
ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1632
All Rights Reserved © 2016 IJARBEST

 Reduce Network Traffic Cost

 Using a Novel Intermediate Data Partition Scheme

 Gomathipriya R,Janani E,Rajesh P/CSE, Sasurie college of Engineering
 Guided By: Mr.P.Rajasekaran (AP/CSE)

Abstract— MapReduce job, we consider to aggregate data with the same keys before sending them to remote reduce tasks. Although a similar

function, called combine, has been already adopted by Hadoop, it operates immediately after a map task solely for its generated data, failing to

exploit the data aggregation opportunities among multiple tasks on different machines. We jointly consider data partition and aggregation for a

MapReduce job with an objective that is to minimize the total network traffic. In particular, we propose a distributed algorithm for big data

applications by decomposing the original large-scale problem into several subproblems that can be solved in parallel. Moreover, an online

algorithm is designed to deal with the data partition and aggregation in a dynamic manner. Finally, extensive simulation results demonstrate that

our proposals can significantly reduce network traffic cost in both offline cases.
.

✦

1 INTRODUCTION

MapReduce has emerged as the most popular

computing framework for big data processing due to its

simple programming model and automatic management

of parallel execution. MapReduce and its open source

implementation Hadoop have been adopted by leading

companies, such as Yahoo!, Google and Face- book, for

various big data applications, such as machine learning

bioinformatics and cyber- security.

MapReduce divides a computation into two main

phases, namely map and reduce, which in turn are

carried out by several map tasks and reduce tasks,

respectively. In the map phase, map tasks are launched in

parallel to convert the original input splits into interme-

diate data in a form of key/value pairs. These key/value

pairs are stored on local machine and organized into

multiple data partitions, one per reduce task. In the

reduce phase, each reduce task fetches its own share

of data partitions from all map tasks to generate the

final result. There is a shuffle step between map and

reduce phase. In this step, the data produced by the

map phase are ordered, partitioned and transferred to

the appropriate machines executing the reduce phase.

The resulting network traffic pattern from all map tasks

to all reduce tasks can cause a great volume of network

traffic, imposing a serious constraint on the efficiency

of data analytic applications. For example, with tens

of thousands of machines, data shuffling accounts for

58.6% of the cross-pod traffic and amounts to over 200

petabytes in total in the analysis of SCOPE jobs. For

shuffle-heavy MapReduce tasks, the high traffic could

incur considerable performance overhead up to 30-40 %

as shown in .

By default, intermediate data are shuffled according

to a hash function in Hadoop, which would lead to large

network traffic because it ignores network topology and

data size associated with each key. As shown in Fig.

1, we consider a toy example with two map tasks and

two reduce tasks, where intermediate data of three keys

K1 , K2 , and K3 are denoted by rectangle bars under each

machine. If the hash function assigns data of K1 and

K3 to reducer 1, and K2 to reducer 2, a large amount

of traffic will go through the top switch. To tackle

this problem incurred by the traffic-oblivious partition

scheme, we take into account of both task locations

and data size associated with each key in this paper.

By assigning keys with larger data size to reduce tasks

closer to map tasks, network traffic can be significantly

reduced. In the same example above, if we assign K1

and K3 to reducer 2, and K2 to reducer 1, as shown in

Fig. 1(b), the data transferred through the top switch will

be significantly reduced.

To further reduce network traffic within a MapReduce

job, we consider to aggregate data with the same keys

before sending them to remote reduce tasks. Although a

similar function, called combiner , has been already

adopted by Hadoop, it operates immediately after a map

task solely for its generated data, failing to exploit the

data aggregation opportunities among multiple tasks on

different machines. As an example shown in Fig. 2(a), in

the traditional scheme, two map tasks individually send

data of key K1 to the reduce task. If we aggregate the

data of the same keys before sending them over the top

switch, as shown in Fig. 2(b), the network traffic will be

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1633
All Rights Reserved © 2016 IJARBEST

(a) Traditional hash partition

(b) Traffic-aware partition

Fig. 1. Two MapReduce partition schemes.

reduced.

In this paper, we jointly consider data partition and

aggregation for a MapReduce job with an objective that

is to minimize the total network traffic. In particular,

we propose a distributed algorithm for big data appli-

cations by decomposing the original large-scale problem

into several subproblems that can be solved in parallel.

Moreover, an online algorithm is designed to deal with

the data partition and aggregation in a dynamic manner.

Finally, extensive simulation results demonstrate that

our proposals can significantly reduce network traffic

cost in both offline and online cases.

The rest of the paper is organized as follows. In

section II, we review recent related work. Section III

presents a system model. Section IV develops a mixed-

integer linear programming model for the network traffic

minimization problem. Sections V and VI propose the

distributed and online algorithms, respectively, for this

problem. The experiment results are discussed in section

VII. Finally, Section VIII concludes the paper.

2 RELATED WORK

Most existing work focuses on MapReduce performance

improvement by optimizing its data transmission. Blanca

et al have investigated the question of whether

optimizing network usage can lead to better system

performance and found that high network utilization

and low network congestion should be achieved simul-

taneously for a job with good performance. Palanisamy

(a) Without global aggregation

(b) With global aggregation

Fig. 2. Two schemes of intermediate data transmission in

the shuffle phase.

et al. have presented Purlieus, a MapReduce re-

source allocation system, to enhance the performance of

MapReduce jobs in the cloud by locating intermediate

data to the local machines or close-by physical ma-

chines. This locality-awareness reduces network traffic

in the shuffle phase generated in the cloud data center.

However, little work has studied to optimize network

performance of the shuffle process that generates large

amounts of data traffic in MapReduce jobs. A critical

factor to the network performance in the shuffle phase

is the intermediate data partition. The default scheme

adopted by Hadoop is hash-based partition that would

yield unbalanced loads among reduce tasks due to its

unawareness of the data size associated with each key.

To overcome this shortcoming, Ibrahim et al. have

developed a fairness-aware key partition approach that

keeps track of the distribution of intermediate keys’

frequencies, and guarantees a fair distribution among

reduce tasks. Meanwhile, Liya et al.have designed an

algorithm to schedule operations based on the key

distribution of intermediate key/value pairs to improve

the load balance. Lars et al have proposed and eval-

uated two effective load balancing approaches to data

skew handling for MapReduce-based entity resolution.

Unfortunately, all above work focuses on load balance

at reduce tasks, ignoring the network traffic during the

shuffle phase.

In addition to data partition, many efforts have been

made on local aggregation, in-mapper combining and

in-network aggregation to reduce network traffic within

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1634
All Rights Reserved © 2016 IJARBEST

Notations Description

N a set of physical machines
dxy distance between two machines x and y

M a set of map tasks in map layer

R a set of reduce tasks in reduce layer

A a set of nodes in aggregation layer

P a set of intermediate keys
Ai a set of neighbors of mapper i ∈ M

δ maximum number of aggregators
p

m
i data volume of key p ∈ P generated by mapper i ∈ M

φ(u) the machine containing node u

p
x
ij

binary variable denoting whether mapper i ∈ M sends
data of key p ∈ P to node j ∈ A

p
fij traffic for key p ∈ P from mapper i ∈ M to node j ∈ A

p
Ij input data of key p ∈ P on node j ∈ A

Mj a set of neighboring nodes of j ∈ A

O
p

 output data of key p ∈ P on node j ∈ A

α data reduction ratio of an aggregator
αj data reduction ratio of node j ∈ A

zj
binary variable indicating if an aggregator is placed

on machine j ∈ N

p
y

k
binary variable denoting whether data of key p ∈ P
is processed by reducer k ∈ R

g
p the network traffic regarding key p ∈ P from node j ∈ A

to reducer k ∈ R

z
p

 an auxiliary variable

ν
p
j Lagrangian multiplier

m
p

p

output of mj at time slot t
αj (t) αj at time slot t
Ψjj0 migration cost for aggregator from machine j to j0

Φkk0 (·) cost of migrating intermediate data from reducer k to k0

CM (t) total migration cost at time slot t

i

MapReduce jobs. Condie et al.have introduced a

combiner function that reduces the amount of data to

be shuffled and merged to reduce tasks. Lin and Dyer

have proposed an in-mapper combining scheme by

exploiting the fact that mappers can preserve state across

the processing of multiple input key/value pairs and de-

fer emission of intermediate data until all input records

have been processed. Both proposals are constrained

to a single map task, ignoring the data aggregation

opportunities from multiple map tasks. Costa et al. have

proposed a MapReduce-like system to decrease the

traffic by pushing aggregation from the edge into the

network. However, it can be only applied to the network

topology with servers directly linked to other servers,

which is of limited practical use.

Different from existing work, we investigate network

traffic reduction within MapReduce jobs by jointly ex-

ploiting traffic-aware intermediate data partition and

data aggregation among multiple map tasks.

3 SYSTEM MODEL

MapReduce is a programming model based on two

primitives: map function and reduce function. The for-

mer processes key/value pairs hk, vi and produces a

set of intermediate key/value pairs hk0, v0i. Intermedi-

ate key/value pairs are merged and sorted based on

the intermediate key k0 and provided as input to the

reduce function. A MapReduce job is executed over

a distributed system composed of a master and a set

of workers. The input is divided into chunks that are

assigned to map tasks. The master schedules map tasks

in the workers by taking into account of data locality.

The output of the map tasks is divided into as many

partitions as the number of reducers for the job. Entries

with the same intermediate key should be assigned to

the same partition to guarantee the correctness of the

execution. All the intermediate key/value pairs of a

given partition are sorted and sent to the worker with

the corresponding reduce task to be executed. Default

scheduling of reduce tasks does not take any data local-

ity constraint into consideration. As a result, the amount

of data that has to be transferred through the network

in the shuffle process may be significant.

In this paper, we consider a typical MapReduce job

on a large cluster consisting of a set N of machines.

We let dxy denote the distance between two machines

x and y, which represents the cost of delivering a unit

data. When the job is executed, two types of tasks, i.e.,

map and reduce, are created. The sets of map and reduce

tasks are denoted by M and R, respectively, which are

already placed on machines. The input data are divided

into independent chunks that are processed by map tasks

in parallel. The generated intermediate results in forms

of key/value pairs may be shuffled and sorted by the

framework, and then are fetched by reduce tasks to

produce final results. We let P denote the set of keys

the data volume of key/value pairs with key p ∈ P
generated by mapper i ∈ M .

A set of δ aggregators are available to the intermediate

results before they are sent to reducers. These aggrega-

tors can be placed on any machine, and one is enough for

data aggregation on each machine if adopted. The data

reduction ratio of an aggregator is denoted by α, which

can be obtained via profiling before job execution.

The cost of delivering a certain amount of traffic over

a network link is evaluated by the product of data

size and link distance. Our objective in this paper is to

minimize the total network traffic cost of a MapReduce

job by jointly considering aggregator placement and

intermediate data partition. All symbols and variables

used in this paper are summarized in Table 1.

TABLE 1

Notions and Variables

j

jk

j

j (t)

4 PROBLEM FORMULATION

In this section, we formulate the network traffic mini-

mization problem. To facilitate our analysis, we construct

an auxiliary graph with a three-layer structure as shown

in Fig. 3. The given placement of mappers and reducers

applies in the map layer and the reduce layer, respec-

tively. In the aggregation layer, we create a potential

aggregator at each machine, which can aggregate data

from all mappers. Since a single potential aggregator is

sufficient at each machine, we also use N to denote all

contained in the intermediate results, and m
p

 denote potential aggregators. In addition, we create a shadow

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1635
All Rights Reserved © 2016 IJARBEST

ij

x

ij

y

k

ij

x
p

ij

X
xp

ij jk

ij

ij

k

p

where Mj denotes the set of j’s neighbors in the map

layer. The corresponding output data of node j ∈ A is:

O
p p

j = αj Ij , ∀j ∈ A, p ∈ P, (4)

where αj = α if node j is a potential aggregator.

Otherwise, i.e., node j is a shadow node, we have αj = 1.

We further define a binary variable zj for aggregator

placement, i.e.,

1, if a potential aggregator j ∈ N is activated

zj = for data aggregation,

0, otherwise.

Since the total number of aggregators is constrained

by δ, we have:

Fig. 3. Three-layer model for the network traffic minimiza-

tion problem.

X
zj ≤ δ. (5)

j∈N

The relationship among x
p

 and zj can be represented

node for each mapper on its residential machine. In

contrast with potential aggregators, each shadow node

by:
p

≤ zj , ∀j ∈ N, i ∈ Mj , p ∈ P. (6)

can receive data only from its corresponding mapper

in the same machine. It mimics the process that the

generated intermediate results will be delivered to a

In other words, if a potential aggregator j ∈ N is
not activated for data aggregation, i.e., zj = 0, no data

should be forwarded to it, i.e., x
p

= 0.

reduce directly without going through any aggregator. Finally, we define a binary variable
p

 to describe

All nodes in the aggregation layers are maintained in

set A. Finally, the output data of aggregation layer are

intermediate data partition at reducers, i.e.,

1, if data of key p ∈ P are processed by

sent to the reduce layer. Each edge (u, v) in the auxiliary

graph is associated with a weight dφ(u)φ(v) , where φ(u)

denotes the machine containing node u in the auxiliary

graph.

y
p

= reducer k ∈ R,

0, otherwise.

To formulate the traffic minimization problem, we first

consider the data forwarding between the map layer and

Since the intermediate data with the same key will be
processed by a single reducer, we have the constraint:

the aggregation layer. We define a binary variable x
p

as

follows:

1, if mapper i ∈ M sends data of key p ∈ P

X
yk

k∈R

= 1, ∀p ∈ P. (7)

ij =

to node j ∈ A;

0, otherwise.

The network traffic from node j ∈ A to reducer k ∈ R
can be calculated by:

g
p p

Since all data generated in the map layer should be

sent to nodes in the aggregation layer, we have the

following constraint for x
p

:

jk = Oj yk , ∀j ∈ A, k ∈ R, p ∈ P. (8)

With the objective to minimize the total cost of net-

work traffic within the MapReduce job, the problem can

be formulated as:

ij = 1, ∀i ∈ M, p ∈ P, (1)
j∈Ai

min
X X X

f p dij +
X X

gp djk

p∈P i∈M j∈Ai j∈A k∈R

where Ai denotes the set of neighbors of mapper i in the
aggregation layer.

subject to: (1) − (8).

We let f
p

 denote the traffic from mapper i ∈ M to Note that the formulation above is a mixed-integer
node j ∈ A, which can be calculated by:

f
p p p
ij = xij mi , ∀i ∈ M, j ∈ Ai , p ∈ P. (2)

The input data of node j ∈ A can be calculated by

summing up all incoming traffic, i.e.,

nonlinear programming (MINLP) problem. By applying

linearization technique, we transfer it to a mixed-integer

linear programming (MILP) that can be solved by ex-

isting mathematical tools. Specifically, we replace the

nonlinear constraint (8) with the following linear ones:

p p

I
p p 0 ≤ gjk ≤ Oj , ∀j ∈ A, k ∈ R, p ∈ P, (9)

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1636
All Rights Reserved © 2016 IJARBEST

p j =
X

fij , ∀j ∈ A, p ∈ P, (3)

p p p p

i∈Mj Oj − (1 − yk)Ōj ≤ gjk ≤ Ōj , ∀j ∈ A, k ∈ R, p ∈ P, (10)

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1637
All Rights Reserved © 2016 IJARBEST

j i

j

ij k

j

ij jk

z
p

j

j

j

p p p

where constant Ō
p

= αj

P

i∈Mj
 m

p
is the upper bound the MapReduce job for big data. In such a job, there

of Op . The MILP formulation after linearization is: are hundreds or even thousands of keys, each of which

is associated with a set of variables (e.g., x
p and y

p
)

min
X X X

f
p

dij +
X X

g
p

djk

and constraints (e.g., (1) and (7)) in our formulation,

p∈P

ij

i∈M j∈Ai

jk

j∈A k∈R leading to a large-scale optimization problem that is

subject to: (1) − (7), (9), and (10).

Theorem 1. Traffic-aware Partition and Aggregation problem

is NP-hard.

Proof: To prove NP-hardness of our network traffic

optimization problem, we prove the NP-completeness of

its decision version by reducing the set cover problem

to it in polynomial time.

The set cover problem: given a set U =

{x1 , x2 , . . . , xn }, a collection of m subsets

hardly handled by existing algorithms and solvers in

practice.

In this section, we develop a distributed algorithm to

solve the problem on multiple machines in a parallel

manner. Our basic idea is to decompose the original

large-scale problem into several distributively solvable

subproblems that are coordinated by a high-level master

problem. To achieve this objective, we first introduce

an auxiliary variable z
p

such that our problem can be

equivalently formulated as:

S = {S1 , S2 , . . . , Sm }, Sj ⊆ U ,1 ≤ j ≤ m and an
integer K . The set cover problem seeks for a collection min

X X X
f

p
dij +

X X
g

p
djk

p∈P i∈M j∈Ai
 j∈A k∈R

C such that |C | ≤ K and
S

i∈C Si = U .
subject to: x

p p
ij ≤ zj , ∀j ∈ N, i ∈ Mj , p ∈ P, (11)

j = zj , ∀j ∈ N, p ∈ P, (12)

(1) − (5), (7), (9), and (10).

The corresponding Lagrangian is as follows:

L(ν) =
X

C p +
X X

ν
p
(zj − z

p
)

p∈P

j j

j∈N p∈P

=
X

C
p
+

X X
ν

p
zj −

X X
ν

p
z

p

p∈P

j

j∈N p∈P

j j

j∈N p∈P

=
X

C
p −

X
ν

p
z

p
+

X X
ν

p
zj (13)

p∈P

j j

j∈N

j

j∈N p∈P

where ν
p

are Lagrangian multipliers and C p is given as

C p =
X X

f
p

dij +
X X

g
p

djk .

Fig. 4. A graph instance.
ij

i∈M j∈Ai

jk

j∈A k∈R

Given ν
p
, the dual decomposition results in two sets of

For each xi ∈ U , we create a mapper Mi that generates
 j

subpr

intermediate data partition and aggregator
only one key/value pair. All key/value pairs will be sent
to a single reducer whose distance with each mapper is

more than 2. For each subset Sj , we create a potential

aggregaor Aj with distance 1 to the reducer. If xi ∈ Sj ,

oblems:

placement. The subproblem of data partition for each

key p ∈ P is as follows:

SUB DP: min (C
p −

X
ν

p
z

p
)

we set the distance between Mi to Aj to 1. Otherwise,

their distance is greater than 1. The aggregation ratio is

defined to be 1. The constructed instance of our problem

can be illustrated using Fig. 4. Given K aggregators, we

look for a placement such that the total traffic cost is no

greater than 2n. It is easy to see that a solution of the

set cover problem generates a solution of our problem

with cost 2n. When we have a solution of our problem

j j
j∈N

subject to:(1) − (4), (7), (9), (10), and (11).

These problems regarding different keys can be dis-

tributed solved on multiple machines in a parallel man-

ner. The subproblem of aggregator placement can be

simply written as:

SUB AP: min (
X X

ν
p
zj) subject to: (5).

with cost 2n, each mapper should send its result to an
aggregator with distance 1 away, which forms a solution

of the corresponding set cover problem.

j∈N p∈P

The values of ν
p

are updated in the following master

problem:

5 DISTRIBUTED ALGORITHM DESIGN min L(ν) =
X

Ĉ
p
+

X X
νj ẑj −

X X
νj

P

ẑj

The problem above can be solved by highly efficient

subject to: ν
p

N p∈

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1638
All Rights Reserved © 2016 IJARBEST

j

approximation algorithms, e.g., branch-and-bound, and

fast off-the-shelf solvers, e.g., CPLEX, for moderate-sized

input. An additional challenge arises in dealing with

j ≥ 0, ∀j ∈ A, p ∈ P, (14)

where Ĉp , ẑ
p

and ẑj are optimal solutions returned by

subproblems. Since the objective function of the master

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1639
All Rights Reserved © 2016 IJARBEST

50

MB

P) to arbitrary

45

 40
19.01MB

55.01

 35 193.90MB
341.13MB

j

j

A
g
g
re

g
a
ti
o
n

ra
ti
o
 (

%
)

Algorithm 1 Distributed Algorithm

1: set t = 1, and ν
p
(j ∈ A, p ∈

nonnegative values;

2: for t < T do

3: distributively solve the subproblem SUB DP and

SUB AP on multiple machines in a parallel man-

ner;

4: update the values of ν
p

with the gradient method

(15), and send the results to all subproblems;

5: set t = t + 1;

6: end for

30

25

20

15

10

5

0

50MB 150MB 600MB 1GB
Data size

problem is differentiable, it can be solved by the follow-

ing gradient method.
Fig. 5. Ratio evaluation.

ν p
h

p

p p p
i+

j (t + 1) = νj + ξ

ẑj (νj (t)) − ẑj (νj (t))

 , (15) tested inputs of 213.44M , 213.40M , 213.44M , 213.41M

and 213.42M for five map tasks to generate correspond-
where t is the iteration index, ξ is a positive step size, and
’+’ denotes the projection onto the nonnegative orthants.

In summary, we have the following distributed algo-

rithm to solve our problem.

5.1 Network Traffic Traces

In this section, we verify that our distributed algorithm

can be applied in practice using real trace in a cluster

consisting of 5 virtual machines with 1GB memory and

2GHz CPU. Our network topology is based on three-

tier architectures: an access tier, an aggregation tier and

a core tier (Fig. 6). The access tier is made up of cost-

effective Ethernet switches connecting rack VMs. The

access switches are connected via Ethernet to a set of

aggregation switches which in turn are connected to a

layer of core switches. An inter-rack link is the most

contentious resource as all the VMs hosted on a rack

transfer data across the link to the VMs on other racks.

Our VMs are distributed in three different racks, and the

map-reduce tasks are scheduled as in Fig. 6. For example,

rack 1 consists of node 1 and 2; mapper 1 and 2 are

scheduled on node 1 and reducer 1 is scheduled on node

2. The intermediate data forwarding between mappers

and reducers should be transferred across the network.

The hop distances between mappers and reducers are

shown in Fig. 6, e.g., mapper 1 and reducer 2 has a hop

distance 6.

We tested the real network traffic cost in Hadoop using

the real data source from latest dumps files in wikime-

dia (http://dumps.wikimedia.org/enwiki/latest/). In

the meantime, we executed our distributed algorithm

using the same data source for comparison. Since our

distributed algorithm is based on a known aggregation

ratio α, we have done some experiments to evaluate it

in Hadoop environment. Fig. 5 shows the parameter α

in terms of different input scale. It turns out to be stable

with the increase of input size, and thus we exploit the

average aggregation ratio 0.35 for our trace.

To evaluate the experiment performance, we choose

the wordcount application in Hadoop. First of all, we

ing outputs, which turn out to be 174.51M , 177.92M ,

176.21M , 177.17M and 176.19M , respectively. Based on

these outputs, the optimal solution is to place an ag-

gregator on node 1 and to assign intermediate data

according to the traffic-aware partition scheme. Since

mappers 1 and 2 are scheduled on node 1, their outputs

can be aggregated before forwarding to reducers. We

list the size of outputs after aggregation and the final

intermediate data distribution between reducers in Table

2. For example, the aggregated data size on node 1 is

139.66M , in which 81.17M data is for reducer 1 and

58.49M for reducer 2.

Fig. 6. A small example.

The data size and hop distance for all intermediate

data transfer obtained in the optimal solution are shown

in Fig. 6 and Table 2. Finally, we get the network traffic

cost as follows:

81.17 × 2 + 58.49 × 6 + 96.17 × 4 + 80.04 × 6 + 98.23 × 6

+ 78.94 × 2 + 94.17 × 6 + 82.02 × 0 = 2690.48

Since our aggregator is placed on node 1, the outputs

of mapper 1 and mapper 2 are merged into 139.66M .

http://dumps.wikimedia.org/enwiki/latest/

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1640
All Rights Reserved © 2016 IJARBEST

i

j

j

TABLE 2

Practical v.s Simulated Cost

mappers

data size
Node 1 Node 2 Node 3 Node 4 Node 5

mapper 1 mapper 2 — mapper 3 mapper 4 mapper 5

Before aggregation 174.51M 177.92M — 176.21M 177.17M 176.19M

After aggregation 139.66M — 176.21M 177.17M 176.19M

reducer 1 81.17M — 96.17M 98.23M 94.17M

reducer 2 58.49M — 80.04M 78.94M 82.02M

Practical cost 2690.48

Simulated cost 2673.49

The intermediate data from all mappers is transferred

according to the traffic-aware partition scheme. We can

get the total network cost 2690.48 in the real Hadoop en-

vironment while the simulated network cost is 2673.49.

They turn out to be very close to each other, which

indicates that our distributed algorithm can be applied

in practice.

Algorithm 2 Online Algorithm

1: t = 1 and t̂ = 1;

2: solve the OPT ONE SHOT problem for t = 1;

3: while t ≤ T do

4: if
Pt

ˆ

P
C

p
(τ) > γCM (t̂) then

τ =t p∈P t

5: solve the following optimization problem:
X

min
p∈P

C p (t)

6 ONLINE ALGORITHM

Until now, we take the data size m
p

and data aggregation

ratio αj as input of our algorithms. In order to get their

subject to:(1) − (7), (9), and (10), for time slot t.

6: if the solution indicates a migration event then

7: conduct migration according to the new solu-

tion;

values, we need to wait all mappers to finish before 8: t̂ = t;

starting reduce tasks, or conduct estimation via profiling

on a small set of data. In practice, map and reduce

tasks may partially overlap in execution to increase

system throughput, and it is difficult to estimate system

parameters at a high accuracy for big data applications.

These motivate us to design an online algorithm to dy-

namically adjust data partition and aggregation during

the execution of map and reduce tasks.

In this section, we divide the execution of a MapRe-

duce job into several time slots with a length of several

9: update CM (t̂);
10: end if

11: end if

12: t = t + 1;

 13: end while

and migration over a time interval [1, T], i.e.,

T

min
X

CM (t) +
X

C p (t)

, subject to:

minutes or an hour. We let m
p
(t) and αj (t) denote the t=1 p∈P

parameters collected at time slot t with no assump-

tion about their distributions. As the job is running,

an existing data partition and aggregation scheme may

not be optimal anymore under current m
p
(t) and αj (t).

(1) − (7), (9), (10), and (16), ∀t = 1, ..., T .

An intuitive method to solve the problem above is to

divide it into T one-shot optimization problems:

To reduce traffic cost, we may need to migrate an

aggregator from machine j to j0 with a migration cost

Ψjj0 . Meanwhile, the key assignment among reducers is

OPT ONE SHOT: min CM (t) +
X

p∈P

C p (t)

adjusted. When we let reducer k0 process the data with

key p instead of reducer k that is currently in charge of

subject to: (1) − (7), (9), (10), and (16), for time slot t.

Unfortunately, the algorithm of solving above one-shot
t p

this key, we use function Φkk0 (
P

τ =1

P
j∈A

P
k∈R gjk (τ))

to denote the cost migrating all intermediate data re-
ceived by reducers so far. The total migration cost can

be calculated by:

optimization in each time slot based on the information

collected in the previous time slot will be far from op-

timal because it may lead to frequent migration events.

Moreover, the coupled objective function due to CM (t)

introduces additional challenges in distributed algorithm

CM (t) =
X

X

yp (t − 1)yp (t)Φkk · design.

t
 X X X

g
p

k

k,k0 ∈R p∈P

X

k0 0

In this section, we design an online algorithm whose

basic idea is to postpone the migration operation until

τ =1 j∈A k∈R

jk (τ)

+
j,j0 ∈N

zj (t − 1)zj0 (t)Ψjj0 . (16) the cumulative traffic cost exceeds a threshold. As shown

in Algorithm 2, we let t̂ denote the time of last migration
operation, and obtain an initial solution by solving the

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1641
All Rights Reserved © 2016 IJARBEST

Our objective is to minimize the overall cost of traffic OPT ONE SHOT problem. In each of the following time

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1642
All Rights Reserved © 2016 IJARBEST

 Optimal

DA

HRA

HNA

DA

HRA

HNA

p

N
et

w
o
rk

 t
ra

ff
ic

N

et
w

o
rk

 t
ra

ff
ic

slot, we check whether the accumulative traffic cost, i.e.,
4

6
x 10

Pt
τ =t̂

P
p∈P Ct (τ), is greater than γ times of CM (t̂). If it

is, we solve an optimization problem with the objective

of minimizing traffic cost as shown in line 5. We con-

duct migration operation according to the optimization

results and update CM (t̂) accordingly as shown in lines

6 to 10. Note that the optimization problem in line 5 can

be solved using the distributed algorithm developed in

last section.

7 PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to

evaluate the performance of our proposed distributed

algorithm DA. We compare DA with HNA, which is

the default method in Hadoop. To our best knowledge,

we are the first to propose the aggregator placement

algorithm, and compared with the HRA that focuses on

a random aggregator placement. All simulation results

are averaged over 30 random instances.

• HNA: Hash-based partition with No Aggregation.

It exploits the traditional hash partitioning for the

intermediate data, which are transferred to reducers

without going through aggregators. It is the default

method in Hadoop.

• HRA: Hash-based partition with Random Aggre-

gation. It adds a random aggregator placement al-

gorithm based on the traditional Hadoop. Through

randomly placing aggregators in the shuffle phase,

it aims to reducing the network traffic cost in the

comparison of traditional method in Hadoop.

7.1 Simulation results of offline cases

We first evaluate the performance gap between our

proposed distributed algorithm and the optimal solution

obtained by solving the MILP formulation. Due to the

high computational complexity of the MILP formulation,

we consider small-scale problem instances with 10 keys

in this set of simulations. Each key associated with ran-

dom data size within [1-50]. There are 20 mappers, and

2 reducers on a cluster of 20 machines. The parameter α

is set to 0.5. The distance between any two machines is

randomly chosen within [1-60].

As shown in Fig. 7, the performance of our distributed

algorithm is very close to the optimal solution. Although

network traffic cost increases as the number of keys

grows for all algorithms, the performance enhancement

of our proposed algorithms to the other two schemes

becomes larger. When the number of keys is set to

10, the default algorithm HNA has a cost of 5.0 × 104

while optimal solution is only 2.7 × 104 , with 46% traffic

reduction.

We then consider large-scale problem instances, and

compare the performance of our distributed algorithm

with the other two schemes. We first describe a default

simulation setting with a number of parameters, and

then study the performance by changing one parameter

5

4

3

2

1

0
0 2 4 6 8 10

Number of keys

Fig. 7. Network traffic cost versus number of keys from 1

to 10

5

3.5
x 10

3

2.5

2

1.5

1

0.5

0
0 20 40 60 80 100

Number of keys

Fig. 8. Network traffic cost versus different number of

keys from 1 to 100.

while fixing others. We consider a MapReduce job with

100 keys and other parameters are the same above.

As shown in Fig. 8, the network traffic cost shows as

an increasing function of number of keys from 1 to 100

under all algorithms. In particular, when the number

of keys is set to 100, the network traffic of the HNA

algorithm is about 3.4 × 105 , while the traffic cost of our

algorithm is only 1.7 × 105 , with a reduction of 50%. In

contrast to HRA and HNA, the curve of DA increases

slowly because most map outputs are aggregated and

traffic-aware partition chooses closer reduce tasks for

each key/value pair, which are beneficial to network

traffic reduction in the shuffle phase.

We then study the performance of three algorithms

under different values of α in Fig. 9 by changing its

value from 0.2 to 1.0. A small value of α indicates a

lower aggregation efficiency for the intermediate data.

We observe that network traffic increases as the growth

of α under both DA and HRA. In particular, when α

is 0.2, DA achieves the lowest traffic cost of 1.1 × 105 .

On the other hand, network traffic of HNA keeps stable

because it does not conduct data aggregation.

The affect of available aggregator number on network

traffic is investigated in Fig. 10. We change aggrega-

tor number from 0 to 6, and observe that DA always

outperforms other two algorithms, and network traffics

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1643
All Rights Reserved © 2016 IJARBEST

DA

 HRA

 HNA

 DA

 HRA

 HNA

5

N
et

w
o
rk

 t
ra

ff
ic

N

et
w

o
rk

 t
ra

ff
ic

N
et

w
o
rk

 t
ra

ff
ic

N

et
w

o
rk

 t
ra

ff
ic

3
x 10

10
x 10

DA

2.5
8 HRA

HNA

6

2

4

1.5

1

DA

 HRA
2

 HNA

0
0.2 0.4 0.6 0.8 1

α
0 10 20 30 40 50 60

Number of map tasks

Fig. 9. Network traffic cost versus data reduction ratio α. Fig. 11. Network traffic cost versus number of map tasks.

5

3.5
x 10

3.5
x 10

3
3

2.5

2.5

2

2
1.5

1.5
0 1 2 3 4 5 6

Maximum number of aggregators

1
1 2 3 4 5 6

Number of reduce tasks

Fig. 10. Network traffic cost versus number of aggrega-

tors.

decrease under both HRA and DA. Especially, when the

number of aggregator is 6, network traffic of the HRA

algorithm is 2.2 ×105 , while of DA’s cost is only 1.5 ×105 ,

with 26.7% improvement. That is because aggregators

are beneficial to intermediate data reduction in the shuf-

fle process. Similar with Fig. 9, the performance of HNA

shows as a horizontal line because it is not affected by

available aggregator number.

We study the influence of different number of map

tasks by increasing the mapper number from 0 to 60. As

shown in Fig. 11, we observe that DA always achieves

the lowest traffic cost as we expected because it jointly

optimizes data partition and aggregation. Moreover, as

the mapper number increases, network traffic of all

algorithms increases.

We shows the network traffic cost under different

number of reduce tasks in Fig. 12. The number of reduc-

ers is changed from 1 to 6. We observe that the highest

network traffic is achieved when there is only one reduce

task under all algorithms. That is because all key/value

pairs may be delivered to the only reducer that locates

far away, leading to a large amount of network traffic

due to the many-to-one communication pattern. As the

number of reduce tasks increases, the network traffic

decreases because more reduce tasks share the load

of intermediate data. Especially, DA assigns key/value

pairs to the closest reduce task, leading to least network

Fig. 12. Network traffic cost versus number of reduce

tasks.

traffic. When the number of reduce tasks is larger than

3, network traffic decreasing becomes slow because the

capability of intermediate data sharing among reducers

has been fully exploited.

The affect of different number of machines is inves-

tigated in Fig. 13 by changing the number of physical

nodes from 10 to 60. We observe that network traffic of

all the algorithms increases when the number of nodes

grows. Furthermore, HRA algorithm performs much

worse than other two algorithms under all settings.

7.2 Simulation results of online cases

We then evaluate the performance of proposed algorithm

under online cases by comparing it with other two

schemes: OHRA and OHNA, which are online extension

of HRA and HNA, respectively. The default number

of mappers is 20 and the number of reducers is 5.

The maximum number of aggregators is set to 4 and

we also vary it to examine its impact. The key/value

pairs with random data size within [1-100] are generated

randomly in different slots. The total number of physical

machines is set to 10 and the distance between any two

machines is randomly choose within [1-60]. Meanwhile,

the default parameter α is set to 0.5. The migration cost

Φkk0 and Ψjj0 are defined as constants 5 and 6. The initial

migration cost CM (0) is defined as 300 and γ is set to

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1644
All Rights Reserved © 2016 IJARBEST

 DA

HRA

 HNA

 Online

OHRA

OHNA

 Online

 OHRA

 OHNA

5

N
et

w
o
rk

 t
ra

ff
ic

N

et
w

o
rk

 t
ra

ff
ic

N
et

w
o
rk

 t
ra

ff
ic

N

et
w

o
rk

 t
ra

ff
ic

5
x 10

4

3

2

1

0

5

3.5
x 10

3

2.5

2

1.5

1

0.5

0

10 20 30 40 50 60
Number of nodes

0 10 20 30 40 50
Number of keys

Fig. 13. Network traffic cost versus number of machines. Fig. 15. Network traffic cost versus number of keys

3.5
x 10 3

x 10

3

2.5

2

1.5

1

0.5

0

2.5

2

1.5

1

Online

 OHRA

OHNA

1 2 3 4 5 6
Time slots T

0.2 0.4 0.6 0.8 1
α

Fig. 14. Network traffic cost versus size of time interval T

1000. All simulation results are averaged over 30 random

instances.

We first study the performance of all algorithm under

default network setting in Fig. 14. We observe that net-

work traffic increases at the beginning and then tends to

be stable under our proposed online algorithm. Network

traffics of OHRA and OHNA always keep stable because

OHNA obeys the same hash partition scheme and no

global aggregation for any time slot. OHRA introduces

slightly migration cost due to Ψjj0 is just 6 . Our

proposed online algorithm always updates migration

cost CM (t̂) and executes the distributed algorithm under
different time slots, which will incur some migration cost

in this process.

The influence of key numbers on network traffic is

studied in Fig. 15. We observe that our online algorithm

performs much better than other two algorithms. In

particular, when the number of keys is 50, the network

traffic for online algorithm is about 2 ×105 and the traffic

for OHNA is almost 3.1 × 105 , with an increasing of 35%.

In Fig. 16, we compare the performance of three

algorithms under different values of α. The larger α,

the lower aggregation efficiency the intermediate data

has. We observe that network traffics increase under our

online algorithm and OHRA. However, OHNA is not

affected by parameter α because no data aggregation

is conducted. When α is 1, all algorithms has similar

performance because α = 1 means no data aggregation.

Fig. 16. Network traffic cost versus data reduction ratio α

On the other hand, our online algorithm outperforms

OHRA and OHNA under other settings due to the

jointly optimization of traffic-aware partition and global

aggregation.

We investigate the performance of three algorithms

under different number of aggregators in Fig. 17. We

observe the online algorithm outperforms other two

schemes. When the number of aggregator is 6, the net-

work traffic of the OHNA algorithm is 2.8 × 105 and our

online algorithm has a network traffic of 1.7 × 105 , with

an improvement of 39%. As the increase of aggregator

numbers, it is more beneficial to aggregate intermediate

data, reducing the amount of data in the shuffle process.

However, when the number of aggregators is set to 0,

which means no global aggregation, OHRA has the same

network traffic with OHNA and our online algorithm

always achieves the lowest cost.

8 CONCLUSION

In this paper, we study the joint optimization of inter-

mediate data partition and aggregation in MapReduce to

minimize network traffic cost for big data applications.

We propose a three-layer model for this problem and for-

mulate it as a mixed-integer nonlinear problem, which is

then transferred into a linear form that can be solved by

mathematical tools. To deal with the large-scale formu-

lation due to big data, we design a distributed algorithm

ISSN 2395-695X (Print)
 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)
Vol. 2, Special Issue 10, March 2016

1645
All Rights Reserved © 2016 IJARBEST

 Online

OHRA

OHNA

N
et

w
o
rk

 t
ra

ff
ic

5

3
x 10

2.8

2.6

2.4

2.2

2

1.8

1.6
0 1 2 3 4 5 6

Maximum number of aggregators

Fig. 17. Network traffic cost versus number of aggrega- tors

to solve the problem on multiple machines. Furthermore, we extend our algorithm to handle the MapReduce job in an online

manner when some system parameters are not given. Finally, we conduct extensive simulations to eval- uate our proposed

algorithm under both offline cases and online cases. The simulation results demonstrate that our proposals can

effectively reduce network traffic cost under various network settings.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data process- ing on large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.
[2] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Map task scheduling in mapreduce with data locality: Throughput and heavy-traffic

optimality,” in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 1609–1617.
[3] F. Chen, M. Kodialam, and T. Lakshman, “Joint scheduling of pro- cessing and shuffle phases in mapreduce systems,” in INFOCOM,

2012 Proceedings IEEE. IEEE, 2012, pp. 1143–1151.
[4] Y. Wang, W. Wang, C. Ma, and D. Meng, “Zput: A speedy data uploading approach for the hadoop distributed file system,” in Cluster Computing

(CLUSTER), 2013 IEEE International Conference on. IEEE, 2013, pp. 1–5.
[5] T. White, Hadoop: the definitive guide: the definitive guide. ” O’Reilly

Media, Inc.”, 2009.
[6] S. Chen and S. W. Schlosser, “Map-reduce meets wider varieties of applications,” Intel Research Pittsburgh, Tech. Rep. IRP-TR-08-05,

2008.

[7] J. Rosen, N. Polyzotis, V. Borkar, Y. Bu, M. J. Carey, M. Weimer, T. Condie, and R. Ramakrishnan, “Iterative mapreduce for large scale machine
learning,” arXiv preprint arXiv:1303.3517, 2013.

[8] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S.
Schreiber, “Presto: distributed machine learning and graph pro- cessing with sparse matrices,” in Proceedings of the 8th ACM European Conference
on Computer Systems. ACM, 2013, pp. 197–
210.

[9] A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast: Combin- ing mapreduce and virtualization on distributed resources for bioinformatics
applications,” in eScience, 2008. eScience’08. IEEE Fourth International Conference on. IEEE, 2008, pp. 222–229.

[10] J. Wang, D. Crawl, I. Altintas, K. Tzoumas, and V. Markl, “Com- parison of distributed data-parallelization patterns for big data analysis: A
bioinformatics case study,” in Proceedings of the Fourth International Workshop on Data Intensive Computing in the Clouds (DataCloud), 2013.

[11] R. Liao, Y. Zhang, J. Guan, and S. Zhou, “Cloudnmf: A mapreduce implementation of nonnegative matrix factorization for large- scale biological
datasets,” Genomics, proteomics & bioinformatics, vol. 12, no. 1, pp. 48–51, 2014.

