.Arrays in the standard Java API.

 /*@

 @ loop_invariant fromIndex _ low

 @ loop_invariant low <= high + 1

 @ loop_invariant high < toIndex

 @ loop_invariant

:TArrays.has(a,fromIndex,low,key)

 @ loop_invariant

:TArrays.has(a,high+1,toIndex,key)

 @*

Fig. 4. Loop invariants required for verifying method

binarySearch0

JML [2], using model-based predicates [3], representing

implicit quantified expressions, with descriptive names. For

example, the condition :TArrays.has(a, fromIndex,toIndex,

key) means that array a has no element key over the interval

range from fromIndex (included) to toIndex (excluded).

2 .Related work

DYNAMATE is center this section on the problem of

inferring loop invariants to automate functional verification

2.1 Integrating Diakon and ESC/java
Dynamic detection propose likely invariants based on

program executions, but the resulting properties are not

guaranteed to be true of over all possible executions Static

verification checks that properties are always true, but it can

be difficult and dull to select a goal and to annotate programs

for input to a static checker. Combining these techniques

overcomes the weakness of each. how to integrate two

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

115

All Rights Reserved © 2016 IJARBEST

complementary techniques for manipulating program

invariants: dynamic invariants detection and static

verification[74] Static verification of dynamically detected

program invariants: Integrating Daikon and ESC/Java

2.2 Identifying loop invariants
Identifying for invariants using genetic programming and

mutation testing[80] As most programs are not annotated

with invariants, before research has attempted to

automatically produce them from source code In this new

approach to invariant generation using search. reuse the test

generation front-end of existing tool Daikon and integrate it

with genetic programming and a mutation testing tool There

are two exceptional problems to be solved : firstly, to reduce

the number of uninteresting invariants produced and

secondly, to show the search to invariants that may be

interesting but deceptive" to the search

2.3 verification java program

proof of Java programs using symbolic execution and

invariant generation[9] Software verification is recognized as

an impart and complicated problem Presented a novel

framework based on symbolic execution , for the verification

of software This framework explanation in the from of

technique specification and loop invariants. Our framework

is built on top of the java path finder form checking toolset

and it was used for the verification several non-trivial java

program

2.4 static techniques
Combination of static techniques. HAVOC using a static

verifier to check if candidate assertions are valid: it creates an

early set of candidates (possibly including loop invariants) by

applying a fixed set of rules to the available component-level

contract (i.e. component, invariants and interface

specifications). Like DYNAMATE, HAVOC[12] applies the

HOUDINI algorithm to establish which candidates are valid.

Using only static techniques

2.5 Dynamic Techniques
The GUESS-AND-CHECK [13] algorithm infers invariants

in the form of algebraic equalities (polynomials up to a given

degree) The GUESS-AND-CHECK algorithm proceeds

iteratively in two phases The “guess” phase uses linear

algebra techniques to competently derive a candidate

invariant from data. This candidate invariant is subsequently

validated in a “check” phase dynamical discovery invariants

instrumental techniques While the overall structure of

GUESS-AND CHECK has some similarities to ours,

DYNAMATE targets general-purpose programs, which

requires very different techniques. The work on DAIKON [7]

2.6 Hybrid Techniques
CEGAR techniques has combined static verification and test

case generation. The SYNERGY algorithm [14] .The DASH

algorithm builds on SYNERGY to handle programs with

pointers without whole-program may-alias analysis Two

broad approaches to property checking are testing and

verification Testing works best when errors are easy to find,

but it is often difficult to get sufficient coverage for correct

programs verification methods are most successful when

proofs are easy to find, but they are often incompetent at

discovering errors.

3.How Dynamate work
The program code is first fedinto a test case generator ,

which generates executions covering official behavior. From

these, two dynamic invariant detector tools mine possible

loop invariants, based both on fixed patterns (DAIKON)[7]

as well as post conditions (GIN-DYN)[5] The candidates are

not invalidated by the generated runs and then fed into a

symbolic program verifier The verifier then may create a

program proof (bottom right), but may also disprove

candidates, which initiates another round of executions, and

thus developed invariants

 Fig 5 :Dynamate work

If the verifier fails to verify the program correct, a round of

four steps begins

Step 1: test cases: To carry dynamic invariant detection, a

test case generator construct executions of the program

that satisfy the given precondition.

Step 2: candidate invariants. From the resulting executions,

an invariant detector animatedly mines candidates for loop

invariants.

Step 3: invariant verification. The existing set of loop

invariant candidates are fed into a static program verifier.

Step 4: program verification and modification. Using the

verified invariants, the static verifier may also be competent

to produce a proof that the program is accurate with respect

to its specification. If the proof does fail using the loop

invariants inferred so far, another round generating, mining,

and verifying starts.

How DYNAMATE works, using binarySearch0 as running

example

3.1 Input: Programs and Specifications
DYNAMATE receives as input a Java method M with its

functional specification consisting of precondition P and

postcondition Q. Pre- and postcondition are written in JML.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

116

All Rights Reserved © 2016 IJARBEST

P and Q generally consist of a number of clauses, each

denoted by the keyword requires (precondition) and ensures

(postcondition) . While DYNAMATE can work with JML

specifications in any form, to find it efficient to follow the

principlesof the model-based approach to specification

Following the model-based specification style entails three

main advantages for our work. First, it improves the

abstraction and clarity of specifications, and hence it also

facilitates reuse with dissimilar implementationsit should be

clear that has(a, fromIndex, toIndex, key) means that array a

contain a value key within fromIndex and toIndex.

Second, model-based specifications also make it easy to

resolve static and a runtime semantics. When developing

predicates in TArrays we defined each predicate as a static

boolean method with both a Java implementation and a JML

specification

 Fromindex<= I <=toindex^key=a[i];

A third advantage of using model-based specifications is

leveraged by the DYNAMATE approach and more precisely

by the GIN-DYN invariant detector described.

3.2Test Case Generation
The DYNAMATE algorithm needs tangible executions to

dynamically gather loop invariants DAIKON mines relations

that hold in all passing test cases and GIN-DYN filters out

invalid loop invariant candidates that are inaccurate by a test

case While any test case generator could work with

DYNAMATE, our prototype integrates EVOSUITE [6], a

completely automatic search-based tool using a inherent

algorithm

Since EVOSUITE tries to maximize branch coverage, it has a

good chance of produce tests that pass all precondition

checks and thus represent valid executions according to the

specification

3.3 Dynamic Loop Invariant Inference
The DYNAMATE algorithm lies a component that detects

“likely” loop invariants based on the actual executions

provided by the test case generator. The present

DYNAMATE implementation in two modules with

balancing functionalities.

DAIKON’s and GIN-DYN’s invariants are complementary;
for example, neither one suffices for a correctness proof of

binarySearch0. DAIKON invariants are usually an essential

basis to establish GIN-DYN

How DYNAMATE uses GIN-DYN and DAIKON.

Dynamic invariants detection with DAIKON
DAIKON [7] is a broadly used dynamic invariant detector

which supports a set of basic invariant templates. Given a test

suite and a set of program locations as input, DAIKON

instantiates its templates with program variables, and traces

their values at the locations in each and every one executions

of the tests.

Since DYNAMATE needs loop invariants, it instructs

DAIKON to draw variables at four different location of each

loop: before loop entry, at loop entry, at loop exit, and after

loop exit.

TABLE 1

 loop invariant candidates produced by DAIKON in the first

iteration of DYNAMATE.

GIN-DYN: Invariants from Postconditions

GIN-DYN: a way to efficiently generate a large amount of

invalid or uninteresting invariant candidates how GINDYN

does the filtering, again based on a mixture of dynamic and

static techniques. The relax of the current section briefly

discusses how invariant candidates formed by GIN-DYN are

used within DYNAMATE. In truth, GIN-DYN produces the

two fundamental invariants on lines in Figure 4 necessary for

a truth proof of binarySearch0. The final set of verified loop

invariants includes those of with 28 more, consisting of 13

invariants establish by DAIKON and 20 invariants found by

GIN-DYN.

3.3Static Program Verification
The DYNAMATE algorithm complement dynamic analysis

with a static program verifier, which serves two purposes: (1)

verifying loop invariant candidates, and (2) using verified

loop invariants to carry out a conclusive truth proof.

proof of Loop Invariants

The DYNAMATE prototype relies on the ESC/Java2 static

verifier, which works on Java programs and JML

annotations.

DYNAMATE always calls ESC/Java2 with the –loopSafe

option enabled.

Program Proof

At the end of each iteration, DYNAMATE uses the present

set of valid loop invariants to attempt a correctness proof of

the program beside its specification. If ESC/Java2 succeeds,

the whole DYNAMATE algorithm stops with success

Refining the Search for Loop Invariants
Original loop invariant candidates may be overspecificand

hence unsound— Since this may indicateunknown program

behavior,for every such candidate L, DYNAMATE adds the

conditional check

3.4 Experimental result
DYNAMATE automatically verified 25 of the 28 subjects,

with high repeatability. On average, 66% of DYNAMATE’s
implementation time isorganization EVOSUITE, 15% in

GIN-DYN, 14% in ESC/Java2 and 6% in DAIKON.

DYNAMATE’s average running time per method (45
minutes) is high 14 compared to other dynamic techniques.

There are ample margins to optimize the DYNAMATE

prototype for better speed;

DYNAMATE in action on the implementation of binary

search available in class java.util.Arrays from Java’s JDK.

1 /*@ requires a ! = null

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

117

All Rights Reserved © 2016 IJARBEST

2 @ requires TArrays.within(a, fromIndex, toIndex)

3 @ requires TArrays.sorted(a, fromIndex, toIndex);

4 @ ensures \result≥0 => a[\result] = key;

5 @ ensures \result < 0 =>:TArrays.has(a, fromIndex,

toIndex, key); @*/

6 private static int binarySearch0(int[] a, int fromIndex, int

toIndex, int key)

Fig. 6: JML specification of the binary search method from

java.util. The specificationincludes a precondition (requires)

and two postconditions (ensures)
DYNAMATE mutates its influence and checks if any of the

mutations are loop invariants. Among many mutations,

:has(a, fromIndex, low, key) and :has(a, high + 1, toIndex,

key) are valid loop invariants, essential to establishing the

postcondition. DYNAMATE finds them during iteration # 9,

validates them, and uses them to prove the second

postcondition. This concludes DYNAMATE’s run, which

finishs successfully having achieved full verification

Fig. 6: DYNAMATE’s report after iteration # 1 on
binarySearch0. Verified statements and annotations (first and

last highlighted element) are shown in green, unverified ones

in yellow. Loop headers are highlighted in light blue. The

right frame shows the proven loop invariants for the selected

loop.
7 fromIndex ≤ low ^ low _≤high + 1 ^ high < toIndex

8 :TArrays.has(a,fromIndex,low,key)

9 :TArrays.has(a,high+1,toIndex,key)

 Fig. 6: Loop invariants inferred by DYNAMATE

Our implementation Esc/java2 to identify the defects in

programs with loop

 Fig 7. Identify the defects
After analyzing esc/java2 is giving above problems in

codeNow click on ‘Results’ tab in main window to view tree

 Fig 8. Results
White: the item has not been processed

Red: An error or static checker warning occurred in

processing

Green: All checker passed

Yellow: some caution were generated, but no error warning

Orange: some child nodes have errors.

Blue: the static checker timed out or the verification

condition was too larg

3.5Experimental Comparison
 A case study that useful DYNAMATE to 28 methods from

the java.util classes in the Java set library, including the

binarySearch03 method. DYNAMATE automatically

discovered allloop invariants in Figure 4 given the code and

specification in Figure 2 and Figure 3, resulting in fully

automatic verification of the binarySearch0 method.whole

case study, DYNAMATE discharge 97% of the proof

obligations of all the methods, resulting in full truth proofs

for 25 of the 28 methods.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

118

All Rights Reserved © 2016 IJARBEST

DYNAMATE’s evaluation (including the specification
conditions in TArrays and TLists) into a form open to to each

tool: to C for INVGEN and BLAST, and to C# forcccheck.

DYNAMATE achieves a solid 97% of automatically

dischargedproof obligations, a lot improving over the state of

the art: the proof compulsions discharged by DYNAMATE

are a superset of those checked by other tools.9 In particular,

DYNAMATE achieve full verification of 25 out of 28

methods, while the other tools established at most 3 methods.

DYNAMATE automatically confirmed 28% more proof

obligations than state-of-the-art verification tools.

A part of future work is evaluating DYNAMATE on

examples initially used to evaluate INVGEN, BLAST, or

cccheck; and integrate in DYNAMATE other intermediary

tools modified to some kinds of invariants.

Other tools. The following table summarizes the critical

features that distinguish DYNAMATE from a a small

number of other cutting-edge tools

Tool A/U Limitation

Javapathfinder[9] A bounded symbolic execution

Vampair [10] U linear array access, no nesting

Srivastava.et.al [11]U requires templates and prediction

4. Summary of Contribution
The main analysis of this paper are:

1) DYNAMATE: an algorithm to automatically discharge

proof obligations for programs with loops, based on a

grouping of dynamic and static techniques.

2) GIN-DYN: an automatic technique to increase the

dynamic detection of loop invariants, based on the idea of

syntactically mutating postconditions [8].

3) This implementation of the DYNAMATE algorithm that

integrates the EVOSUITE test case generator, the DAIKON

dynamic invariant detector, and the ESC/Java2 static verifier,

as well asGIN-DYN.

4) An evaluation of our DYNAMATE prototype on acase

study linking 28 methods with loops fromjava.util classes.

5) A comparison against state-of-the-art tools forautomatic

verification based on predicate abstract

5. Conclusion and Future work
This problem overcomes three techniques and used test case

generated, dynamic invariants detection, and static

verification this three techniques as development our

prototype Dynamate automatically discharged 97 percent of

all proof obligations for 28methodswith loops from java.util

classes. Then esc/java2 frame is identify the defects in loop

and methods

Our future work will focus on the following issues:

Better test generators. As any module in DYNAMATE can

be replaced by a better implementation of the same

functionalities, currently investigating dynamic/symbolic

approaches to test case generation [16] as well as hybrid

techniques integrating search-based and symbolic approaches

[17].

More diverse invariant generators

This techniques based on symbolic execution such as the one

implemented in DYSY [19]to provide for more, and more

diversified, loop invariant candidates.

Stronger component integration

DYNAMATE can become a platform on which several

approaches to test generation, dynamic analysis, and static

verification can work in synergy[14] to produce a greater

whole

http://www.st.cs.uni-saarland.de/dynamate/

6. Reference

[1] C. A. Furia, B. Meyer, and S. Velder, “Loop invariants:

Analysis, classification, and examples,” ACM Comp.

Sur., vol. 46, no. 3, p. Article 34, January 2014. 19

[2] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary

design of JML:” a behavioral interface specification

language for Java,” ACM SIGSOFT Software

Engineering Notes, vol. 31, no. 3, pp. 1–38, 2006.

[3]N. Polikarpova, C. A. Furia, and B. Meyer, “Specifying

 reusable components,” in VSTTE, ser. LNCS, vol. 6217.

 Springer, 2010, pp. 127–141

[4] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll,

“Beyond assertions: Advanced specification and

verification with JML and ESC/Java2,” in FMCO, ser.

LNCS. Springer, 2006, pp. 342–363.

[5] C. A. Furia and B. Meyer, “Inferring loop invariants

Usingpostcondition in Fields of Logic and

Computation, vol.6300. New York, NY, USA: Springer,

2010, pp. 277–300

[6]G. Fraser and A. Arcuri, “Evolutionary generation of

whole test suites,” in Proc. 11th Int. Conf. Quality,

2011, pp. 31–40

[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D.

Notkin,“ Dynamically discovering likely program

invariants tSupport program evolution,” IEEE Trans.

Softw. Eng., vol. 27, no. 2, pp. 99– 23, Feb. 2001.

[8] D. R. Cok, J. R. Kiniry, and D. Cochran. (2008, Oct.).

 ESC/Java2 implementation notes. Kind Softw., Tech

. Rep.[Online]. Available: http://goo.gl/BFn1zh

[9] C. S. Pasareanu and W. Visser, “Verification of Java

 programs using symbolic execution and invariant

generation,” in Proc. 11th Int. SPIN Workshop, 2004,

pp . 164–181.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

119

All Rights Reserved © 2016 IJARBEST

[10] K. Hoder, L. Kovács, and A. Voronkov, “Invariant

 generation in Vampire,” in TACAS, ser. LNCS, vol.

6605. Springer, 2011, pp. 60–64.

[11] S. Srivastava and S. Gulwani, “Program verification

using templates over predicate abstraction,” in PLDI.

ACM,

 2009, pp. 223–234

[12] S. K. Lahiri, S. Qadeer, J. P. Galeotti, J. W. Voung, and

TWies, “Intra-module inference,” in Proc. Int.

Conf.ComputAided Verification, 2009, pp. 493–508.

[13] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A.

Nori , “A data driven approach for algebraic loop

 invariants,” inProc. 22nd Eur. Conf. Programm.

Languages Syst., 2013 , pp. 574–592.

[14] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V.

Nori and S. K. Rajamani, “Synergy: A new

algorithm for property checking,” in Proc. 14th ACM

SIGSOFT Int. Symp. Found. Softw. Eng., 2006, pp.

117–127

[15] J. W. Nimmer and M. D. Ernst, “Static verification of

 dynamically detected program invariants: Integrating

 Daikon and ESC/Java,”in Proc. 1st Workshop Runtime

 Verification, pp. 255–276, 2001

[16] K. Jamrozik, G. Fraser, N. Tillmann, and J. de Halleux,

 “Generating test suites with augmented dynamic symbolic

Execution,” in Proc. Tests Proofs, 2013, pp. 152–167.

[17] J. Malburg and G. Fraser, “Combining search-based and

constraint- based testing,” in Proc. 26th IEEE/ACM Int.

 Conf. Automated Softw. Eng., 2011, pp. 436–439

[18] S. Ratcliff, D. R. White, and J. A. Clark, “Searching for

invariants using genetic programming and mutation

 testing,” in Proc. 13
th

Annu. Conf. Genetic Evolutionary

Comput., 2011, pp. 1907–1914.

[19] C. Csallner, N. Tillmann, and Y. Smaragdakis, “DySy

dynamic symbolic execution for invariant inference,” in

ICSE. ACM, 2008, pp. 281–290.

.

.

	1. Introduction

