
 3
rd

 International Conference on Advanced Research in Biology, Engineering, Science and Technology
(ICARBEST’16)

 Organized by
 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)

 19
th

 March 2016

1
All Rights Reserved © 2015 ICARBEST16

Error Free Least Action Programming (LAP)

Interface for Novice Programmers

S.Abishek

UG Scholor, Dept. of CSE

Francis Xavier Engineering College

Tirunelveli, India

abisheksam@hotmail.com

C.Kaushik

UG Scholor, Dept. of CSE

 Francis Xavier Engineering College

Tirunelveli, India

iamkaushik@mail.com

Dr.D.C.Joy Winnie Wise

Professor and Head, Dept. of CSE

 Francis Xavier Engineering College

Tirunelveli, India

joywinniewise@yahoo.com

Abstract— Learning to code is a difficult task. Many an instance

we find students who are learning to code get discouraged and

demotivated by the errors reported in their hard typed code by

the compiler making them believe that they are bad

programmers at the beginning itself. This is not true in most of

the cases. Programming is a fun, creative and challenging task

that should focus on the creativity, imagination and critical

thinking of the programmer and not on the time spent for error

finding, debugging and learning the syntax of code. Many expert

programmers may disprove with this idea, but for novice

programmers, this Least Action Programming Interface

provides a motivating and easy way of learning programming.

Keywords— Learning to Program, Easy Programming,

Programming Interface, Novice Programmers.

I. INTRODUCTION

Learning programming is a difficult task. It is

observed in many cases that for a programmer to

become an expert it takes nearly ten years [1], [2].

The focus of using a programming language is to

solve a problem with the help of automation and

speed obtained though computers; rather,

programming languages are now requiring much

dedication and learning of the syntax of the

language than to solving the problem at hand.

Students who are new to the programming concept

are expected to spend a lot of time studying and

memorizing the syntax and semantics of the

programming language than understanding the

features of a language and using it to solve a

problem easily and efficiently. It has been shown by

Hilburn [4] that this method of learning

programming is ineffective. To illustrate on this

matter, consider classical problem in which we

have to switch the contents of two memory

locations without using a third variable. It is done in

C as b=a+b; a=b-a; b=b-a;. Whereas in Python, it is

simply put as a,b=b,a;. If a student is more focussed

on the syntax of the

code, then the time spent for learning and acquiring

skill in programming is lost.

Many IDEs that are available today are complex

and require more time for studying it for proper and

efficient use more than the language itself. Problem

solving and fast code generation are not supported

[5]. There is a need for an IDE that is simple, error

tolerant or helping the programmer to alternate and

simple replacements of bad code with

understanding the level of programmer’s experience.

II. PROGRAMMING APPROACH

Crews and Ziegler [3] state that a student who is

learning to program must follow a systematic

method of solving problems and translating them

into a working program. These steps are referred to

as the program development lifecycle, a summary

of which appears in Table I.

Table I

 3
rd

 International Conference on Advanced Research in Biology, Engineering, Science and Technology
(ICARBEST’16)

 Organized by
 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)

 19
th

 March 2016

2
All Rights Reserved © 2015 ICARBEST16

Step Task

1 Analyse the problem

2 Design a solution plan

3 Construct an algorithm

4 Implement the algorithm

5 Test and debug the algorithm

The students who are taught to focus on the

analysis and design of a solution to a problem are

found to have a better skill at learning new

programming languages and techniques [6]. This is

evident from the first two stages of solving a

problem from Table I.

In the later stages, the students would focus on

the language specific aspect of the problem, which

would take more time if the task is discouraging or

tedious, [8] which is writing the code and

debugging the same. For beginners in programming,

writing code must be made easy with suggestions

and predictions for correct syntax with least work

done in the process, so as to motivate them in

achieving their goal of successfully compiling and

executing their code, [14] in turn solving the

problem. Guidance is very important to the program

learners, who has to be taught in a simple, effective

and precise manner [13] for a particular language.

III. DEVELOPMENT OF A NEW INTERFACE

A. Primary Focus

The primary area of concern for the new

proposed IDE design is to provide a supporting,

non-error denoting and learnable interface that itself

easy to understand and use.

Fig. 1 The proposed design of a learnable interface

A simple prototype of the proposed IDE design is

shown above, which has two parts, one in which the

programmer can edit code like a normal text

application called the “editor” and the second part,

which contains all the available keywords and

features of a particular programming language

called a “selector” as shown in Fig. 1 These two

parts give a “pick-and-click” interaction which is

easy and fast in accessing the contents on screen as

suggested by Wilbert [7] on GUI design. This

feature is named as Least Action Programming

(LAP) Interface.

B. An user friendly design

The Interface is user friendly as in it makes all

the features of the language visible on the

“selector” section. This allows the novice

programmer to seek out and select the part of the

program the he wishes to include in his code. There

are in fact some constraints that govern the user

access to the selector. The user has to select the

header files first, followed by the variables and

functions. A dynamic enablement of the particular

inclusions in the selector section will provide a

more comfortable interface.

C. Less Errors, More Learning and Design

 3
rd

 International Conference on Advanced Research in Biology, Engineering, Science and Technology
(ICARBEST’16)

 Organized by
 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)

 19
th

 March 2016

3
All Rights Reserved © 2015 ICARBEST16

As said earlier, the interface is designed to help

the beginners in programming, who require a

supportive and error free code compliable

environment [10]. The interface promotes such

demands by giving a date selective window that

prompts the user for input to structure of the code

as shown in Fig. 2. The figure shows prompt to

function characteristics that are modifiable by the

user with ease. This learning of features of the

language is designed as said by Boyle [12].

D. Help for all the features in the language

It is obvious that a novice programmer will have

confusions and doubts when learning a new

language, [9] even in the code that he has copied

from other sources without reading it prior to

execution. The interface provides help text in the

most elemental and simplest way possible with

graphical references and examples that the user can

access and learn from any time.

E. Fast accessing of features

All the features of the language are made readily

available for the user to select, customize and insert

into the editor from the selector part. This improves

the programming speed and reduces the time spent

in evaluating and correcting the syntax errors

present in the code generated by novice

programmers. The user who is having a basic idea

about the features of the language under

commencement would find this readily available

and accessible contents utmost useful for least

action imposed programming. For the users who

have less or no experience in a language, help is

provided as shown in Fig.2 following the

methodology suggested by Jacobson [11] in simple

and detailed explanations of the features of the

language.

This reduced effort put in code generation give

the name Least Action in LAP Interface.

Fig. 2 Prompt for designing a function

IV. COMPARISON OF DESIGNS

The newly proposed LAP Interface was

implemented in a simple prototype and given to

students in the Computer Science stream to test out

the usefulness of design. After the results are

gathered, the same batch of students were given an

IDE that is used for the same language for

comparison. Most of the students reported that the

old IDEs [15] lacked the aspect of helping out the

programmer when coding as it only shows the

errors with their line number and not the alternate

solution.

Further evaluation of this case revealed that the

LAP Interface was more easily navigable and

creating code from scratch was not that much of a

hard task for the beginners themselves. Fig. 3

shows the comparison between LAP Interface and

conventional IDEs over various parameters.

0

20

40

60

80

100

E
a

se
 o

f

A
cc

e
ss

Le
a

rn
a

b
il

it
y

N
a

v
ig

a
b

il
it

y

H
e

lp
 f

o
r

C
o

d
e

LAP

IDE

 Fig. 3 Graph showing comparisons between LAP Interface and IDE

 3
rd

 International Conference on Advanced Research in Biology, Engineering, Science and Technology
(ICARBEST’16)

 Organized by
 International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)

 19
th

 March 2016

4
All Rights Reserved © 2015 ICARBEST16

V. CONCLUSION

The Least Action Programming Interface is

designed in a way that it will be useful to novice

programmers and slow learners in computers. The

results obtained from prototype trials have been

promising, giving rise to a new era of

programmable interfaces, the ones with high

usability and error tolerance, guidance to the

learning programmers maintaining the integrity of

the code at all times.

We believe that this new type of approach in

providing the learners of programming will create

more enthusiastic, creative and knowledgeable

programmers in the future.

REFERENCES

[1] L. E.Winslow, “Programming Pedagogy—A Psychological Overview,”

ACM SIGCSE Bulletin, vol. 28, no. 3, pp. 17–22, Sep. 1996.

[2] A.Robins, J.Rountree, and N.Rountree, “Learning and Teaching

Programming: A Review and Discussion,” Computer Science

Education, vol. 13, no. 2, pp. 137–172, Mar. 2003.
[3] Crews, T and Ziegler, U. "The flowchart interpreter for introductory

programming courses", Proceeding of the Frontiers in Education 1998

Conference. Tempe, Arizona, USA, 1996.
[4] Hilburn, T.B. (1993). A top-down approach to teaching an introductory

computer science course. 24th SIGSCE Technical Symposium of

Computer Science Education. Indianapolis, USA, 1993.

[5] Calloni, B.A. and Bagert, D.J. "Iconic Programming proves effective

for teaching the first year programming sequence". Proceedings of the

28th SIGCSA Technical Symposium on Computer Science Education,

1997.

[6] Prolux, V.K. (1996). Foundations of Computer Science: What are they

and how do we teach them? Annual Joint Conference Integrating

Technology into Science Education, 1996.

[7] Wilbert O. Galitz, The Essential Guide to User Interface Design, 2nd

Edition, Wiley Publications 2012.
[8] Byrne, P. and Lyons, G. 2001. “The effect of student attributes on

success in programming.” SIGCSE Bulletin, Vol. 33 (3), pp. 49-52.

[9] Santos, A., Gomes, A. and Mendes, A. J. 2010. “Integrating New

Technologies and Existing Tools to Promote Programming Learning.”

Algorithms, Vol. 3 (2), pp. 183-196.
[10] Pattis, R. Karel the Robot: A Gentle Introduction to the Art of

Programming. John Wiley & Sons, 1981.

[11] Jacobsen, David, Eggen, Paul, and Kauchak, Don. (1993). Methods for

Teaching: A Skills Approach. 4th ed.

[12] Boyle, Tom. (1997). Design for Multimedia Learning. Prentice Hall

Europe.

[13] P. A. Kirschner, J. Sweller, and R. E. Clark, “Why Minimal Guidance

During Instruction Does Not Work: An Analysis of the Failure of

Constructivist, Discovery, Problem-Based, Experimental, and

InquiryBased Teaching,” Educational, Psychologist, vol. 41, no. 2, pp.

75–86, 2006.

[14] A. Robins, J. Rountree, and N. Rountree, “Learning and Teaching

Programming: A Review and Discussion,” Computer Science

Education, vol. 13, no. 2, pp. 137–172, Mar. 2003.

[15] R. C. Holt, D. B. Wortman, D. T. Barnard, and J. R. Cordy, “SP/k: A
System for Teaching Computer Programming,” Communications of the

ACM, vol. 20, no. 5, pp. 301–309, Apr. 1977.

