
1

S

secure and Supportable Policy Renew Subcontract for Big Data Access Control in the Cloud

A.Sangeetha, Member, S.Tharani, Member, R.Vennila, Member Guided by A.Priya,AP/CSE Staff Member,

Abstract— They focus on solving the policy updating problem in AES systems, and propose a secure and verifiable policy updating outsourcing method. Instead of

retrieving and re-encrypting the data, data owners only send policy updating queries to cloud server, and let cloud server update the policies of encrypted data directly, which
means that cloud server does not need to decrypt the data before/during the policy updating. Our scheme can not only satisfy all the above requirements, but also avoid the

transfer of encrypted data back and forth and minimize the computation work of data owners by making full use of the previously encrypted data under old access policies in

the cloud. The contributions of this paper include: 1) we formulate the policy updating problem in AES systems and develop a new method to outsource the policy updating
to the server. 2) We propose an expressive and efficient data access control scheme for big data, which enables efficient dynamic policy updating. 3) We design policy

updating algorithms for different types of access policies, e.g., Boolean Formulas, LSSS Structure and Access Tree. Compared to the conference version, we also propose an

efficient and secure policy checking method that enables data owners to check whether the cipher texts have been updated correctly by cloud server. In this method, we do not
require any help of data users, and data owners can check the correctness of the cipher text updating by their own secret keys and checking keys issued by each authority. Our

method can also guarantee data owners cannot use their secret keys to decrypt any cipher texts encrypted by other data owners, although their secret keys contain the

components associated with all the attributes. Moreover, we discuss some key features of the attribute-based access control scheme and show how it is suitable for big data
access control in the cloud. What’s more, we also add more performance evaluation on policy updating algorithms and the policy checking method.

Index Terms— Dynamic key generation, Access Control, ABAC, AES, Big Data, Cloud

✦

1 INTRODUCTION

Big data refers to high volume, high velocity, and/or high

variety information assets that require new forms of processing

to enable enhanced decision making, insight discovery and

process optimization. Due to its high volume and complexity,

it becomes difficult to process big data using on-hand database

management tools. An effective option is to store big data in

the cloud, as the cloud has capabilities of storing big data and

processing high volume of user access requests in an efficient

way. When hosting big data into the cloud, the data security

becomes a major concern as cloud servers cannot be fully

trusted by data owners.

Attribute-Based Encryption (ABE) [1]–[5] has emerged as

a promising technique to ensure the end-to-end data security

in cloud storage system. It allows data owners to define access

policies and encrypt the data under the policies, such that

only users whose attributes satisfying these access policies

can decrypt the data. When more and more organizations and

enterprises outsource data into the cloud, the policy updating

becomes a significant issue as data access policies may be

changed dynamically and frequently by data owners. However,

this policy updating issue has not been considered in existing

attribute-based access control schemes [6]–[9].

The policy updating is a difficult issue in attribute-based ac-

cess control systems, because once the data owner outsourced

data into the cloud, it would not keep a copy in local systems.

When the data owner wants to change the access policy, it has

Kan Yang is with the Department of Electrical and Computer Engineer-
ing, University of Waterloo, Waterloo, ON N2L 3G1, Canada (email:
kan.yang@uwaterloo.ca)
Xiaohua Jia is with the Department of Computer Science, City University of
Hong Kong, Kowloon, Hong Kong S.A.R. (email: csjia@cityu.edu.hk)
Kui Ren is with the Department of Computer Science and Engineering,
Sate University of New York at Buffalo, Buffalo, NY, 14260, USA (email:
kuiren@buffalo.edu)

to transfer the data back to the local site from the cloud, re-

encrypt the data under the new access policy, and then move

it back to the cloud server. By doing so, it incurs a high

communication overhead and heavy computation burden on

data owners. This motivates us to develop a new method to

outsource the task of policy updating to cloud server.

The grand challenge of outsourcing policy updating to the

cloud is to guarantee the following requirements:

1) Correctness: Users who possess sufficient attributes

should still be able to decrypt the data encrypted under

new access policy by running the original decryption

algorithm.

2) Completeness: The policy updating method should be

able to update any type of access policy.

3) Security: The policy updating should not break the

security of the access control system or introduce any

new security problems.

The policy updating problem has been discussed in key-

policy structure [1] and ciphertext-policy structure [10]. How-

ever, these methods cannot satisfy the completeness require-

ment, because they can only delegate key/ciphertext with a

new access policy that should be more restrictive than the

previous policy. Furthermore, they cannot satisfy the security

requirement either. For example, when a new attribute is added

into a threshold gate and the threshold gate is changed from

(t, n) to a (t + 1, n + 1), both methods will set the share of

the new attribute to be 0. In this case, users who only holds

t attributes (excluding the new attribute) can satisfy the new

(t + 1, n + 1)-gate.

In this paper, we focus on solving the policy updating

problem in ABE systems, and propose a secure and verifiable

policy updating outsourcing method. Instead of retrieving and

re-encrypting the data, data owners only send policy updating

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1653

2

Cloud

Server
Server

CT CT

UK
PK1

PK2

AA1

AA2

SK1

SK2

Owners Users
PKk

AAk

SKk

queries to cloud server, and let cloud server update the policies

of encrypted data directly, which means that cloud server does

not need to decrypt the data before/during the policy updating.

Our scheme can not only satisfy all the above requirements,

but also avoid the transfer of encrypted data back and forth and

minimize the computation work of data owners by making full

use of the previously encrypted data under old access policies

in the cloud.

The contributions of this paper include:

1) We formulate the policy updating problem in ABE

sytems and develop a new method to outsource the

policy updating to the server.

2) We propose an expressive and efficient data access

control scheme for big data, which enables efficient

dynamic policy updating.

3) We design policy updating algorithms for different types

CT = Enc(m, {PKx}, A)

Fig. 1. System Model

m = Dec(CT, {SKx})

of access policies, e.g., Boolean Formulas, LSSS Struc-

ture and Access Tree.

Compared to the conference version, we also propose an

efficient and secure policy checking method that enables data

owners to check whether the ciphertexts have been updated

correctly by cloud server. In this method, we do not require any

help of data users, and data owners can check the correctness

of the ciphertext updating by their own secret keys and

checking keys issued by each authority. Our method can also

guarantee data owners cannot use their secret keys to decrypt

any ciphertexts encrypted by other data owners, although their

secret keys contain the components associated with all the

attributes. Moreover, we discuss some key features of the

attribute-based access control scheme and show how it is

suitable for big data access control in the cloud. What’s more,

we also add more performance evaluation on policy updating

algorithms and the policy checking method.

The remaining of this paper is organized as follows. In

Section 2, we define system model, framework and security

model. Section 3 describes an attribute-based access control

scheme for big data based on an adapted mutli-authority CP-

ABE method in [5]. In Section 4, we propose several policy

updating algorithms for different types of access policies. In

Section 5, we design a method that enables the data owner to

check whether the ciphertexts have been updated correctly by

cloud server. In Section 6, we give a comprehensive analysis of

our scheme in terms of correctness, completeness, security and

performance. The related work is given in Section 7. Finally,

this paper is summarized in Section 8. In the Supplemental

File, we describe the definition of access structures in ABE

systems, as well as two types of access structures that are well

utilized in constructing ABE schemes.

2 SYSTEM AND SECURITY MODEL

 System Model

We consider a cloud storage system with multiple authorities,

as shown in Fig.1. The system model consists of the following

entities: authorities (AA), cloud server (server), data owners

(owners) and data consumers (users).

Authority. Every authority is independent with each other

and is responsible for managing attributes of users in its

domain. It also generates a secret/public key pair for each

attribute in its domain, and generates a secret key for

each user according to his/her attributes.

Server. The cloud server stores the data for data

owners and provides data access service to users. The

server is also responsible for updating ciphertexts from old

access policies to new access policies.

Owner. The data owners define access policies and

encrypt data under these policies before hosting them in

the cloud. They also ask the server to update access policies

of the encrypted data stored in the cloud. After that, they

will check whether the server has updated the policies

correctly.

User. Each user is assigned with a global user identity

and can freely get the ciphertexts from the server. The

user can decrypt the ciphertext, only when its attributes

satisfy the access policy defined in the ciphertext.

 Framework

To meet all the requirements of policy updating, we define

the framework of our access control scheme as follows.

Definition 1 (Framework). Our dynamic policy access con-

trol scheme is a collection of the following algorithms:

GlobalSetup, AuthoritySetup, SKeyGen, Encrypt,

Decrypt, UKeyGen and CTUpdate.

• GlobalSetup(λ) → GP. The global setup algorithm

takes no input other than the implicit security

parameter λ . It outputs the global parameter GP for

the system.

• AuthoritySetup(GP, AID) → (SK, PK). The authority

setup algorithm is run by each authority AID with GP
and the authority identity AID as inputs and its

secret/public key pair (SKAID, PKAID) as outputs.

• SKeyGen(GID, GP, SGID,AID, SKAID) → SKGID,AID. Each
authority AID runs the secret key generation algorithm

to generate a secret key SKGID,AID for user GID. It takes
as inputs the global identity GID, the global parameter

GP, a set of attributes SGID,AID issued by this

authority AID and the secret key SKAID of this

authority. It outputs a secret key SKGID,AID for this
user GID.

• Encrypt({PK}, GP, m, A) → CT. The encryption algo-

.
.
.

3

rithm takes as inputs a set of public keys {PK} of relevant

authorities, the global parameter GP, the message m and

an access policy A. It outputs a ciphertext CT.

_ Decrypt(CT;GP;fSKGID;AIDg)!m. The decryption algorithm

takes as inputs the ciphertext, the global parameter GP and a

collection of secret keys from relevant authorities for user GID.

It outputs the message m when the user’s attributes satisfy the

access policy associated with the ciphertext. Otherwise, the

decryption fails.

_ UKeyGen(fPKg;EnInfo(m);A;A0) ! UKm. The update key

generation algorithm is run by the data owner. It takes as inputs

the relevant public keys, the encryption information EnInfo(m)

of the message m, the previous access policy A and the new

access policy A0. It outputs the update key UKm of m used to

update the ciphertextCT from the previous access policy to the

new one.

_ CTUpdate(CT;UKm) ! CT0. The ciphertext updating

algorithm is run by cloud server. It takes as inputs the previous

ciphertext CT and the update key UKm. It outputs a new

ciphertext CT0 corresponding to the new access policy A0.

2.3 Security Model

The cloud server is curious about the stored data and messages

it received during the services. But it is assumed that the cloud

server will not collude with users, i.e., it will not send

theciphertexts under previous policies to users, whose attributes

can satisfy previous access policies but fail to satisfy newaccess

policies. Data owners are assumed to be fully trusted. The users

are assumed to be dishonest, i.e., they may collude to access

unauthorized data. The authorities can be corrupted or

compromised by the attackers. We assume that the adversary

can corrupt authorities only statically, but key queries can be

made adaptively. We now describe the security model of our

system by the following game between a challenger and an

adversary: Setup. The global setup algorithm is run. The

adversary specifies a set S0 A _SA of corrupted authorities. The

challenger generates secret/public key pairs by running the

authority setup algorithm. For uncorrupted authorities in SA

�S0 A, the challenger sends only public keys to the

adversary.For corrupted authorities in S0 A, the challenger

sends both public keys and secret keys to the adversary.

Phase 1. The adversary makes secret key queries by submitting

pairs (GID;SGID;AID) to the challenger, where GID

is an identity and SGID;AID is a set of attributes belonging

to an uncorrupted authority AID. The challenger gives the

corresponding secret keys SKGID;AID to the adversary.

Challenge. The adversary submits two equal length messages

m0 and m1. In addition, the adversary gives a set of

challenge access structure f(M_ (1);r_ 1); _ _ _ ; (M_ (q);r_ q

)g which must satisfy the constraint that the adversary cannot

ask for a set of keys that allow decryption, in combination with

any keys that can be obtained from corrupted authorities. The

challenger then flips a random coin b, and encrypts mb under

all access structures f(M_ (1);r_ 1); _ _ _ ; (M_ (q);r_ q)g.

Then, the ciphertext fCT_ 1; _ _ _ ;CT_ qg are given to the

adversary. Phase 2. The adversary may query more secret keys,

as long as they do not violate the constraints on the challenge

access structures. The adversary can also makes update key

queries by submitting the pair (M_ (i);r_

i); (M_

(j);r_j),

the simulator returns the update key UKmb to the adversary.

Guess. The adversary outputs a guess b0 of b. The advantage of an

adversary A in this game is defined as

Pr[b0 = b]� 12

.

Definition 2. Our scheme is secure against static corruption of authorities

 if all polynomial time adversaries have at most a negligible advantage in

the above security game.

3 ATTRIBUTE-BASED ACCESS CONTROL WITH DYNAMIC

POLICY UPDATING FOR BIG DATA

We construct our dynamic-policy access control scheme based on an

adapted CP-ABE method in [5]. Our scheme consists of five phases:

System Initialization, Key Generation, Data Encryption, Data Decryption

and Policy Updating.

3.1 System Initialization

The system initialization includes two phases: global setup and authority

setup.

3.1.1 Global Setup

During the global setup, two multiplicative groups G and GT are chosen

with the same prime order p and the bilinear map : G_G ! GT between

them. A random oracle H maps global identities GID to elements of G.

 Let g be a generator of G, the global parameter GP is set to be

GP = (p; g; H):

3.1.2 Authority Setup

Each authority AID runs the authority setup algorithm AuthoritySetup to

generate its secret/public key pair. Let SAID denote the set of all the

attributes managed by the authority AID. For each attribute x 2 SAID,

 the authority chooses two random exponents ax;bx 2 Zp and publishes its

public key as PKAID = f e(g;g)ax ; gbx g8x2SAID: It keeps SKAID =

fax;bxg8x2SAID.

3.2 Key Generation

For each user GID, each authority AID will first assign a set of attributes

SGID;AID to this user. It then runs the secret key generation algorithm

SKGen to generate a set of secret keys as

SKGID;AID = fKx;GID = gaxH(GID)bxg8x2SGID;AID:

3.3 Data Encryption

The owner first encrypts the data m by running the encryption algorithm

Encrypt. The algorithm takes as inputs a set of public keys fPKg for

relevant authorities, the global parameters, the data m and an n_l access

matrix M with r mapping its rows to attributes. It chooses a random

encryption exponent (𝑥𝑗)
𝜌(𝑥𝑗) 𝜌(𝑥𝑛+1)
AND
Attr2AND

AttrRmAND

𝜌(𝑥𝑗)
𝜌(𝑥𝑗) 𝜌(𝑥𝑛+1)
Fig. 2. Operations of Boolean Formula
Cn+1 = (C1;n+1;C2;n+1;C3;n+1) for the new attribute xn+1 from
the component Cj corresponding to the existing attribute xj.
To achieve this Attr2OR operation on data m, the update key
generation algorithm UKGen takes the encryption information
EnInfo(m) of the data m and the public keys. It chooses
random am; rn+1 2 Zp and generates the update key as
UKm = (am; UK1;m =
e(g;g)axn+1 rn+1

e(g;g)
ax j r jam ;
UK2;m = grn+1�r j ; UK3;m =
gbxn+1 rn+1

gbx j r jam

)

4

Then, the data owner will send the tuple (Attr2OR; UKm)
to
the server and ask it to update the ciphertext CT
corresponding
to m. The ciphertext updating algorithm CTUpdate
constructs
the new ciphertext component Cxn+1 as follows.
C1;n+1 = (C1; j)am _UK1;m = e(g;g)ln+1 _ e(g;g)axn+1 rn+1 ;
C2;n+1 =C2; j _UK2;m = grn+1 ;
C3;n+1 = (C3; j)am _UK3;m = gbxn+1 rn+1 _ gwn+1 ;
where ln+1 = am _ lj and wn+1 = am _wj.
4.1.2 Converting an attribute to an AND gate
(Attr2AND)
This Attr2AND operation involves converting an existing
attribute xj(j 2 [1;n]) to an AND gate (xj ^xn+1) by adding
a new attribute xn+1. In this case, the combination of the
new
Cj in the ciphertext.
4.1.4 Removing an attribute from an AND gate
(AttrRmAND)
To remove an attribute from an AND gate, all the shares
should
be re-randomized, such that the correctness requirement
can
be satisfied. This can be easily achieved by using the
method
of converting a (t; t)-gate to a (t �1; t)-gate which will be
described later.
4.2 Updating a LSSS Structure
Access policies can also be expressed in LSSS structure
as in
our access control scheme. To convert a LSSS structure
(M;r)
to a new LSSS structure (M0;r0), it is too costly to choose
a
new encryption secret s0 and re-encrypt the data under
the new
access policy. In order to save the communication cost
and the
computation cost on data owners, in our method, we do
not
change the encryption secret s, such that we can make
full
use of the previous ciphertext encrypted under the old
policy
(M;r).
To enable the data owner to re-randomize the encryption
secret s, the encryption information EnInfo(m) of the data
m should also contain two random vectors ~v and ~w,
and the
public key of each attribute x is known to the data owner
as
(gax ;gbx). The data owner will run the update key
generation
algorithm to construct the update keys and send them to
the
cloud server. Upon receiving update keys, the cloud
server will
run the ciphertext update algorithm to update ciphertext
from
the previous access policy to the new policy. The update
key

algorithm and the ciphertext update algorithm are designed as
follows.
4.2.1 Update Key Generation
The update key generation algorithm UKGen takes as inputs
public keys, the encryption information of data m, and the
previous access policy (M;r) and the new one (M0;r0).
Suppose the new access policy is described as an n0_l0 access
matrix M0 with r0 mapping its rows to attributes. Since the
mapping functions r and r0 are non-injective, we let numr(i);M

and numr(i);M0 denote the number of attribute r(i) in M and
M0 respectively.
It first calls the policy comparing algorithm PolicyCompare
to compare the new access policy (M0;r0) with the previous
one (M;r), and outputs three sets of row
 indexes

5 CHECKING ON POLICY UPDATING

Focus on solving the policy updating problem in AES systems,

and propose a secure and verifiable policy updating outsourcing method.

Instead of retrieving and re-encrypting the data, data owners only send

policy updating queries to cloud server, and let cloud server update the

policies of encrypted data directly, which means that cloud server does

not need to decrypt the data before/during the policy updating. Our

scheme can not only satisfy all the above requirements, but also avoid the

transfer of encrypted data back and forth and minimize the computation

work of data owners by making full use of the previously encrypted data

under old access policies in the cloud. The contributions of this paper

include: 1) We formulate the policy updating problem in AES systems

and develop a new method to outsource the policy updating to the server.

2) We propose an expressive and efficient data access control scheme for

big data, which enables efficient dynamic policy updating. 3) We design

policy updating algorithms for different types of access policies, e.g.,

Boolean Formulas, LSSS Structure and Access Tree. Compared to the

conference version, we also propose an efficient and secure policy

checking method that enables data owners to check whether the cipher

texts have been updated correctly by cloud server. In this method, we do

not require any help of data users, and data owners can check the

correctness of the cipher text updating by their own secret keys and

checking keys issued by each authority. Our method can also guarantee

data owners cannot use their secret keys to decrypt any cipher texts

encrypted by other data owners, although their secret keys contain the

components associated with all the attributes. Moreover, we discuss some

key features of the attribute-based access control scheme and show how it

is suitable for big data access control in the cloud. What’s more, we also

add more performance evaluation on policy updating algorithms and the

policy checking method.

Cloud computing is a revolutionary computing paradigm which enables

flexible, on-demand and low-cost usage of computing resources. Those

advantages, ironically, are the causes of security and privacy problems,

which emerge because the data owned by different users are stored in

some cloud servers instead of under their own control. To deal with

security problems, various schemes based on the Attribute-Based

Encryption have been proposed recently. However, the privacy problem

of cloud computing is yet to be solved. This paper presents an anonymous

privilege control scheme AnonyControl to address not only the data

privacy problem in cloud storage, but also the user identity privacy issues

in existing access control schemes. By using multiple authorities in cloud

computing system, our proposed scheme achieves anonymous cloud data

access and fine-grained privilege control. Our security proof and

performance analysis shows that AnonyControl is both secure and

efficient for cloud computing environment.

5

The main contributions of this existing are: 1) The

proposed scheme is able to protect user’s privacy against each

single authority. 2) The proposed scheme is tolerant against

authority compromise, and compromising of up to (N − 2)

authorities does not bring the whole system down. 3) We

provide detailed analysis on security and performance to show

feasibility of our scheme. 4) We first implement the real toolkit

of multi-authority based encryption scheme.

 Chase introduced a multi-authority system, where each user

has an ID and they can interact with each key generator

(authority) using different pseudonyms. One user’s different

pseudonyms are tied to his private key, but key generators

never know about the private keys, and thus they are not able to

link multiple pseudonyms belonging to the same user. In fact

they are even not able to distinguish the same user in different

transactions. Also, the whole attributes set is divided into N

disjoint sets and managed by N attributes authorities. That is, an

attribute authority will only issue key components which it is in

charge of. In this setting, even if an authority successfully

guesses a user’s ID, it knows only parts of the user’s attributes,

which are not enough to figure out the user’s identity. However,

the scheme proposed by Chase et ill-considered the basic

threshold-based ABE, Chase introduced a multi-authority

system, where each user has an ID and they can interact with

each key generator (authority) using different pseudonyms. One

user’s different pseudonyms are tied to his private key, but key

generators never know about the private keys, and thus they are

not able to link multiple pseudonyms belonging to the same

user. In fact they are even not able to distinguish the same user

in different transactions. Also, the whole attributes set is

divided into N disjoint sets and managed by N attributes

authorities. That is, an attribute authority will only issue key

components which it is in charge of. In this setting, even if an

authority successfully guesses a user’s ID, it knows only parts

of the user’s attributes, which are not enough to figure out the

user’s identity. However, the scheme proposed by Chase et al.

Considered the basic threshold-based ABE

6 ANALYSIS OF OUR SCHEME

In this paper, we focus on solving the policy updating

problem in AES systems, and propose a secure and verifiable

policy updating outsourcing method. Instead of retrieving and

re-encrypting the data, data owners only send policy updating

queries to cloud server, and let cloud server update the policies

of encrypted data directly, which means that cloud server does

not need to decrypt the data before/during the policy updating.

Our scheme can not only satisfy all the above requirements, but

also avoid the transfer of encrypted data back and forth and

minimize the computation work of data owners by making full

use of the previously encrypted data under old access policies

in the cloud. The contributions of this paper include: 1) We

formulate the policy updating problem in AES systems and

develop a new method to outsource the policy updating to the

server. 2) We propose an expressive and efficient data access

control scheme for big data, which enables efficient dynamic

policy updating. 3) We design policy updating algorithms for

different types of access policies, e.g., Boolean Formulas, LSSS

Structure and Access Tree. Compared to the conference

version, we also propose an efficient and secure policy

checking method that enables data owners to check whether the

cipher texts have been updated correctly by cloud server. In this

method, we do not require any help of data users, and data

owners can check the correctness of the cipher text updating by their own

secret keys and checking keys issued by each authority. Our method can

also guarantee data owners cannot use their secret keys to decrypt any

cipher texts encrypted by other data owners, although their secret keys

contain the components associated with all the attributes. Moreover, we

discuss some key features of the attribute-based access control scheme

and show how it is suitable for big data access control in the cloud.

What’s more, we also add more performance evaluation on policy

updating algorithms and the policy checking method.

 7 MODULE

 Big Data populate to Cloud Server

 ABE Security Enhancement

 User Interface Designing

 Cloud Storage Enhancement

 Accessory Verify Standards & Get BigData

7.1 BigData populate to CloudServer

The application admin can upload the data contained files to

cloud server. The server act as interface between an cloud and ABE

processing. The data which is uploading by the admin is to stored cloud

server interconnected to database server.

7.2 ABE Security Enhancement

Attribute encryption standard plays vital role in which is

populated by the admin is verified and converted to an encrypted format.

ABE converts the Big Data to an unsigned format. The un-authorized

used not able to view the ABE format. In this module ABE can be

implemented.

7.3 User Interface Designing
By using this module End-user can register to access the

application .The user profile are maintained by the Database server. DB

server verifies the end-user details then after the control allows the user to

access the application.

7.4 Cloud Storage Enchancement

In this module the purpose is to identify the performance of

cloud storage. We can see the Big data content and the memory occupied

by the data. We designed sample demo app to decrypt the data which the

data is previously encrypted by the admin.

 7.5 Accessor Verify Standards&GetBigData

We are designing this module for End-to-End client-server

architecture. Client gives the request to server, and server response back

to the client. Client receives the encrypted content

7 CONCLUSION

Focus on solving the policy updating problem in AES systems,

and propose a secure and verifiable policy updating outsourcing method.

Instead of retrieving and re-encrypting the data, data owners only send

policy updating queries to cloud server, and let cloud server update the

policies of encrypted data directly, which means that cloud server does

not need to decrypt the data before/during the policy updating. Our

scheme can not only satisfy all the above requirements, but also avoid the

transfer of encrypted data back and forth and minimize the computation

work of data owners by making full use of the previously encrypted data

under old access policies in the cloud. The contributions of this paper

include: 1) We formulate the policy updating problem in AES systems

and develop a new method to outsource the policy updating to the server.

2) We propose an expressive and efficient data access control scheme for

big data, which enables efficient dynamic policy updating. 3) We design

6

policy updating algorithms for different types of access

policies, e.g., Boolean Formulas, LSSS Structure and Access

Tree. Compared to the conference version, we also propose an

efficient and secure policy checking method that enables data

owners to check whether the cipher texts have been updated

correctly by cloud server. In this method, we do not require any

help of data users, and data owners can check the correctness of

the cipher text updating by their own secret keys and checking

keys issued by each authority. Our method can also guarantee

data owners cannot use their secret keys to decrypt any cipher

texts encrypted by other data owners, although their secret keys

contain the components associated with all the attributes.

Moreover, we discuss some key features of the attribute-based

access control scheme and show how it is suitable for big data

access control in the cloud. What’s more, we also add more

performance evaluation on policy updating algorithms and the

policy checking method.

REFERENCES
[1] Kan Yong l, O. Pandey, A. Sahai, and B. Waters, “Secure and
demonstrable policy update subcontract for big data access control in
the cloud” in CCS’06. ACM, 2015, pp. 140–170.
[2] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attributebased
encryption,” in S&P’07. IEEE, 2007, pp. 321–334.
[3] B. Waters, “Ciphertext-policy attribute-based encryption: An
expressive,
efficient, and provably secure realization,” in PKC’11. Springer, 2011,
pp. 53–70.
[4] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,
“Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption,” in EUROCRYPT’10. Springer,
2010, pp. 62–91.
[5] A. B. Lewko and B. Waters, “Decentralizing attribute-based
encryption,”
in EUROCRYPT’11. Springer, 2011, pp. 568–588.
[6] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and
fine-grained data access control in cloud computing,” in INFOCOM’10.
IEEE, 2010, pp. 534–542.
[7] K. Yang, X. Jia, and K. Ren, “Attribute-based fine-grained access
control with efficient revocation in cloud storage systems,” in
AsiaCCS’13. ACM, 2013, pp. 523–528.
[8] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie, “DAC-MACS: Effective
Data Access Control for Multiauthority Cloud Storage Systems,” IEEE
Trans. Info. Forensics Security, vol. 8, no. 11, pp. 1790–1801, 2013.
[9] K. Yang and X. Jia, “Expressive, efficient, and revocable data access
control for multi-authority cloud storage,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 7, pp. 1735–1744, July 2014.
[10] A. Sahai, H. Seyalioglu, and B. Waters, “Dynamic credentials and
ciphertext delegation for attribute-based encryption,” in CRYPTO’12.
Springer, 2012, pp. 199–217.
[11] J. C. Benaloh and J. Leichter, “Generalized secret sharing and
monotone
functions,” in CRYPTO’88, 1988, pp. 27–35.
[12] A. Beimel, “Secure schemes for secret sharing and key distribution,”
DSc dissertation, 1996.
[13] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity based
encryption with constant size ciphertext,” in EUROCRYPT’05, 2005,
pp. 440–456

1658

