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Abstract—Choosing clothes with complex patterns and colors is a challenging task for visually impaired people. Automatic 

cloth-ing pattern recognition is also a challenging research problem due to rotation, scaling, illumination, and especially large 

intraclass pattern variations. We have developed a camera-based prototype system that recognizes clothing patterns in four 

categories (plaid, striped, patternless, and irregular) and identifies 11 clothing col-ors. The system integrates a camera, a 

microphone, a computer, and a Bluetooth earpiece for audio description of clothing patterns and colors. A camera mounted 

upon a pair of sunglasses is used to capture clothing images. The clothing patterns and colors are described to blind users 

verbally. This system can be controlled by speech input through microphone. To recognize clothing pat-terns, we propose a 

novel Radon Signature descriptor and a schema to extract statistical properties from wavelet subbands to capture global 

features of clothing patterns. They are combined with local features to recognize complex clothing patterns. To evaluate the ef-

fectiveness of the proposed approach, we used the CCNY Clothing Pattern dataset. Our approach achieves 92.55% recognition 

accu-racy which significantly outperforms the state-of-the-art texture analysis methods on clothing pattern recognition. The 

prototype was also used by ten visually impaired participants. Most thought such a system would support more independence 

in their daily life but they also made suggestions for improvements. 
 

Index Terms—Assistive system, clothing pattern recognition, global and local image features, texture analysis, visually 

impaired people. 
 
 

I. INTRODUCTION 
 

BASED on statistics from the World Health Organization (WHO), there are more than 161 million visually impaired 

people around the world, and 37 million of them are blind [9]. Choosing clothes with suitable colors and patterns is a challeng-

ing task for blind or visually impaired people. They manage this task with the help from family members, using plastic braille 

la-bels or different types of stitching pattern tags on the clothes, or by wearing clothes with a uniform color or without any 

patterns. Automatically recognizing clothing patterns and colors may im-prove their life quality. Automatic camera-based 

clothing pat-tern recognition is a challenging task due to many clothing pat-tern and color designs as well as corresponding 

large intraclass variations [4]. Existing texture analysis methods mainly focus on textures with large changes in viewpoint, 

orientation, and scaling, but with less intraclass pattern and intensity variations (see Fig. 1). We have observed that traditional 

texture analysis methods [3], [5], [10], [11], [15], [19], [23], [26], [29], [32] can-not achieve the same level of accuracy in the 

context of clothing pattern recognition.  
Here, we introduce a camera-based system to help visually impaired people to recognize clothing patterns and colors. The system 

contains three major components (see Fig. 2): 1) sen-sors including a camera for capturing clothing images, a micro-phone for speech 

command input and speakers (or Bluetooth, earphone) for audio output; 2) data capture and analysis to per-form command control, 

clothing pattern recognition, and color identification by using a computer which can be a desktop in a user’s bedroom or a wearable 

computer (e.g., a mini-computer or a smartphone); and 3) audio outputs to provide recognition results of clothing patterns and colors, 

as well as system status.  
In an extension to [30], our system can handle clothes with complex patterns and recognize clothing patterns into four cat-egories 

(plaid, striped, patternless, and irregular) to meet the basic requirements based on our survey with ten blind partic-ipants. Our system is 

able to identify 11 colors: red, orange, yellow, green, cyan, blue, purple, pink, black, grey, and white. For clothes with multiple colors, 

the first several dominant colors are spoken to users. In order to handle the large intraclass varia-tions, we propose a novel descriptor, 

Radon Signature, to capture the global directionality of clothing patterns. The combination of global and local image features 

significantly outperforms the state-of-the-art texture analysis methods for clothing pattern recognition. We also show that our method 

achieves comparable results to the state-of-the-art approaches on the traditional texture classification problems.  

mailto:vasanthraj_a@yahoo.co.in
mailto:karthikamadurai96@gmail.com
mailto:skowsalya1996@gmail.com


ISSN 2395-695X (Print) 

                                                                                                                                                         ISSN 2395-695X (Online)    

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) 

Vol. 2, Special Issue 10, March 2016 

1520 

All Rights Reserved © 2016 IJARBEST 

This paper is organized as follows. In Section II, we sum-marize the related work on assistive techniques for visually impaired 

people and the research work on texture analysis. The computations of global and local features for clothing pattern recognition are 

described in Section III. Section IV introduces the system and interface design. The details of clothing pat-tern recognition and color 

identification are demonstrated in Section V. Section VI presents our experimental results on a challenging clothing pattern dataset and 

a traditional texture dataset. Section VII describes the preliminary evaluations by blind users. Section VIII concludes the paper. 
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Fig. 1. Intraclass variations in clothing pattern images and traditional texture images. (a) Clothing pattern samples with large intraclass pattern and color vari-
ations. (b) Traditional texture samples with less intraclass pattern and intensity variations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Overview and architecture design of the camera-based clothing pattern recognition system for blind and visually impaired persons. 
 
has achieved good resilience to 3-D deformations. Texture rep-resentations based on this method benefit from the invariance of fractal 

dimensions to geometric transformations. For exam-ple, multi-fractal spectrum (MFS) proposed by Xu et al. [26] combined fractal 

dimensions of pixel sets grouped by density functions and orientation templates.  

In order to make representa-tions of texture more robust to 3-D image transformations (e.g., viewpoint change and nonrigid surface 

deformation) and illumi-nation variation, most of the recent methods reply on extracting local image features [11], [29], [32].  

A texton dictionary is then generated by clustering the extracted local features. However, multiple features are able to capture 

properties of an image in different aspects. If different features are highly complementary, their combination will improve the feature 

representation. For example, Lazebnik et al. [11] proposed a texture representation method based on affine-invariant detectors (Harris 

and Lapla-cian) and descriptors (RIFT and SPIN). Zhang et al. [32] also combined scale invariant feature transform (SIFT) and SPIN 

for texture classification.  
Unlike existing traditional texture images, clothing patterns contain much larger intraclass variations within each pattern cat-egory. 

Although many computer vision and image processing techniques have been developed for texture analysis and classi-fication, 

traditional texture analysis methods cannot effectively recognize clothing patterns. Here, we develop a camera-based system 

specifically for visually impaired people to help them recognize clothing patterns and colors. 

II. RELATED WORK 
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Assistive systems are being developed to improve the life quality and safety for those with special needs [2], [6], [7], [16], 

[20]–[22], [27], [28], [30], [31], including indoor navi-gation and way finding, display reading, banknote recognition, 

rehabilitation, etc. Liu et al. [12] built a clothing recommen-dation system for specific occasions (e.g., wedding or dating). 

Hidayati et al. [14] proposed a method for genre classification of upper-wear clothes.  

The two systems are both designed with-out considering key factors for blind users [1]. Yuan et al. [31] developed a system 

to assist blind people to match clothes from a pair of clothing images. This system can provide a user with the information 

about whether or not the clothing patterns and colors match. However, this system is not able to automatically recognize 

clothing patterns.  
Texture provides essential information for many image classi-fication tasks including clothing pattern recognition. Some early 

research on texture recognition [3], [5], [10], [15], [19], [23] fo-cused on the analysis of global two-dimensional (2-D) image 

transformations including in-plane rotation and scaling. Due to the lack of invariance to general geometric transformations, these 

approaches cannot effectively represent texture images with large 3-D transformations such as viewpoint change and nonrigid surface 

deformation. Multifractal analysis [25], [26]. 

III. IMAGE FEATURE EXTRACTION FOR CLOTHING PATTERN RECOGNITION 
 

Some clothing patterns present as visual patterns character-ized by the repetition of a few basic primitives (e.g., plaids or stripes). 

Accordingly, local features are effective to extract the structural information of repetitive primitives. However, due to large intraclass 

variance, local primitives of the same clothing pattern category can vary significantly (see Fig. 1). Global fea-tures including 

directionality and statistical properties of cloth-ing patterns are more stable within the same category. Therefore, they are able to 

provide complementary information to local structural features. Next, we present extractions of global and local features for clothing 

pattern recognition, i.e., Radon Sig-nature, statistical descriptor (STA), and scale invariant feature transform (SIFT). 

 
A. Radon Signature 
 

Clothing images present large intraclass variations, which result in the major challenge for clothing pattern recognition. However, in 

a global perspective, the directionality of clothing patterns is more consistent across different categories and can be used as an 

important property to distinguish different cloth-ing patterns. As shown in Fig. 8, the clothing patterns of plaid and striped are both 

anisotropic. In contrast, the clothing pat-terns in the categories of patternless and irregular are isotropic. To make use of this difference 

of directionality, we propose a novel descriptor, i.e., the Radon Signature, to characterize the directionality feature of clothing patterns. 
 
Radon Signature (RadonSig) is based on the Radon transform [8] which is commonly used to detect the principle orientation 

of an image. The image is then rotated according to this dominant direction to achieve rotation invariance. The Radon transform 

of a 2-D function f (x, y) is defined as 
∞   ∞ 
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Fig. 3.   Computation of RadonSig. (a) An intensity image of clothing pattern.  Fig. 4.   Clothing patterns samples and associated RadonSig descriptors. (b) 
Radon transform performed on a maximum disk area within the gradient map 

of (a). (c) Result of Radon Transform. (d) Feature vector of Radon Signature 
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Sampling projection directions: 

 

[Var (r, θ0 ) , Var (r, θ1 ) , . . . , Var (r, θT −1 )]  

           (1) Where r is the perpendicular distance of a projection line to the origin and θ is the angle of the projection line, as 

shown in Fig. 3(b). To retain the consistency of Radon transform for different projection orientations, we compute the Radon 

trans-form based on the maximum disk area instead of the entire image.  
The large intraclass variations of clothing patterns also reflect as images in the same category present large changes of 

color or intensity. To reduce the intensity variations, we use the Sobel operator to compute the gradient map as f (x, y) in (1). 

Fig. 3(b) illustrates the Radon transform over a disk area of gradient map. R (r, θ) in (1) is a function with two parameters of r 

and θ, as shown in Fig. 3(c). The directionality of an image can be represented by Var (r, θi ), the variances of r under a 

certain projection direction θi :where T is the number of sampling projection directions. It determines the feature dimension of 

Radon Signature. As the RadonSig is a nonsparse representation, we employ the L2-norm to normalize the feature vector. 

The principle directions of the image in Fig. 3(a) correspond to the two dominant peaks in the RadonSig in Fig. 3(d). 

 

Fig. 4 illustrates RadonSig descriptors of four sample images from different clothing pattern categories. The plaid patterns 

have two principle orientations; the striped ones have one principle orientation; as for the pattern less and the irregular 

images, they have no obvious dominant direction, but the directionality of the irregular image presents much larger variations 

than that of the pattern less image. 

 Accordingly, there are two dominant peak values corresponding to two principle orientations in the RadonSig of the plaid 

image. The RadonSig of the striped image has one peak value associated with the one principle orientation. There is no 

dominant peak value in the irregular and the pattern less cases. But the RadonSig of the pattern less image is much smoother 

than that of the irregular image. 

 

B. Statistics of Wavelet Sub bands 

 

Where R (rj , θi ) is the projection value at perpendicular distance of rj and projection direction of θi ; μ (r, θi ) is the 

expected value of R (r, θi ); N is the number of sampling bins in each projection line. The RadonSig is formed by the 

variances of r under all. 
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The discrete wavelet transform (DWT) decomposes an im-age I into low-frequency channel Dj (I ) under a coarser 

scale and multiple high-frequency channels under multiple scales Wk ,j (I ) ; k = 1, 2, 3; j = 1, 2, . . . , J , where J is the number 

of scaling levels. Therefore, in each scaling level j, we have four wavelet subbands including one low-frequency channel Dj (I 

) and three high-frequency channels Wk ,j (I ). The high-frequency channels Wk ,j (I ) ; k = 1, 2, 3 encode the discontinuities of 

an image along horizontal, vertical, and diagonal directions, respectively. In this paper, we apply J = 3 scaling levels of DWT 

to decompose each clothing image, as shown in Fig. 5. 

 

Statistical features are well adapted to analyze textures lack background clutter and have uniform statistical properties. 

DWT provides a generalization of a multire solution spectral analysis tool. Therefore, we extract the statistical features from 

wavelet sub bands to capture global statistical information of images at different scales. It is customary to compute the single 

energy value on each sub band [24].  

 

In this paper, we employ The local image features are well adapted to a number of applications, such as image 

retrieval, and recognition of object, texture, and scene categories [32], as they are robust to partial occlusion, cluttered 

background, and viewpoint variations. This has motivated the development of several local image feature detectors and 

descriptors.  

 

Generally, detectors are used to de-tect interest points by searching local external in a scale space; descriptors are 

employed to compute the representations of interest points based on their associated support regions. In this four statistical 

values including variance, energy, uniformity, and entropy to all wavelet sub bands. Thus, the STA is a feature with the 

dimension of 48 (3 × 4 × 4). The four normalized statistical values extracted from each wavelet sub band can be computed by 

the following equations: 
 
 
 
 
 
 
 
 
 
C. Scale Invariant Feature Transform Bag of Words 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. The computation of STA on wavelet subbands. Three levels of wavelet 
decomposition are applied to a clothing image. Each decomposition level in-
cludes four wavelet subbands of original, horizontal, vertical, and diagonal 
components arranged from the close to the distant in each level. Four 
statistical values calculated in each wavelet subband are concatenated to form 
the final descriptor. 
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variance = (zi  − m)
2
 p (zi ) / (L − 1)

2  
i= 0 

 
L −1  

energy = (zi  − m)
3
 p (zi ) / (L − 1)

2  
i= 0 

 
L −1 

paper, the uniform grids are used as the interest points sampling strategy, as more sophisticated detectors tend to saturate and 

fail to provide enough interest points, especially for the texture-less images [18]. The evenly sampled interest points are then 

represented by SIFT descriptors.  
 

We choose the SIFT descriptor as the representation of in-terest points based on the following reasons: 1) the descriptor with 

128 dimensions is compact and fairly distinctive; 2) the representation with careful design is robust to variations in illumination and 

viewpoints; 3) an extensive comparison against other local image descriptors observed that the SIFT descriptor performed well in 

the context of image matching [17]. The bag-of-words (BOW) [18] method is further applied to aggregate extracted SIFT 

descriptors by labeling each SIFT descriptor as a visual word and counting frequencies of each visual world. 

uniformity = p2 (zi )  
i= 0 

IV. SYSTEM AND INTERFACE DESIGN 

entropy = − 

L −1  

p (zi ) log2 p (zi )  

   
 Where zi  and p (zi ) , i = 0, 1, 2, . . . , L − 1 is the intensity level and corresponding histogram; L is the number of intensity 

level. The camera-based clothing recognition aid prototype for blind people integrates a camera, a microphone, a computer, 

and a Bluetooth earpiece for audio description of clothing pat-terns and colors. A camera mounted upon a pair of sunglasses 

is used to capture clothing images. The clothing patterns and col-ors are described to blind users by a verbal display with 

minimal distraction to hearing. The system can be controlled by speech input through a microphone.  
 

In order to facilitate blind users to interact, speech commands input from a microphone are used to provide function 

selection and system control. As shown in Fig. 7, the interface design includes basic functions and high priority commands. 

Basic functions: A blind user can verbally request the function he/she wants the clothing recognition aid to perform. The 

recognition results will be presented to the blind user as audio outputs including recognized, not recognized, and start a new 

function. As for the recognized function, the next level functions include pattern/colors to announce the recognized clothing

      
 

 

 
 

TABLE I 
CLOTHING PATTERNS AND DOMINANT COLORS 
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Fig. 7. System interface design for the proposed camera-based clothing pattern 
recognition system by using speech commands. The high priority commands can 
be used at any time to overwrite the basic functions. 

 
pattern and dominant colors; repeat results to repeat the recog-nized result; and save result to save the clothing image with 

associated pattern and color information in the computer.  
High priority commands: A blind user can set the system configuration by several high priority speech commands such as 

system restart, turn-off system, stop function (i.e., abort cur-rent task), speaker volume and speed control commands (e.g., 

louder, quieter, slower, and faster), and help. The high priority commands can be used at any time. A user can speak help, and 

the clothing recognition system will respond with the options associated with the current function. Bone conducted earphones or 

small wireless Bluetooth speakers can be employed to protect privacy and minimize background sounds. The battery level will 

also be checked and an audio warning is provided if the battery level is low.  
Audio output: As for audio display, we use an operating sys-tem speech facility that is standard in modern portable computer 

systems and smart phones. We currently use Microsoft Speech Software Development Kit which supports scripts. A number of 

configuration options are also available according to user preference, such as speech rate, volume, and voice gender. 

 
V. RECOGNIZING CLOTHING PATTERNS AND COLORS 

 
The extracted global and local features are combined to recognize clothing patterns by using a support vector machines 

(SVMs) classifier. The recognition of clothing color is implemented by quantizing clothing color in the HIS (hue, saturation, 

and intensity) space. In the end, the recognition results of both clothing patterns and colors mutually provide a more precise and 

meaningful description of clothes to users. 

 
A. Clothing Pattern Recognition 

In our system, we empirically set the size of the visual vocabulary to 100. We apply three scaling levels to decompose clothing 

images. The statistics of wavelet sub bands features are therefore formed by a vector with a dimension of 48. In the computation of the 

Radon Signature, we evenly sample 60 projection directions from 1
◦
 to 180

◦
. The feature vector of the RadonSig has a dimension of 

60. We combine all the global and local features by concatenating corresponding feature channels together. The combined feature 

vector has a dimension of 208.  
The combined feature vector is used as the inputs of SVMs classifier with RBF kernel. In our experiments, the optimal 

parameters of RBF kernel are found by 5-fold cross-validation, and the one-versus-one scheme is used. 

 
B. Clothing Color Identification 
 

Clothing color identification is based on the normalized color histogram of each clothing image in the HSI color space. The key idea 

is to quantize color space based on the relationships between hue, saturation, and intensity. In particular, for each clothing image, our 

color identification method quantizes the pixels in the image to the following 11 colors: red, orange, yellow, green, cyan, blue, purple, 

pink, black, grey, and white.  
The detection of colors of white, black, and gray is based on the saturation value S and intensity value I . If the intensity I of a 

pixel is larger than a upper intensity threshold I U , and the saturation S is less than a saturation threshold ST , the color of the 

pixel is “white.” Similarly, the color of a pixel is determined to be black if the intensity I is less than a lower intensity bound I L 

and saturation S is less than ST. For the remaining values of I while S is less than ST , the color of a pixel is identified as gray. 
For other colors (i.e., red, orange, yellow, green, cyan, blue, purple, and pink), the hue values are employed. The hue H can be 

visualized as a 360
◦ color wheel. We quantize the color of red in the range of 345◦

 −360◦
 and 0◦−9◦

, orange as 10◦−37◦
, 

yellow as 38◦−75◦
, green as 76◦−160◦

, cyan as 161◦ −200◦
, blue as 201◦−280◦

, purple as 281◦−315◦
, and pink as 316◦−344◦

. 
The weight of each color is the percentage of pixels belonging to this color.  

If a clothing image contains multiple colors, the dominant colors (i.e., pixels larger than 5% of the whole image) will be output. The 

clothing patterns and colors mutually provide complementary information. As shown in Table I, the recognized patterns provide 

additional information about how different colors are arranged, e.g., striped clothes with blue and white color. We test color 
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identification in a clothing color matching experiment. If the dominant colors of a pair of clothing image are the same, the two clothing 

images are determined as color matched. The proposed color identification achieves 99% matching accuracy in the experiment. More 

details can be found in [31]. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.   Four sample images of four clothing patterns categories.   Fig. 9. Four sample images of four sample texture classes in the UIUC 
Texture dataset. 
  

VI. CLASSIFICATION EXPERIMENTS 
 

In this section, we evaluate the performance of the proposed method on two different datasets: 1) the CCNY Clothing Pattern 

dataset with large intra-class variations to evaluate our proposed method and the state-of-the-art texture classification methods, and 2) 

the UIUC Texture dataset to validate the generalization of the proposed approach. Our experiments focus on the evaluation and 

validation of 1) the complementary relationships between the proposed global and local feature channels; 2) the superiority of our 

proposed method over the state-of-the-art texture classification approaches in the context of clothing pattern recognition; and 3) the 

generalization of our approach on the traditional texture classification. 
 
A. Datasets 
 

CCNY clothing pattern dataset: This dataset includes 627 images of four different typical clothing pattern designs: plaid, 

striped, pattern less, and irregular with 156, 157, 156, and 158 images in each category. The resolution of each image is down-

sampled to 140 × 140. Fig. 8 illustrates sample images in each category. As shown in this figure, in addition to illumination 

variances, scaling changes, rotations, and surface deformations presented in the traditional texture dataset, clothing patterns also 

demonstrate much larger intra class pattern and color (intensity) variations, which augment the challenges of recognition. The 

clothing pattern dataset can be downloaded via our research website.
1  

UIUC texture dataset: We also evaluate the proposed method on the UIUC Texture dataset [11] which is a well-established 

traditional texture dataset. It contains 1000 uncalibrated and unregistered images with the resolution of 640 × 480. There are 25 texture 

classes with 40 images for each class. The texture images present rotation, scaling and viewpoint change, and non-rigid surface 

deformation. Fig. 9 shows four sample images of four texture classes in this dataset. As shown in Fig. 8 and Fig. 9, the traditional 

texture dataset mainly focuses on the geometric changes of texture surfaces, but with less intraclass pattern and intensity variations 

compared to the clothing images. 

 
B. Experiments and Discussions on Clothing Pattern Recognition 
Experimental Setup: In our implementation, the training set is selected as a fixed-size random subset of each class and all remaining 

images are used as the testing set. To eliminate the dependence of the results on the particular training images used, we report the 
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average of the classification rates obtained for 50 randomly selected training sets. This ensures all the classification rates are 

statistically comparable. The recognition performance is measured by the average classification accuracy.  

1) Effectiveness of Different Features and Combinations:   
We first evaluate and demonstrate the complementary relation-ships between global and local features on clothing pattern im-

ages. A combination of multiple features may obtain better re-sults than any individual feature channel. However, a combina-

tion of features that are noisy, contradictory, or overlapping in terms of class distribution could deteriorate the performance of 

classification.   
To validate the effectiveness of the proposed features, we first evaluate the complementary relationships between differ-ent feature 

channels including global features of the RadonSig and statistics of wavelet sub bands (STA), and local features (SIFT). SIFT 

represents the local structural features; STA is the global statistical characteristics; and RadonSig captures the property of global 

directionality. Fig. 10 displays the recognition results of different features as a function of training set size. For individual feature 

channels, SIFT and STA achieve comparable recognition accuracies. While the results based on  a single channel of the RadonSig 

are worse than that of SIFT or STA, the performance of SIFT+RadonSig is better than that of SIFT+STA. Both of them 

outperform any individual feature channel. Therefore, for clothing patterns recognition, the global and local feature combination 

of SIFT and RadonSig is more effective than that of SIFT and STA. Furthermore, the  
 

TABLE III 
RECOGNITION ACCURACY (%) OF DIFFERENT METHODS AND VOLUMES OF 

TRAINING SETS (10%, 30%, 50%, 70% OF THE DATASET USED FOR TRAINING) 
ON CLOTHING PATTERN DATASET 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Comparative evaluation on recognition accuracies of different feature channels and their combinations versus percentage of training samples. 
 

TABLE II  
RECOGNITION ACCURACY (%) OF DIFFERENT FEATURE CHANNELS UNDER DIFFERENT VOLUMES OF TRAINING SETS (10%, 30%, 50%, 70% OF THE 

DATASET USED FOR TRAINING) ON CLOTHING PATTERN DATASET 
 

 
 
 
 
 
 
 
 
 
combination of all three feature channels further improves the recognition results and dominates in all of different training set 

sizes.  
The comparisons of different feature channels and their com-binations validate our intuition that the effectiveness and com-

plementarities of our proposed feature channels. The detailed recognition accuracies of Fig. 10 are listed in Table II. The 

percentages of training images per class are 10%, 30%, 50%, and 70%, respectively. As shown in Table II and Fig. 10, the 

recognition accuracy of SIFT+STA+RadonSig using 30% of the images as the training set is comparable or even better than 
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that of other feature channels using 70% of the images as the training set. This observation demonstrates another merit of our 

proposed approach that it is able to achieve a desirable result by using much less training data.  
3) Comparison With the State-of-the-art Texture Analysis Methods for Clothing Pattern Recognition: We further com-pare the 

overall performance of our proposed method with that of the state-of-the-art methods including MFS [26], SIFT [13], (H+L)(S+R) 

[11], and SIFT+SPIN [32], which have achieved the state-of-the-art performances on the traditional texture clas-sification tasks. MFS 

[26] is an extension of the fractal dimension based on three density functions of image intensity, image gradient, and image Laplacian. 

It combines both global spatial invariance and local robust measurement. SIFT [13] corresponds to the single-feature channel in our 

method. It captures the lo-cal image structural information. (H+L)(S+R) [11] is based on the extraction of SPIN and RIFT descriptors 

on affine Harris and  Laplacian regions of an image. The elliptic regions de-tected by two sophisticated detectors are normalized to 

circles to handle affine transform. SPIN is a rotation-invariant local image descriptor formed by a 2-D histogram of the distribution of 

pixel intensity values. RIFT is an alternate representation of SIFT. SIFT+SPIN [32] is the combination of two local im-age features 

including SIFT and SPIN. In the comprehensive evaluations of texture classification [32], SIFT and SIFT+SPIN organized by the 

BOW model achieved the state-of-the-art results on traditional texture datasets. In our implementation, the sampling strategies for 

SIFT and SIFT+SPIN are both uniform grid sampling as mentioned in Section III-C.  
Table III shows the recognition accuracies of different methods on the CCNY clothing pattern dataset. The experiments are 

evaluated by using 10%, 30%, 50%, and 70% of the dataset as training sets, and the rest as testing sets. As shown in this ta-ble, our 

proposed method significantly outperforms other well-established approaches, especially when the training set is small. A closer look 

at Table III also confirms that our proposed method is able to obtain comparable or even better results by using much less training 

data. For instance, the accuracy rate of our method using 30% of the images as a training set is better than that of other well-

established methods using 70% as a training set. While these methods perform very well on traditional texture datasets, they cannot 

achieve the same level of accuracy for clothing pattern recognition due to the large intra class variations. (H+L)(S+R) performs much 

worse than other methods. This is mainly because of the insufficient interest points detected by two sophisticated detectors, especially 

for striped and pattern less categories. It also confirms the importance of sampling density for clothing pattern classification. It is also 

interesting to observe that the performance of SIFT+SPIN is worse than that of SIFT alone. This is probably because SPIN is a local 

image descriptor based on pixel intensities. But the clothing images present large intraclass color variations, which accord-ingly result 

in large intra class intensity variations. Since SPIN is sensitive to intensity changes, it cannot overcome the large intr-aclass variations. 

This observation validates that it is important to choose appropriate feature channels for feature combination.  
Table IV demonstrates the confusion table results of our method by using 70% of the images as the training set. In the 

confusion table, each row represents the ground-truth categories of clothing pattern images and each column corresponds to the 

recognized category. The system recognizes pattern less as the best, where the images have the most discriminative local and 

global properties. On the other hand, plaid tends to confuse with striped. 
  
 

TABLE IV 
CONFUSION TABLE FOR THE CLOTHING PATTERN RECOGNITION EXPERIMENTS  
OF OUR PROPOSED METHOD USING 70% OF THE IMAGES AS THE TRAINING SET 
 
 
 
 
 
 
 
 

 
 

C. Experiments With the UIUC Texture Dataset 

The proposed method significantly outperforms the traditional texture classification methods in recognizing clothing 

approaches on a traditional texture dataset, i.e., UIUC Texture dataset. The experimental setup is the same as Section VI-B1 In 

the performance evaluation on the UIUC Texture dataset we  also  compare  our  proposed  method  with  MFS,  SIFT, 

(H+L)(S+R), and SIFT+SPIN, as mentioned in Section VI-B3. Table V shows the classification rates of different methods on 
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the UIUC Texture dataset. In the experiments, the numbers of training images per class are 5, 10, 15, and 20, respectively. As 

The remaining images in each class are used as the testing set shown in this table, our method achieves comparable results to 

SIFT, (H+L)(S+R), and SIFT+SPIN, and obtain better accuracy rates than MFS. In contrast to the performance of clothing 

pattern recognition, (H+L) (S+R) performs very well on this dataset as the two sophisticated detectors can localize sufficient 

interest points on highly textured images. This result again demonstrates the importance of sampling density for robustness of 

texture classification. SIFT+SPIN performs the best on UIUC Texture dataset while its performance on clothing pattern images 

is much worse. This is because the intra class intensities of texture images in this dataset are much more consistent than that in 

clothing pattern images. SPIN provides complementary appearance feature to SIFT. However, when the number of training 

images is 5, SIFT+SPIN largely outperforms our method. This is probably because the directionality property in nature texture 

is not as evident as that in clothing images and the RadonSig needs a relatively large training set to model the directionality of 

texture images. But in other cases, our method achieves comparable results to SIFT+SPIN. Therefore, it demonstrates the 

generalization of our method, i.e., it achieves state-of-the-art results on both the clothing pattern images and the traditional 

texture dataset. 

VIII. CONCLUSION 

Here, we have proposed a system to recognize clothing patterns and colors to help visually impaired people in their 

daily life. We employ RadonSig to capture the global directionality features; STA to extract the global statistical features on 

wavelet sub bands; and SIFT to represent the local structural features. subbands; and SIFT to represent the local structural 

features. The combination of multiple feature channels provides complementary information to improve recognition accuracy. 

Based on a survey and a proof-of-concept evaluation with blind users, we have collected a dataset on clothing pattern 

recognition including four-pattern categories of plaid, striped, pattern-less, and irregular. Experimental results demonstrate that our 

proposed method significantly outperforms the state-of-the-art methods in clothing pattern recognition. Furthermore, the performance 

evaluation on traditional texture datasets validates the generalization of our method to traditional texture analysis and classification 

tasks. This research enriches the study of texture analysis, and leads to improvements over existing methods in handling complex 

clothing patterns with large intraclass variations. The method also provides new functions to improve the life quality for blind and 

visually impaired people. 
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