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ABSTRACT 

Web-based applications are gaining 

popularity as they require less client-side resources, 

and are easier to deliver and maintain. On the other 

hand, Web applications also pose new security and 

privacy challenges. Many high profile Web 

applications might cause sensitive user inputs to be 

leaked from encrypted traffic due to side-channel 

attacks. Existing solutions, such as random padding 

and packet-size rounding, failing to guarantee 

sufficient privacy protection. We then formulate 

PPTP problems under different application scenarios 

and design effective algorithms.  

 

1. INTRODUCTION 

Netwrk security consists of the provisions and 

policies adopted by a networkadministrator to 

prevent and monitor unauthorized access, misuse, 

modification, or denial ofa computer network and 

network-accessible resources. Network security 

involves theauthorization of access to data in a 

network, which is controlled by the network 

administrator.Network security covers a variety of 

computer networks, both public and private, that are 

usedin everyday jobs conducting transactions and 

communications among businesses, 

governmentagencies and individuals. Networks can 

be private, such as within a company, and others 

which might be open to public access. Network 

security is involved in organizations, enterprises, and 

other types of institutions. Web applications also 

present new security and privacy challenges, partly 

because the un-trusted Internet has essentially 

become an integral component of suchapplications 

for carrying the continuous interaction between users 

and servers. 

User Input Observed 

Directional Packet Sizes 

User Input Observed 

Directional Packet Sizes 

Bee  641 !,   60,   544, 60 !, 

585 !,   60,   555, 60 !, 

586 !,   60,   547, 60 ! 

Cab 641 !,   60,   554, 60 !, 

585 !,   60,   560, 60 !, 

586 !,   60,   558, 60 ! 

TABLE I 

USER INPUTS AND CORRESPONDING PACKET 

SIZES a worst case scenario in which an 

eavesdropper can pinpoint traffic related to a Web 

application (such as using deanonymizing techniques 

[37]) and locate packets for user inputs using the 

above technique. We use search engines as examples 

in this paper due to their distinct and representative 

patterns. In reality, the s value can be larger and more 

disparate as discussed in Section VI. Moreover, the 

size of the third packet provides a goodindicator of 

the input itself (which again can be found in many 

Web applications [14]). Specifically, Table II shows 

the s value for character (a; b; c and d) entered as the 

first (second column) and second (3-6 columns) 

keystroke for a different search engine. Observe that 

the s value for each character entered 

as second keystroke is different from that it is entered 

as thefirst, since the packet size now depends on both 

the currentkeystroke and the preceding one. Clearly, 

every input stringcan be uniquely identified by 

combining observations of packet sizes about the two 

consecutive keystrokes (for simplicity, we only 

consider a� d combinations here, whereas in reality 

it may take more than two keystrokes to uniquely 

identify an input string). as second keystroke is 

different from that it is entered as the first, since the 

packet size now depends on both the current 

keystroke and the preceding one. Clearly, every input 

string can be uniquely identified by combining 

observations of packet sizes about the two 

consecutive keystrokes (for simplicity, we only 

consider a� d combinations here, whereas in reality 

it may take more than two keystrokes to uniquely 

identify an input string). 

  Second keystroke 

Keystroke  A b c D 

A 502 487 493 501 489 

B 509 516 488 482 481 

C 504 503 488 473 477 

D 516 493 487 509 499 

TABLE II 

 VALUE FOR EACH CHARACTER ENTERED AS 

THE FIRST (SECONDCOLUMN) AND SECOND 

(3-6 COLUMNS) KEYSTROKE 

this paper, we first present a model of the PPTP issue 

based on the mapping to PPDP, which formally 

characterizes the interaction between users and Web 

applications, the observation made by eavesdroppers, 

the privacy requirement, and the overhead of 
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padding. Based on the model, we then formulate 

several PPTP problems under different assumptions, 

and discuss the complexity. We show that 

minimizing padding cost under a given privacy 

requirement is generally intractable. 

Next, we design several heuristic algorithms for 

solving the PPTP problems in polynomial time with 

acceptable overhead. Finally, we demonstrate the 

effectiveness and efficiency of our algorithms by 

both analytical and experimental evaluations. The 

contribution of this paper is threefold. First, the 

identified similarity between PPTP and PPDP 

establishes a bridge between the two research areas, 

which will not only allow for reusing many existing 

models and methods in the well investigated PPDP 

domain, but serve to attract more interest to the 

important PPTP issue. Second, to the best of our 

knowledge, our formal model is among the first 

efforts on formally addressing the PPTP issue (a 

detailed review of related work will be given in 

Section VII). Third, the proposed algorithms may 

provide direct and practical solutions to real world 

PPTP applications, as evidenced by our 

implementation and comparative experimental 

studies. Moreover, those algorithms demonstrate the 

feasibility of adapting existing PPDP methods to the 

PPTP domain, and the challenges in doing so. The 

preliminary results of this paper have appeared in 

[27] (which provides a formal model of the PPTP 

issue) and [28](which designs practical PPTP 

algorithms). However, those previous work share a 

common limitation in their privacy model, namely, 

all possible user inputs must be assumed as 

equally likely to occur, which is usually not the case 

in real world Web applications. In this paper, we 

have substantially extended our previous work by 

addressing this key limitation. Specifically, we re-

define the privacy model in Section VA to 

accommodate different likelihoods of possible inputs. 

We then formulate new PPTP problems based on this 

more realistic privacy model in Section V-B, and we 

design new algorithms to address several novel 

challenges in Section VC. We have also significantly 

extended the scope of our experimental evaluations in 

Section VI, by comparing both the previous solutions 

and our new solutions with more existing methods, 

on more real world data sets. Finally, we have now 

provided a formal proof of the intractability of PPTP 

problems 

The rest of the paper is organized as follows. Section 

II formally models the application, privacy, and cost. 

Section III then employs such models to formulates 

several PPTP problems, analyzes the complexity. 

Section IV devises heuristic algorithms for the 

formulated problems. Section V proposes an 

extended version of the PPTP solution, including a 

re-defined privacy model, the new PPTP problems, 

and corresponding PPTP algorithms. Section VI 

discusses the implementation of our solution, and 

experimentally evaluates the performance 

of our algorithms. Section VII reviews related work 

and Section VIII concludes the paper. 

II. THE PPTP MODEL 

Section II-A first presents the basic model of 

interaction and observation. Section II-C then maps 

PPTP to PPDP in order to quantify privacy protection 

and overhead. Finally, Section II-D extends the basic 

model to more realistic cases. We will also 

demonstrate its flexibility to adapt different privacy 

properties in Section V. Table IV lists main notations 

that will be used throughout the paper. 

a, ~a, Ai or A Action, 

action 

sequence, action 

s, v, ~v, Vi or V Flow, 

flow 

vector, vector 

~a[i]; ~v[i] The ith 

element in ~a and 

~a[i]; ~v[i] The ith 

element in ~a and 

VAi or VA Vector action set 

pre(a; i) i Prefix 

dom(P) Dominant Vector 

vdis(v1; v2) Vector-

distance 

vdis(v1; v2) Vector-

distance 

TABLE IV 

THE NOTATION TABLE 

A. The Basic Model 

We model the PPTP issue from two perspectives, the 

interaction between users and servers, and the 

observation made by eavesdroppers. First, Definition 

1 formalizes the interaction. Our discussions about 

Table II demonstrated how one keystroke may affect 

another in terms of observations (packet sizes), and 

how an eavesdropper may combine such multiple 

observations for a refined inference. Such 

interdependent user actions are modeled as an action-

sequence in Definition 1. The concept of action-set 

models a collection of actions whose corresponding 

observations may be padded together. 

Definition 1 (Interaction): Given a Web application,  

define 

- an action a as an atomic user input that 

triggers traffic,such as a keystroke or a mouse click. 

- an action-sequence ~a as a sequence of 

actions with knownrelationships, such as consecutive 

keystrokes entered into real-time search engine or a 

series of mouse clicks on hierarchical menu items. 

We use ~a[i] to denote the ithaction in ~a. 
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- an action-set Ai as the collection of all the 

ith actions in a set of action-sequences. We will 

simply use A if all action-sequences are of length 

one. 

Example 1: Assume “bee” and “cab” in Table I to be 

thea21; a22; a23 corresponding to b, e (as second 

keystroke), e (asthird) in input “bee”, and c, a, b (as 

third keystroke) in input “cab”. There are two action-

sequences ~a1=ha11; a12; a13i and~a2 = ha21; a22; 

a23i, and three action-sets A1 = fa11; a21g, 

A2=fa12; a22g, and A3=fa13; a23g. ฀ 

Definition 2 models concepts related to the 

observation made by an eavesdropper. Note a flow-

vector is only intended to model those packets that 

may contribute to identify an action and accordingly 

need to be padded for privacy preservation, such as 

the s value in Table I (note we are basically making 

the worst case assumption that adversaries can locate 

such packets in the traffic (e.g., using de-

anonymizing techniques [37]); on the other hand, 

identifying such packets for deploying a PPTP 

solution would be relatively easier since the design of 

a Web application is known). Also, each action is 

not associated with a flow but a flow-vector, which is 

itself a sequence, since a single action may trigger 

more than one packet. Finally, unlike an action-set, is 

defined as a multiset, since it may contain duplicates 

(that is, packets may share the same size). 

Definition 2 (Observations): Given a Web 

application, we define 

 a flow s as the size of a directional packet 

triggered by a 

- a flow-vector v w.r.t. an action a as a 

sequence of flows.Denoted the relation between a 

and v by f(a)=v. 

- a vector-sequence ~v as a sequence of 

flow-vectors correspondingto an equal-length action-

sequence ~a, with each ~v[i] corresponding to ~a[i] 

(1 _ i _j ~v j). 

- a vector-set Vi (or simply V ) as the 

collection of allthe ith flow-vectors in a set of vector-

sequences, which corresponds to an action-set in the 

straightforward way. 

Example 2: Following Example 1, we have six 

flowvectors, v11 = h544i, v12 = h555i, v13 = h547i 

and v21 = h554i, v22 = h560i, v23 = h558i (note that 

we only model those packets whose sizes can help to 

identify an action), corresponding to actions a11; 

a12; a13 and a21; a22; a23, respectively. We have 

two vector-sequences ~v1=hv11; v12; v13i and 

~v2=hv21; v22; v23i, corresponding to action-

sequences ~a1 and ~a2, respectively. We have three 

vector-sets V1=fv11; v21g, V2=fv12; v22g and 

V3=fv13; v23g corresponding to the three action-sets 

A1, A2, and A3 in Example 1. ฀Finally, Definition 3 

models the joint information about interaction and 

observation, which is the collection of the pairs of the 

action and its corresponding flow-vector. 

Definition 3 (Vector-Action Set): Given an action-set 

Ai and its corresponding vector-set Vi, a vector-

action set Vai is the set f(v; a) : v 2 Vi ^ a 2 Ai ^ fi(a) 

= vg. 

Example 3: Following above Examples, given the 

actionset A1 and vector-set V1, then the vector-

action set isVA1 = f(v11; a11); (v21; a21)g. 

Similarly, VA2 = f(v12; a12);(v22; a22)g, 

VA3=f(v13; a13); (v23; a23)g. 

B. Mapping PPDP to PPTP 

In the context of privacy-preserving data publishing 

(PPDP), since the introduction of the k-anonymity 

concept [34] [38], only possible inputs, we have six 

actions, a11; a12; a13 and significant effort has been 

made on developing efficient algorithms(e.g., [1] 

[25]), more comprehensive models (e.g., ldiversity 

[30], t-closeness [26], etc.), semantic privacy notions 

for resisting adversarial background knowledge (e.g., 

differential privacy [17]), and so on. Due to space 

limitations, we only demonstrate the basic ideas of 

PPDP solutions through an example, and discuss how 

it may be mapped to privacypreserving traffic 

padding (PPTP). By revisiting the example shown in 

Table III, we can formulate a classic PPDP problem 

as follows. We regard the s value as an attribute that 

is not designed for identifying an individual, but can 

nonetheless serve this purpose to some extent, 

namely, a quasi-identifier (e.g., a unique date of birth 

(DoB)); we regard the user input as an attribute 

containing sensitive information about individuals, 

namely, sensitive value (e.g., medical conditions); we 

can then regard this table as to contain medical 

records of some anonymous patients, released by an 

insurance company for research purposes. A linking 

attack happens when an adversary re-identifies an 

individual using the quasi-identifier (DoB), and thus 

link the individual to his/her sensitive value (medical 

condition) in the table. The main goal of PPDP is to 

prevent such linking attacks while still allowing the 

released data to be useful (e.g., to researchers). To 

address this challenge, the k-anonymity model [34] 

[38] divides the table into anonymized groups (as 

shown in both options in Table III) and then 

generalize the quasi-identifier (DoB) (e.g, by 

removing the day from a DoB), such that atleast k 

individuals in the table will share the same 

generalized DoB (with only months and years), and 

hence a linking attack using this quasi-identifier will 

fail (since an adversary can not distinguish between 
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the individuals inside an anonymized group). One 

limitation of this basic model is that privacy cannot 

be preserved, if all individuals inside an anonymized 

group happen to have the same medical condition. 

Therefore, the ldiversity model is introduced to 

ensure enough diversity (e.g., in its simplest form, at 

least l different medical conditions) among the 

sensitive values inside each anonymized group [30]. 

With such privacy models, the PPDP goal of 

preventing linking attacks while enabling useful data 

publication canbe modeled as to satisfy a privacy 

model (e.g., k-anonymityand l-diversity) while 

maximizing a given utility metric (e.g., minimizing 

sizes of anonymized groups [1]). 

D. The SVMD and MVMD Cases 

In the previous section, we have focused on the 

simplified SVSD case to facilitate a focused 

discussion on the privacy and cost model. We now 

look at the more realistic cases. First, we consider the 

Single-Vector Multi-Dimension (SVMD) case where 

each flow-vector may include more than one flow 

(that is, an action may trigger more than one packet 

that can be used to identify the action), whereas each 

action-sequence is still composed of a single action. 

In this case, the vectoraction set needs to be mapped 

to a table T(s1; : : : ; sjvj; a) with multiple quasi-

identifier attributes (each flow corresponds to an 

attribute). Thus, based on Definition 4, flow-vectors 

can form a padding group only if they are identical 

with respect to every flow inside the vectors. Another 

subtlety is that the model of vector-action set requires 

all the flow-vectors to have the same number of 

flows, which is not always possible in practice. One 

solution is to insert dummy packets of size zero 

which will then be handled as usual in the process of 

padding. Next, we consider the Multi-Vector Multi-

Dimension (MVMD) case in which each action-

sequence consists of more than one actions and each 

flow-vector includes multiple flows. 

Definition 7 expresses the relationship between 

actions in an action-sequence. 

IV. THE ALGORITHMS 

As discussed above, our main idea is to partition the 

vectoraction set into padding groups, and then break 

the linkage inside each group through padding to 

satisfy a given privacy as well as minimize the cost. 

In this section, we design three heuristic algorithms 

to demonstrate the existence of abundant possibilities 

in approaching this PPTP issue. Note that when the 

cardinality of vector-action set is less than the 

privacy property k, there is no solution to satisfy the 

privacy property. In such cases, our algorithms will 

simply exit, which will not be explicitly shown in 

each algorithm hereafter. 

A. The svsdSimple Algorithm 

The main intention of presenting the svsdSimple 

algorithm is to show that, when applying k-

indistinguishability to PPTP problems, an algorithm 

may sometimes be devised in a very straightforward 

way, and yet achieve a dramatic reduction in costs 

when compared to existing approaches (as shown in 

the Section VI). Basically, the svsdSimple algorithm 

attempts to minimize the cardinality of padding 

groups in the SVSD case (refer to [28] for detail). 

B. The svmdGreedy Algorithm 

The svmdGreedy algorithm, which aims at both 

SVSD and SVMD problems, is shown in Table V. 

Roughly speaking, the svmdGreedy recursively 

divides the padding group Pi in PVA, where jPij _ 2 

_ k, into two padding groups Pi1 and 

Pi2 until the cardinality of any padding group in PVA 

is less than 2 _ k. When svmdGreedy splits a padding 

group Pi(VAi) into two, these resultant padding 

groups, Pi1 and Pi2, must satisfy that (Pi1 [ Pi2 = Pi) 

^ (Pi1 \ Pi2 = ;) (jPi1j _ k) ^ (jPi2j _ k). Obviously, 

there must exist many solutions of Pi1 and Pi2. 

svmdGreedy limits the optimizing process insides a 

subset of possible solutions as follows. For each 

flow, svmdGreedy first sorts the flow-vectors in 

nondecreasing order of that flow, then splits Pi into 

Pi1 and Pi2 at position pos in the sorted sequence 

where (pos 2 [k; jPij฀k]). There are totally (np _ (jPij 

฀ 2 _ k)) possible solutions for all flows in the flow-

vector, where np is the number offlows in flow-

vector. SvmdGreedy finally selects the one with 

minimal padding cost among this set of solutions. 

Clearly, this 

algorithm can solve SVSD-problem when np is set to 

be 1. 

Algorithm svmdGreedy 

Input: a vector-action set VA, the privacy property k; 

Output: the partition PVA of VA; 

Method: 

1. If(jVAj < 2 _ k) 

2. Create in PVA the VA; 

3. Return; 

4. Let np be the number of flows in flow-vector; 

5. For p = 1 to np 

6. Let SVA 

p be the sequence of VA in the non-decreasing order 

of 

the pth flow in the flow-vector; 

7. For i = k to jSVA 

p j ฀ k 

8. Let costp;i as the cost when SV 

p is split at position i; 

9. Let costp be a pair (c; i) where c is the minimal in 

(costp;i) and 
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i is the corresponding position; 

10. Let cost be a triple (c; p; i) where c is the minimal 

in c of 

costp(p 2 [1; np]), and p and i are the corresponding p 

and i; 

11. Split SVA 

cost:p into VA1 and VA2 at position cost:i; 

12. Return svmdGreedy(VA1); 

13. Return svmdGreedy(VA2); 

TABLE V 

THE SVMDGREEDY ALGORITHM FOR 

SVMD-PROBLEM 

The svmdGreedy algorithm has an O(np _ n2) time 

complexityin the worst case (each time, the algorithm 

splits Pi into k-size Pi1 and (jPij฀k)-size Pi2), and 

O(np_n_logn) in average cases (each time, the 

algorithm halves Pi), where n = jVAj. 

 

C. The mvmdGreedy Algorithm 

Both svsdSimple and svmdGreedy algorithms tackle 

cases where each action-sequence consists of a single 

action (correspondingly, each vector-sequence 

consists of a single flowvector). Our intention now in 

devising the mvmdGreedy is to demonstrate how the 

two conditions mentioned in Section IIIC facilitate 

the algorithm design. In this algorithm, we extend 

PPDP solutions to a sequence of inter-dependent 

vector-action sets. The only constraint in partitioning 

vector-action set Vai is to ensure all flow-vectors in a 

padding group should have their prefix in an identical 

padding group of VAi฀1. 

Algorithm mvmdGreedy 

Input: a t-size sequence D of vector-action sets, the 

privacy property k; 

Output: the partition PD of D; 

Method: 

1. Let D = (VA1; VA2; : : : ; VAt); 

2. Let P1 = svmdGreedy(VA1; k); 

3. For each (w 2 [1; jP1j]), assign group G1 

w 2 P1 a unique gid = w; 

4. For i = 2 to t 

5. Create in Pi jPi฀1j number of empty groups Gi 

w(w 2 [1; jPi฀1j]); 

6. For each via in VAi 

7. Let w be the gid of the group Gi฀1 

w in Pi฀1 that the prefix of 

via in VAi฀1 belongs to; 

8. Insert via into Gi 

w; 

9. For each (w 2 [1; jPi฀1j]) 

10. Pi = (Pi n Gi 

w) [ svmdGreedy(Gi 

w; k); 

11. For each (w 2 [1; jPij]), assign group Gi 

w 2 Pi a unique gid = w; 

12. Return PD = fPi : 1 _ i _ tg; 

TABLE VI 

THE MVMDGREEDY ALGORITHM FOR 

MVMD-PROBLEM 

VI. EVALUATION 

In this section, we evaluate the effectiveness of our 

solutions and efficiency through experiments with 

real world Web applications. First, Section VI-A 

discusses the implementation of our techniques. 

Section VI-B then elaborates on the experimental 

settings. Finally, Section VI-C and VI-D present 

experimental results of the communication, 

computation, and processing overhead, respectively. 

A. Implementation Overview 

In previous sections, we have presented algorithms 

for determining the amount of padding for each flow 

given the vectoraction set. To incorporate our 

techniques into an existing Web application requires 

following three steps. First, gather information 

about possible action-sequences and corresponding 

vector-sequences in the application. Second, feed the 

vectoraction sets into our algorithms to calculate the 

desired amount of padding. Third, implement the 

padding according to the calculated sizes. The main 

difference between implementing an existing method 

(such as rounding) and ceiling padding lies in the 

second stage. Thus, we have focused on this stage 

in this paper. Nonetheless, we will also briefly 

describe how to collect the vector-action sets. 

RELATED WORK 

In this section, we briefly review existing efforts on 

side channel attacks and privacy preserving in Web 

applications. Side-Channel Attack: Various side-

channel leakages have been extensively studied in the 

literature. By measuring the amount of time taken to 

respond to the queries, an attackermay extract 

OpenSSL RSA privacy keys [10], and similartiming 

attacks are proved to be still practical recently [9]. By 

differentiating the sounds produced by keys, an 

attacker with the help of the large-length training 

samples may recognize the key pressed [3]; Zhuang 

et al. further present an alternative approach to 

achieving such attack which does not need the 

training samples [43]. By exploiting queuing side 

channel in routers by sending probes from a far-off 

vantage point, an attacker may fingerprint websites 

remotely against home broadband users [22], [21]. 

CONCLUSION 

I have proposed a formal model for 

quantifying the amount of privacy protection 

provided by traffic padding solutions. Our algorithms 

have confirmed the performance of our solutions to 

be superior to existing ones in terms of 
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communication and computation overhead. As Web-

based applications become more popular, their 

security issues will also attract more attention. In this 

paper, Based on this connection, we have proposed a 

formal model for quantifying the amount of privacy 

protection provided by traffic padding solutions. We 

have also designed algorithms by following the 

proposed model. Our experiments with real-world 

applications have confirmed the performance of our 
solutions to be superior to existing ones terms of 

communication and computation overhead. 
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