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Abstract— MapReduce job, we consider to aggregate data with the same keys before sending them to remote reduce tasks. Although a similar 

function, called combine, has been already adopted by Hadoop, it operates immediately after a map task solely for its generated data, failing to 

exploit the data aggregation opportunities among multiple tasks on different machines. We jointly consider data partition and aggregation for a 

MapReduce job with an objective that is to minimize the total network traffic. In particular, we propose a distributed algorithm for big data 

applications by decomposing the original large-scale problem into several subproblems that can be solved in parallel. Moreover, an online 

algorithm is designed to deal with the data partition and aggregation in a dynamic manner. Finally, extensive simulation results demonstrate that 

our proposals can significantly reduce network traffic cost in both offline cases. 
. 

✦ 
 

 
 

1    INTRODUCTION 

MapReduce has emerged as the most  popular 

computing framework for big data  processing due  to its 

simple  programming model  and  automatic management 

of  parallel execution. MapReduce and  its  open  source 

implementation Hadoop  have  been  adopted by leading 

companies, such  as  Yahoo!,  Google  and  Face- book, for 

various big data  applications, such  as machine learning  

bioinformatics  and cyber- security. 

MapReduce divides a computation into two  main 

phases,  namely  map   and   reduce,  which   in  turn   are 

carried out by several  map  tasks and  reduce tasks, 

respectively. In the map phase,  map tasks are launched in 

parallel to convert  the original input splits  into interme- 

diate  data  in a form of key/value pairs.  These key/value 

pairs   are  stored on  local  machine and  organized into 

multiple  data   partitions,  one  per   reduce  task.   In  the 

reduce phase,   each  reduce task  fetches  its  own  share 

of  data   partitions from  all  map   tasks  to  generate the 

final  result.   There  is  a  shuffle  step  between map  and 

reduce phase.   In  this  step,  the  data   produced by  the 

map  phase  are  ordered, partitioned and  transferred to 

the  appropriate  machines executing the  reduce phase. 

The resulting network traffic pattern from  all map  tasks 

to all reduce tasks  can cause  a great  volume of network 

traffic,  imposing a  serious constraint on  the  efficiency 

of  data   analytic  applications.  For  example,  with   tens 

of  thousands of  machines, data  shuffling accounts for 

58.6% of the  cross-pod traffic  and  amounts to over  200 

 
  

petabytes in total in the analysis of SCOPE jobs. For 

shuffle-heavy MapReduce tasks,  the  high  traffic  could 

incur  considerable performance overhead up  to 30-40 % 

as shown in . 

By default, intermediate data  are  shuffled according 

to a hash  function in Hadoop, which  would lead  to large 

network traffic because  it ignores  network topology and  

data  size associated with  each key. As shown in Fig. 

1, we  consider a toy  example with  two  map  tasks  and 

two  reduce tasks,  where intermediate data  of three  keys 

K1 , K2 , and K3  are denoted by rectangle bars under each 

machine. If the  hash  function assigns   data  of  K1   and 

K3   to  reducer 1, and  K2   to  reducer 2, a large  amount 

of  traffic   will   go  through  the   top   switch.   To  tackle 

this  problem incurred by  the  traffic-oblivious partition 

scheme,   we  take   into   account  of  both   task   locations 

and  data   size  associated with  each  key  in  this  paper. 

By assigning keys  with  larger  data  size  to reduce tasks 

closer  to map  tasks,  network traffic  can be significantly 

reduced. In  the  same  example above,  if we  assign  K1 

and  K3   to reducer 2, and  K2   to reducer 1, as shown in 

Fig. 1(b), the data  transferred through the top switch  will 

be significantly reduced. 

To further reduce network traffic within a MapReduce 

job, we  consider to aggregate data  with  the  same  keys 

before  sending them  to remote reduce tasks.  Although a 

similar  function, called  combiner , has  been  already 

adopted by Hadoop, it operates immediately after a map 

task  solely  for  its generated data,  failing  to  exploit  the 

data  aggregation opportunities among multiple tasks  on 

different machines. As an example shown in Fig. 2(a), in 

the traditional scheme,  two map  tasks  individually send 

data  of key  K1   to the  reduce task.  If we  aggregate the 

data  of the same  keys before  sending them  over  the top 

switch,  as shown in Fig. 2(b), the network traffic will be
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(a) Traditional hash partition 

 

(b) Traffic-aware partition 
 

Fig. 1.  Two MapReduce partition schemes. 
 

 
reduced. 

In  this  paper, we  jointly  consider data  partition and 

aggregation for a MapReduce job with  an objective  that 

is  to  minimize the  total  network traffic.  In  particular, 

we  propose a distributed algorithm for  big  data  appli- 

cations  by decomposing the original large-scale problem 

into  several  subproblems that  can be solved  in parallel. 

Moreover, an online  algorithm is designed to deal  with 

the data  partition and  aggregation in a dynamic manner. 

Finally,   extensive simulation results demonstrate that 

our  proposals can  significantly reduce  network  traffic 

cost in both  offline  and  online  cases. 

The  rest   of  the   paper  is  organized  as  follows.   In 

section   II,  we  review   recent   related work.   Section  III 

presents a system model.  Section  IV develops a mixed- 

integer linear programming model  for the network traffic 

minimization problem. Sections  V and  VI propose the 

distributed and  online  algorithms, respectively, for this 

problem. The experiment results are discussed in section 

VII. Finally,  Section  VIII concludes the  paper. 
 
 

2    RELATED WORK 
 

Most existing  work  focuses  on MapReduce performance 

improvement by optimizing its data transmission. Blanca 

et  al have   investigated the  question of  whether 

optimizing network usage  can lead to better  system 

performance and   found that   high  network  utilization 

and  low  network congestion should be achieved simul- 

taneously for a job with  good  performance. Palanisamy 

(a) Without global aggregation 
 

 

(b) With global aggregation 
 

Fig. 2.  Two schemes of intermediate data  transmission in 

the shuffle phase. 
 
 
 
et  al.   have   presented  Purlieus, a  MapReduce re- 

source  allocation system, to enhance the performance of 

MapReduce jobs  in  the  cloud  by  locating  intermediate 

data   to  the   local  machines  or  close-by   physical  ma- 

chines.  This  locality-awareness reduces network traffic 

in the  shuffle  phase  generated in the  cloud  data  center. 

However, little  work  has  studied to  optimize network 

performance of the  shuffle  process  that  generates large 

amounts of  data   traffic  in  MapReduce jobs.  A  critical 

factor  to the  network performance in the  shuffle  phase 

is  the  intermediate data  partition. The  default scheme 

adopted by Hadoop is hash-based partition that  would 

yield  unbalanced loads  among reduce tasks  due  to  its 

unawareness of the  data  size  associated with  each  key. 

To overcome this  shortcoming, Ibrahim et al. have 

developed a fairness-aware key  partition approach that 

keeps  track of the distribution of intermediate keys’ 

frequencies,  and  guarantees a  fair  distribution among 

reduce tasks.  Meanwhile, Liya et al.have  designed an  

algorithm to  schedule operations based  on  the  key 

distribution of intermediate key/value pairs  to improve 

the load balance.  Lars et al have proposed and eval- 

uated two  effective  load  balancing approaches to  data 

skew  handling for  MapReduce-based entity  resolution. 

Unfortunately, all  above  work  focuses  on  load  balance 

at reduce tasks,  ignoring the  network traffic  during the 

shuffle  phase. 

In addition to data  partition, many  efforts  have  been 

made   on  local  aggregation, in-mapper combining and 

in-network aggregation to reduce network traffic within
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Notations Description 

N a set of physical machines 
dxy distance between two  machines x and  y 

M a set of map  tasks  in map  layer 

R a set of reduce tasks  in reduce layer 

A a set of nodes  in aggregation layer 

P a set of intermediate keys 
Ai a set of neighbors of mapper i ∈ M 

δ maximum number of aggregators 
p 

m
i data  volume of key p ∈ P  generated by mapper i ∈ M 

φ(u) the  machine containing node  u 

p 
x
ij 

binary variable denoting whether mapper i ∈ M  sends 
data  of key p ∈ P  to node  j ∈ A 

p 
fij traffic for key p ∈ P  from  mapper i ∈ M  to node  j ∈ A 

p 
Ij input data  of key p ∈ P  on node  j ∈ A 

Mj a set of neighboring nodes  of j ∈ A 

O
p

 output data  of key p ∈ P  on node  j ∈ A 

α data  reduction ratio  of an aggregator 
αj data  reduction ratio  of node  j ∈ A 

zj 
binary variable indicating if an aggregator is placed 

on machine j ∈ N 

p 
y

k 
binary variable denoting whether data  of key p ∈ P 
is processed by reducer k ∈ R 

g
p the  network traffic regarding key p ∈ P  from  node  j ∈ A 

to reducer k ∈ R 

z
p

 an auxiliary variable 

ν 
p 
j Lagrangian multiplier 

m
p

 
p 

output of mj   at time  slot t 
αj (t) αj  at time  slot t 
Ψjj0 migration cost for aggregator from  machine j to j0

 

Φkk0 (·) cost of migrating intermediate data  from  reducer k to k0
 

CM (t) total  migration cost at time  slot t 

 

i 

 

MapReduce jobs.  Condie et  al.have introduced a 

combiner function that  reduces the  amount of data  to 

be shuffled and  merged to  reduce tasks.  Lin and  Dyer  

have  proposed an in-mapper combining scheme  by 

exploiting the fact that mappers can preserve state across 

the processing of multiple input key/value pairs  and de- 

fer emission of intermediate data  until  all input records 

have   been   processed.  Both  proposals  are  constrained 

to a single map  task, ignoring the data  aggregation 

opportunities from  multiple map  tasks.  Costa  et al.  have  

proposed a MapReduce-like system to decrease the 

traffic  by  pushing aggregation from  the  edge  into  the 

network. However, it can be only applied to the network 

topology with  servers directly linked   to  other  servers, 

which  is of limited practical use. 

Different from  existing  work,  we  investigate network 

traffic  reduction within MapReduce jobs  by  jointly  ex- 

ploiting  traffic-aware intermediate  data   partition and 

data  aggregation among multiple map  tasks. 
 

 

3    SYSTEM MODEL 

MapReduce is a programming model  based  on two 

primitives: map  function and  reduce function. The  for- 

mer  processes key/value  pairs   hk, vi and   produces  a 

set  of  intermediate key/value  pairs  hk0, v0i.  Intermedi- 

ate  key/value pairs   are  merged and  sorted based   on 

the  intermediate key  k0  and  provided as  input to  the 

reduce  function.  A  MapReduce  job  is  executed  over 

a  distributed  system composed of  a  master and  a  set 

of  workers. The  input is  divided into  chunks that  are 

assigned to map  tasks.  The master schedules map  tasks 

in  the  workers by  taking  into  account of data  locality. 

The  output of  the  map  tasks  is  divided into  as  many 

partitions as the number of reducers for the job. Entries 

with  the  same  intermediate key  should be  assigned to 

the  same  partition to  guarantee the  correctness of  the 

execution.  All  the  intermediate key/value  pairs   of  a 

given  partition are  sorted and  sent  to  the  worker with 

the  corresponding reduce task  to  be  executed. Default 

scheduling of reduce tasks  does  not take  any  data  local- 

ity constraint into consideration. As a result,  the amount 

of data  that  has  to be transferred through the  network 

in the  shuffle  process  may  be significant. 

In  this  paper, we  consider a  typical  MapReduce  job 

on  a  large  cluster   consisting of  a  set  N  of  machines. 

We  let  dxy   denote the  distance between two  machines 

x and  y, which  represents the  cost  of delivering a unit 

data.  When  the  job is executed, two  types  of tasks,  i.e., 

map and reduce, are created. The sets of map and reduce 

tasks  are  denoted by M  and  R, respectively, which  are 

already placed  on machines. The input data  are divided 

into independent chunks that are processed by map tasks 

in parallel. The generated intermediate results in forms 

of key/value pairs  may  be  shuffled and  sorted by  the 

framework,  and   then   are  fetched   by  reduce  tasks   to 

produce final  results. We  let  P  denote the  set  of keys 

the  data   volume of  key/value pairs   with   key  p  ∈  P 
generated by mapper i ∈ M . 

A set of δ aggregators are available to the intermediate 

results before  they  are  sent  to reducers. These  aggrega- 

tors can be placed  on any machine, and one is enough for 

data  aggregation on each  machine if adopted. The data 

reduction ratio  of an aggregator is denoted by α, which 

can be obtained via profiling before  job execution. 

The cost of delivering a certain  amount of traffic over 

a  network  link   is  evaluated  by  the   product  of  data 

size  and  link  distance. Our  objective  in this  paper is to 

minimize the  total  network traffic cost of a MapReduce 

job  by  jointly   considering aggregator placement and 

intermediate data  partition. All  symbols   and  variables 

used  in this  paper are summarized in Table 1. 
 

TABLE 1 

Notions and Variables 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

j 

 
 
 
 
 

 
jk 

j 

j (t) 

 
 
 
 
 

 
4    PROBLEM FORMULATION 

In  this  section,  we  formulate the  network traffic  mini- 

mization problem. To facilitate our analysis, we construct 

an auxiliary graph with  a three-layer structure as shown 

in Fig. 3. The given  placement of mappers and  reducers 

applies in  the  map  layer  and  the  reduce layer,  respec- 

tively.  In  the  aggregation layer,  we  create  a  potential 

aggregator at  each  machine, which  can  aggregate data 

from  all mappers. Since a single  potential aggregator is 

sufficient  at each  machine, we  also  use  N  to denote all

contained in  the  intermediate  results, and   m
p

 denote potential aggregators. In addition, we  create  a shadow
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ij 

x 

ij 

y 

k 

ij 

x
p

 

ij 

X 
xp

 

ij jk 

ij 

ij 

k 

p 

 

 

where Mj   denotes the  set  of j’s  neighbors in  the  map 

layer.  The corresponding output data  of node  j ∈ A is: 
 

O
p                 p

 

j = αj Ij , ∀j ∈ A, p ∈ P,                       (4) 
 

where  αj     =  α  if  node   j is  a  potential  aggregator. 

Otherwise, i.e., node j is a shadow node, we have αj  = 1. 

We further define  a binary variable zj   for aggregator 

placement, i.e., 
 
1, if a potential aggregator j ∈ N  is activated 

zj  = for data  aggregation, 

0, otherwise.
 

Since  the  total  number of aggregators is constrained 

by δ, we have:

 
Fig. 3.  Three-layer model for the network traffic minimiza- 

tion problem. 

X 
zj  ≤ δ.                                    (5) 

j∈N

The relationship among x
p

 and  zj  can be represented

 
node   for  each  mapper on  its  residential  machine.  In 

contrast with  potential aggregators, each  shadow node 

by:  
p   

≤ zj , ∀j ∈ N, i ∈ Mj , p ∈ P.                  (6)

can  receive  data   only  from  its  corresponding mapper 

in  the  same   machine.  It  mimics   the  process   that   the 

generated  intermediate results will  be  delivered  to  a 

In  other   words, if  a  potential aggregator j  ∈  N  is 
not  activated for data  aggregation, i.e., zj   = 0, no  data 

should be forwarded to it, i.e., x
p   

= 0.

reduce directly without going  through any  aggregator. Finally,   we  define   a  binary variable  
p

 to  describe

All  nodes  in  the  aggregation layers  are  maintained in 

set  A. Finally,  the  output data  of aggregation layer  are 

intermediate data  partition at reducers, i.e., 
 
1, if data  of key p ∈ P  are processed by

sent to the reduce layer. Each edge  (u, v) in the auxiliary 

graph is associated with  a weight dφ(u)φ(v) , where φ(u) 

denotes the  machine containing node  u in the  auxiliary 

graph. 

y
p  

= reducer k ∈ R, 

0, otherwise.

To formulate the traffic minimization problem, we first 

consider the data  forwarding between the map layer and 

Since the intermediate data  with  the same  key will be 
processed by a single  reducer, we have  the  constraint:

the aggregation layer.  We define  a binary variable x
p    

as 

follows: 
 
1, if mapper i ∈ M  sends  data  of key p ∈ P 

X 
yk 

k∈R 

= 1, ∀p ∈ P.                             (7)

 

ij = 

 

to node  j ∈ A; 

0, otherwise. 

The network traffic from  node  j ∈ A to reducer k ∈ R 
can be calculated by:

g
p                   p 

Since  all  data  generated in  the  map  layer  should be 

sent   to  nodes   in  the  aggregation  layer,   we  have   the 

following constraint for x
p  

: 

jk  = Oj yk , ∀j ∈ A, k ∈ R, p ∈ P.                 (8) 
 

With  the  objective  to  minimize the  total  cost  of net- 

work  traffic within the MapReduce job, the problem can 

be formulated as:

ij = 1, ∀i ∈ M, p ∈ P,                      (1) 
j∈Ai 

min 
X  X X 

f p dij  + 
X X 

gp  djk

p∈P i∈M j∈Ai j∈A k∈R

where Ai  denotes the set of neighbors of mapper i in the 
aggregation layer. 

subject  to:                      (1) − (8).

We  let  f 
p

 denote the  traffic  from  mapper i  ∈  M  to Note  that  the  formulation above  is  a  mixed-integer
node  j ∈ A, which  can be calculated by: 

 

f 
p            p      p 
ij = xij mi , ∀i ∈ M, j ∈ Ai , p ∈ P.               (2) 

The  input data  of node  j ∈  A can  be  calculated by 

summing up  all incoming traffic, i.e., 

nonlinear programming (MINLP)  problem. By applying 

linearization technique, we transfer it to a mixed-integer 

linear  programming (MILP)  that  can  be  solved  by  ex- 

isting   mathematical tools.  Specifically,   we  replace   the 

nonlinear constraint (8) with  the  following linear  ones:

p              p

I 
p                       p 0 ≤ gjk  ≤ Oj , ∀j ∈ A, k ∈ R, p ∈ P,      (9)
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p j = 
X 

fij , ∀j ∈ A, p ∈ P,                     (3) 

p       p           p              p

i∈Mj Oj  − (1 − yk )Ōj  ≤ gjk  ≤ Ōj , ∀j ∈ A, k ∈ R, p ∈ P,    (10)
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j i 

j 

ij k 

j 

ij jk 

z
p

 

j 

j 

j 

p p p 

 

where constant Ō
p   

= αj 

P
 
 

i∈Mj
 m

p   
is the  upper bound the  MapReduce job  for  big  data.  In  such  a  job,  there

of Op . The MILP formulation after  linearization  is: are hundreds or even  thousands of keys,  each  of which

is  associated with  a  set  of  variables (e.g.,  x
p and  y

p 
)

min 
X   X  X  

f 
p 

dij  + 
X X 

g
p  

djk 

 
 

and   constraints  (e.g.,  (1)  and   (7))  in  our  formulation, 

p∈P 

ij 

i∈M j∈Ai 

jk 

j∈A k∈R leading  to  a  large-scale optimization  problem  that   is

subject  to:                      (1) − (7), (9), and  (10). 
 

Theorem 1. Traffic-aware Partition and Aggregation problem 

is NP-hard. 
 

Proof: To prove  NP-hardness of our  network traffic 

optimization problem, we prove  the NP-completeness of 

its  decision  version by  reducing the  set  cover  problem 

to it in polynomial time. 

The    set    cover     problem:    given     a    set    U      = 

{x1 , x2 , . . . , xn },      a      collection       of      m       subsets 

hardly handled by  existing   algorithms and  solvers   in 

practice. 

In this  section,  we develop a distributed algorithm to 

solve  the  problem on  multiple machines in  a  parallel 

manner. Our   basic  idea  is  to  decompose the  original 

large-scale problem into  several  distributively  solvable 

subproblems that  are coordinated by a high-level master 

problem. To  achieve   this  objective,   we  first  introduce 

an  auxiliary variable z
p   

such  that  our  problem can  be 

equivalently formulated as: 

 
S  =  {S1 , S2 , . . . , Sm },  Sj    ⊆  U ,1  ≤ j  ≤ m  and   an 
integer K . The set cover  problem seeks  for a collection min 

X  X X 
f 

p 
dij  + 

X X 
g

p  
djk

p∈P i∈M j∈Ai
 j∈A k∈R

C such  that  |C | ≤ K  and  
S

i∈C  Si = U . 
subject  to:           x

p            p
ij ≤ zj , ∀j ∈ N, i ∈ Mj , p ∈ P,     (11) 

j = zj , ∀j ∈ N, p ∈ P,     (12) 

(1) − (5), (7), (9), and  (10). 
 

The corresponding Lagrangian is as follows: 

L(ν )    =  
X 

C p + 
X X 

ν 
p 
(zj  − z

p 
) 

p∈P 

j          j 

j∈N p∈P

=  
X 

C 
p 
+ 

X X 
ν 

p 
zj  − 

X X 
ν 

p 
z

p
 

p∈P 

j 

j∈N p∈P 

j  j 

j∈N p∈P

=  
X  

C 
p − 

X 
ν 

p 
z

p   
+ 

X X 
ν 

p 
zj       (13) 

p∈P 

j  j 

j∈N 

j 

j∈N p∈P

where ν 
p  

are Lagrangian multipliers and  C p  is given  as 

C p  = 
X X 

f 
p 

dij  + 
X X 

g
p  

djk . 

Fig. 4.  A graph  instance. 
ij 

i∈M j∈Ai 

jk 

j∈A k∈R

Given  ν 
p 
, the  dual  decomposition results in two  sets of

For each xi ∈ U , we create a mapper Mi  that generates
 j 

subpr 
 

intermediate data  partition and aggregator
only one key/value pair. All key/value pairs  will be sent 
to a single  reducer whose  distance with  each  mapper is 

more  than  2. For  each  subset  Sj , we  create  a potential 

aggregaor Aj   with  distance 1 to the  reducer. If xi ∈ Sj , 

oblems: 

placement. The  subproblem of  data   partition for  each 

key p ∈ P  is as follows: 

SUB  DP:                       min      (C 
p − 

X 
ν 

p 
z

p 
)

we  set  the  distance between Mi  to Aj  to 1. Otherwise, 

their  distance is greater than  1. The aggregation ratio  is 

defined to be 1. The constructed instance of our problem 

can be illustrated using  Fig. 4. Given  K  aggregators, we 

look for a placement such  that  the total  traffic cost is no 

greater than  2n.  It is easy  to  see  that  a solution of the 

set  cover  problem generates a solution of our  problem 

with  cost 2n. When  we  have  a solution of our  problem 

j  j 
j∈N 

subject  to:(1) − (4), (7), (9), (10), and  (11). 
 

These  problems regarding different keys  can  be  dis- 

tributed solved  on multiple machines in a parallel man- 

ner.  The  subproblem  of  aggregator placement can  be 

simply  written as: 

SUB  AP:  min      ( 
X X 

ν 
p 
zj )           subject  to: (5).

with  cost  2n, each  mapper should send  its result  to an 
aggregator with  distance 1 away,  which  forms  a solution 

of the  corresponding set cover  problem. 

j∈N p∈P 

The values  of ν 
p  

are updated in the  following master 

problem:
 

5    DISTRIBUTED  ALGORITHM  DESIGN min L(ν ) = 
X 

Ĉ
p  
+ 

X X 
νj ẑj  − 

X X 
νj 

P
 

 

ẑj

The  problem above   can  be  solved   by  highly   efficient
  

subject  to: ν 
p

 
N  p∈
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j 

approximation algorithms, e.g., branch-and-bound, and 

fast off-the-shelf solvers,  e.g., CPLEX, for moderate-sized 

input. An  additional  challenge arises   in  dealing with 

j ≥ 0, ∀j ∈ A, p ∈ P,    (14) 
 

where Ĉp , ẑ
p   

and  ẑj   are  optimal solutions returned by 

subproblems. Since the  objective  function of the  master
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Algorithm 1 Distributed Algorithm 

1:  set  t  =  1,  and   ν 
p 
(j  ∈   A, p   ∈ 

nonnegative values; 

2:  for t < T do 

3: distributively solve  the  subproblem SUB  DP and 

SUB  AP on multiple machines in a parallel man- 

ner; 

4:       update the values  of ν 
p  

with  the gradient method 

(15), and  send  the  results to all subproblems; 

5:       set t = t + 1; 

6:  end  for 
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Data size

problem is differentiable, it can be solved  by the follow- 

ing gradient method. 
Fig. 5.  Ratio evaluation.

ν p                        
h  

p
 

p                   p      p           
i+

j (t + 1) = νj  + ξ
 
ẑj (νj (t)) − ẑj (νj (t))

 
 ,       (15) tested inputs of 213.44M , 213.40M , 213.44M , 213.41M 

and  213.42M for five map  tasks  to generate correspond-
where t is the iteration index, ξ is a positive step size, and 
’+’ denotes the projection onto the nonnegative orthants. 

In summary, we  have  the  following distributed  algo- 

rithm to solve  our  problem. 

 
5.1    Network Traffic Traces 

In this  section,  we verify  that  our  distributed algorithm 

can  be  applied in  practice  using  real  trace  in  a cluster 

consisting of 5 virtual machines with  1GB memory and 

2GHz  CPU.  Our  network topology is  based  on  three- 

tier architectures: an access  tier, an aggregation tier and 

a core  tier  (Fig. 6). The  access  tier  is made  up  of cost- 

effective  Ethernet  switches connecting rack  VMs.  The 

access  switches are  connected via  Ethernet to  a  set  of 

aggregation switches which  in  turn  are  connected to  a 

layer  of  core  switches. An  inter-rack link  is  the  most 

contentious resource as  all  the  VMs  hosted on  a  rack 

transfer data  across  the  link  to the  VMs on other  racks. 

Our VMs are distributed in three  different racks, and  the 

map-reduce tasks are scheduled as in Fig. 6. For example, 

rack  1 consists  of  node  1 and  2; mapper 1 and  2 are 

scheduled on node  1 and reducer 1 is scheduled on node 

2. The  intermediate data  forwarding between mappers 

and  reducers should be transferred across  the  network. 

The  hop  distances between mappers and  reducers are 

shown in Fig. 6, e.g., mapper 1 and  reducer 2 has a hop 

distance 6. 

We tested the real network traffic cost in Hadoop using 

the  real  data  source  from  latest  dumps files in wikime- 

dia   (http://dumps.wikimedia.org/enwiki/latest/).   In 

the  meantime, we  executed our  distributed algorithm 

using  the  same  data  source  for  comparison. Since  our 

distributed algorithm is based  on a known aggregation 

ratio  α,  we  have  done  some  experiments to evaluate it 

in Hadoop environment. Fig. 5 shows  the  parameter α 

in terms  of different input scale. It turns out  to be stable 

with  the  increase  of input size, and  thus  we exploit  the 

average aggregation ratio  0.35 for our  trace. 

To evaluate the  experiment performance, we  choose 

the  wordcount application in  Hadoop. First  of  all,  we 

ing  outputs, which  turn   out  to  be  174.51M , 177.92M , 

176.21M , 177.17M  and  176.19M , respectively. Based  on 

these  outputs, the  optimal solution is  to  place  an  ag- 

gregator  on  node   1  and   to  assign   intermediate data 

according to  the  traffic-aware partition  scheme.   Since 

mappers 1 and  2 are scheduled on node  1, their  outputs 

can  be  aggregated before  forwarding to  reducers. We 

list  the  size  of outputs after  aggregation and  the  final 

intermediate data  distribution between reducers in Table 

2. For  example, the  aggregated data  size  on  node  1 is 

139.66M ,  in  which   81.17M  data   is  for  reducer 1  and 

58.49M  for reducer 2. 
 

 
 

Fig. 6.  A small example. 

 
The  data  size  and  hop  distance for  all  intermediate 

data  transfer obtained in the optimal solution are shown 

in Fig. 6 and  Table 2. Finally,  we get the  network traffic 

cost as follows: 
 

 

81.17 × 2 + 58.49 × 6 + 96.17 × 4 + 80.04 × 6 + 98.23 × 6 

+ 78.94 × 2 + 94.17 × 6 + 82.02 × 0 = 2690.48 

 

 
Since our  aggregator is placed  on node  1, the outputs 

of mapper 1 and  mapper 2 are  merged into  139.66M .

http://dumps.wikimedia.org/enwiki/latest/


ISSN 2395-695X (Print) 
                                                                                                                                                         ISSN 2395-695X (Online)    

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) 
Vol. 2, Special Issue 10, March 2016 

1640 
All Rights Reserved © 2016 IJARBEST 

i 
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TABLE 2 

Practical v.s Simulated Cost 

 
mappers 

data  size 
Node  1 Node  2 Node  3 Node  4 Node  5 

mapper 1 mapper 2 — mapper 3 mapper 4 mapper 5 

Before aggregation 174.51M 177.92M — 176.21M 177.17M 176.19M 

After  aggregation 139.66M — 176.21M 177.17M 176.19M 

reducer 1 81.17M — 96.17M 98.23M 94.17M 

reducer 2 58.49M — 80.04M 78.94M 82.02M 

Practical  cost 2690.48 

Simulated cost 2673.49 

 

The  intermediate data  from  all  mappers is  transferred 

according to the  traffic-aware partition scheme.  We can 

get the total network cost 2690.48 in the real Hadoop en- 

vironment while  the  simulated network cost is 2673.49. 

They  turn   out  to  be  very  close  to  each  other,   which 

indicates that  our  distributed algorithm can  be applied 

in practice. 

Algorithm 2 Online  Algorithm 

1:  t = 1 and  t̂  = 1; 

2:  solve  the  OPT  ONE  SHOT problem for t = 1; 

3:  while t ≤ T do 

4:       if 
Pt  

ˆ 

P    
C 

p 
(τ ) > γCM (t̂) then 

τ =t    p∈P      t 

5:            solve  the  following optimization problem: 
X

min  
p∈P 

C p (t)

 

6    ONLINE  ALGORITHM 

 

Until now, we take the data  size m
p  

and data  aggregation 

ratio  αj  as input of our  algorithms. In order  to get their 

subject  to:(1) − (7), (9), and  (10), for time  slot t. 
 

6:            if the solution indicates a migration event  then 

7: conduct migration according to the new  solu- 

tion;

values,   we  need   to  wait  all  mappers to  finish  before       8: t̂  = t;

starting reduce tasks, or conduct estimation via profiling 

on  a  small   set  of  data.   In  practice,  map   and   reduce 

tasks   may   partially  overlap  in  execution  to  increase 

system throughput, and  it is difficult  to estimate system 

parameters at a high  accuracy for big data  applications. 

These  motivate us to design an online  algorithm to dy- 

namically adjust  data  partition and  aggregation during 

the  execution of map  and  reduce tasks. 

In this  section,  we  divide the  execution of a MapRe- 

duce  job into  several  time  slots  with  a length  of several 

9:                 update CM (t̂); 
10:            end  if 

11:       end  if 

12:       t = t + 1; 

 13:  end  while   
 

 
 
and  migration over  a time  interval [1, T ], i.e., 
 

T 

min 
X  

CM (t) + 
X 

C p (t)
  

, subject  to:

minutes or an  hour.  We let m
p 
(t) and  αj (t) denote the t=1 p∈P

parameters  collected   at  time   slot  t with   no  assump- 

tion  about   their   distributions. As  the  job  is  running, 

an  existing  data  partition and  aggregation scheme  may 

not  be optimal anymore under current m
p 
(t) and  αj (t). 

(1) − (7), (9), (10), and  (16), ∀t = 1, ..., T . 
 

An intuitive method to solve  the  problem above  is to 

divide it into  T one-shot optimization problems:

To  reduce  traffic   cost,   we   may   need   to  migrate  an 

aggregator from  machine j to  j0  with  a migration cost 

Ψjj0 . Meanwhile, the key assignment among reducers is 

 

OPT  ONE  SHOT:            min CM (t) + 
X 
 
p∈P 

 

C p (t)

adjusted. When  we let reducer k0  process  the  data  with 

key p instead of reducer k that  is currently in charge  of 

subject  to:     (1) − (7), (9), (10), and  (16), for time  slot t. 
 

Unfortunately, the algorithm of solving  above one-shot
t                               p

this key, we use function Φkk0 (
P

τ =1 

P
j∈A 

P
k∈R gjk (τ )) 

to  denote the  cost  migrating all  intermediate data   re- 
ceived  by  reducers so far.  The  total  migration cost  can 

be calculated by: 

optimization in each  time  slot based  on the information 

collected  in the  previous time  slot  will  be far  from  op- 

timal  because  it may  lead  to frequent migration events. 

Moreover, the  coupled objective  function due  to CM (t) 

introduces additional challenges in distributed algorithm

CM (t) =  
X

 
X 

yp (t − 1)yp  (t)Φkk  · design.
 
 

t 
  X X X 

g
p

 

k 

k,k0 ∈R p∈P 

X 

k0                      0  

In this  section,  we  design an  online  algorithm whose 

basic  idea  is to postpone the  migration operation until

 
τ =1 j∈A k∈R 

jk (τ )
  

+  
j,j0 ∈N 

zj (t − 1)zj0 (t)Ψjj0 . (16) the cumulative traffic cost exceeds a threshold. As shown 

in Algorithm 2, we let t̂  denote the time of last migration 
operation, and  obtain  an  initial  solution by solving  the
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Our  objective  is to minimize the overall  cost of traffic OPT  ONE  SHOT problem. In each of the following time
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slot, we check whether the accumulative traffic cost, i.e., 
4 

6 
x 10

Pt 
τ =t̂  

P
p∈P  Ct (τ ), is greater than  γ times  of CM (t̂). If it

is, we solve  an optimization problem with  the  objective 

of minimizing traffic  cost  as  shown in  line  5. We  con- 

duct  migration operation according to the  optimization 

results and  update CM (t̂) accordingly as shown in lines 

6 to 10. Note  that  the optimization problem in line 5 can 

be solved  using  the  distributed algorithm developed in 

last section. 
 

 

7    PERFORMANCE EVALUATION 

In  this   section,   we  conduct  extensive simulations  to 

evaluate the  performance of  our  proposed distributed 

algorithm DA.  We  compare DA  with   HNA,   which   is 

the  default method in Hadoop. To our  best  knowledge, 

we  are  the  first  to  propose the  aggregator placement 

algorithm, and  compared with  the HRA that  focuses  on 

a random aggregator placement. All simulation results 

are averaged over  30 random instances. 

• HNA:  Hash-based partition with  No  Aggregation. 

It exploits  the  traditional hash  partitioning for  the 

intermediate data,  which  are transferred to reducers 

without going  through aggregators. It is the default 

method in Hadoop. 

• HRA:  Hash-based partition with   Random Aggre- 

gation.  It adds  a random aggregator placement al- 

gorithm based  on the  traditional Hadoop. Through 

randomly placing  aggregators in the  shuffle  phase, 

it aims  to  reducing the  network traffic  cost  in  the 

comparison of traditional method in Hadoop. 
 

 
7.1    Simulation results of offline  cases 

We  first  evaluate  the   performance  gap   between our 

proposed distributed algorithm and the optimal solution 

obtained by  solving  the  MILP  formulation. Due  to  the 

high computational complexity of the MILP formulation, 

we consider small-scale problem instances with  10 keys 

in this  set of simulations. Each key associated with  ran- 

dom  data  size within [1-50]. There  are 20 mappers, and 

2 reducers on a cluster  of 20 machines. The parameter α 

is set to 0.5. The distance between any  two  machines is 

randomly chosen  within [1-60]. 

As shown in Fig. 7, the performance of our distributed 

algorithm is very close to the optimal solution. Although 

network traffic  cost  increases  as  the  number of  keys 

grows  for all algorithms, the  performance enhancement 

of  our  proposed algorithms to  the  other  two  schemes 

becomes   larger.   When   the   number  of  keys   is  set  to 

10, the  default algorithm HNA  has  a cost  of 5.0 × 104
 

while  optimal solution is only 2.7 × 104 , with  46% traffic 

reduction. 

We  then  consider large-scale problem instances, and 

compare the  performance of our  distributed algorithm 

with  the  other  two  schemes.  We first describe a default 

simulation setting   with   a  number of  parameters, and 

then  study the performance by changing one parameter 

5 

 
4 

 
3 

 
2 
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0               2               4               6               8              10 

Number of keys 
 

Fig. 7.  Network traffic cost versus number of keys from 1 

to 10 
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Fig.  8.   Network  traffic cost  versus different  number of 

keys from 1 to 100. 
 

 
while  fixing others.  We consider a MapReduce job with 

100 keys  and  other  parameters are the  same  above. 

As shown in Fig. 8, the  network traffic  cost shows  as 

an increasing function of number of keys  from  1 to 100 

under all  algorithms. In  particular, when   the  number 

of  keys  is  set  to  100, the  network traffic  of  the  HNA 

algorithm is about  3.4 × 105 , while  the traffic cost of our 

algorithm is only  1.7 × 105 , with  a reduction of 50%. In 

contrast to  HRA  and  HNA,  the  curve  of DA  increases 

slowly  because  most  map  outputs are  aggregated and 

traffic-aware partition  chooses   closer  reduce  tasks   for 

each  key/value pair,  which   are  beneficial   to  network 

traffic reduction in the  shuffle  phase. 

We  then  study the  performance of  three  algorithms 

under  different values   of  α  in  Fig.  9 by  changing its 

value  from  0.2 to  1.0. A  small  value  of  α  indicates a 

lower  aggregation efficiency  for  the  intermediate data. 

We observe that  network traffic increases as the  growth 

of  α  under both  DA  and  HRA.  In  particular, when  α 

is 0.2, DA  achieves the  lowest  traffic  cost  of 1.1 × 105 . 

On the other  hand, network traffic of HNA  keeps  stable 

because  it does  not  conduct data  aggregation. 

The affect of available aggregator number on network 

traffic  is  investigated in  Fig.  10.  We  change   aggrega- 

tor  number from  0 to  6, and  observe that  DA  always 

outperforms other  two  algorithms, and  network traffics
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Fig. 9.  Network traffic cost versus data  reduction ratio α. Fig. 11.  Network traffic cost versus number of map tasks.
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Fig. 10.   Network traffic cost  versus number of aggrega- 

tors. 
 
 

decrease under both  HRA and  DA. Especially, when  the 

number of aggregator is 6, network traffic  of the  HRA 

algorithm is 2.2 ×105 , while  of DA’s cost is only 1.5 ×105 , 

with  26.7% improvement. That  is  because   aggregators 

are beneficial  to intermediate data  reduction in the shuf- 

fle process.  Similar with  Fig. 9, the performance of HNA 

shows  as a horizontal line  because  it is not  affected  by 

available aggregator number. 

We  study the  influence of  different number of  map 

tasks  by increasing the mapper number from 0 to 60. As 

shown in Fig. 11, we  observe that  DA always achieves 

the  lowest  traffic  cost as we  expected because  it jointly 

optimizes data  partition and  aggregation. Moreover, as 

the   mapper  number  increases, network  traffic   of  all 

algorithms increases. 

We  shows   the  network  traffic  cost  under  different 

number of reduce tasks  in Fig. 12. The number of reduc- 

ers is changed from  1 to 6. We observe that  the  highest 

network traffic is achieved when  there is only one reduce 

task  under all algorithms. That  is because  all key/value 

pairs  may  be delivered to the  only  reducer that  locates 

far  away,  leading to  a large  amount of network traffic 

due  to the  many-to-one communication pattern. As the 

number of  reduce tasks  increases, the  network traffic 

decreases  because   more   reduce  tasks   share   the   load 

of intermediate data.  Especially, DA  assigns  key/value 

pairs  to the closest  reduce task,  leading to least network 

Fig.  12.    Network  traffic cost  versus number of reduce 

tasks. 
 
 
traffic.  When  the  number of reduce tasks  is larger  than 

3, network traffic  decreasing becomes  slow  because  the 

capability of intermediate data  sharing among reducers 

has  been  fully  exploited. 

The  affect  of different number of machines is inves- 

tigated in  Fig. 13 by  changing the  number of physical 

nodes  from  10 to 60. We observe that  network traffic of 

all the  algorithms increases when  the  number of nodes 

grows.   Furthermore,  HRA   algorithm  performs  much 

worse  than  other  two  algorithms under all settings. 
 
 
7.2    Simulation results of online cases 
 

We then evaluate the performance of proposed algorithm 

under  online   cases   by  comparing  it  with   other   two 

schemes:  OHRA and  OHNA, which  are online  extension 

of  HRA  and   HNA,   respectively.  The  default number 

of  mappers  is  20  and   the   number  of  reducers  is  5. 

The  maximum number of  aggregators is  set  to  4 and 

we  also  vary  it  to  examine its  impact.   The  key/value 

pairs  with  random data  size within [1-100] are generated 

randomly in different slots. The total number of physical 

machines is set to 10 and  the distance between any  two 

machines is randomly choose  within [1-60]. Meanwhile, 

the default parameter α is set to 0.5. The migration cost 

Φkk0   and Ψjj0   are defined as constants 5 and 6. The initial 

migration cost  CM (0)  is defined as  300 and  γ  is set  to
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1000. All simulation results are averaged over 30 random 

instances. 

We first study the performance of all algorithm under 

default network setting  in Fig. 14. We observe that  net- 

work  traffic increases at the beginning and  then  tends  to 

be stable under our proposed online  algorithm. Network 

traffics of OHRA and OHNA always keep stable because 

OHNA obeys  the  same  hash  partition scheme  and  no 

global  aggregation for any  time  slot.  OHRA  introduces 

slightly   migration  cost   due   to  Ψjj0      is  just   6  .  Our 

proposed  online   algorithm  always updates  migration 

cost CM (t̂) and  executes  the distributed algorithm under 
different time slots, which  will incur some migration cost 

in this  process. 

The  influence of  key  numbers on  network traffic  is 

studied in Fig. 15. We observe that  our  online  algorithm 

performs much  better  than  other  two algorithms. In 

particular, when  the  number of keys  is 50, the  network 

traffic for online  algorithm is about  2 ×105 and  the traffic 

for OHNA is almost  3.1 × 105 , with  an increasing of 35%. 

In Fig. 16, we compare the performance of three 

algorithms under  different values   of  α.  The  larger   α, 

the  lower  aggregation efficiency  the  intermediate data 

has. We observe that  network traffics increase  under our 

online  algorithm and  OHRA.  However, OHNA is  not 

affected   by  parameter α  because   no  data   aggregation 

is  conducted. When  α  is  1, all  algorithms has  similar 

performance because  α = 1 means  no data  aggregation. 

Fig. 16.  Network traffic cost versus data  reduction ratio α 
 

 
On  the  other  hand, our  online  algorithm outperforms 

OHRA   and   OHNA under  other   settings  due   to  the 

jointly  optimization of traffic-aware partition and  global 

aggregation. 

We  investigate the  performance of  three  algorithms 

under different number of  aggregators in  Fig.  17. We 

observe the online  algorithm outperforms other  two 

schemes.  When  the  number of aggregator is 6, the  net- 

work  traffic of the OHNA algorithm is 2.8 × 105  and  our 

online  algorithm has a network traffic of 1.7 × 105  , with 

an  improvement of 39%. As the  increase  of aggregator 

numbers, it is more  beneficial  to aggregate intermediate 

data,  reducing the amount of data  in the shuffle  process. 

However, when  the  number of aggregators is set  to  0, 

which  means  no global aggregation, OHRA has the same 

network traffic  with  OHNA and  our  online  algorithm 

always achieves the  lowest  cost. 
 

 

8    CONCLUSION 

In this  paper, we  study the  joint  optimization of inter- 

mediate data  partition and aggregation in MapReduce to 

minimize network traffic  cost for big data  applications. 

We propose a three-layer model  for this problem and for- 

mulate it as a mixed-integer nonlinear problem, which  is 

then  transferred into a linear  form that  can be solved  by 

mathematical tools.  To deal  with  the  large-scale formu- 

lation  due  to big data,  we design a distributed algorithm
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Fig. 17.   Network traffic cost  versus number of aggrega- tors 
 

 
to solve the problem on multiple machines. Furthermore, we extend  our algorithm to handle the MapReduce job in an online  

manner when  some system parameters are not given.  Finally,  we conduct extensive simulations to eval- uate  our  proposed 

algorithm under both  offline  cases and   online   cases.  The  simulation results demonstrate that  our  proposals can 

effectively  reduce network traffic cost under various network settings. 
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