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ABSTRACT: EtherCAT is a real-time Ethernet protocol mainly designed for periodic real-time transmission in factory 

automation. Real-time Ethernet (RTE) technologies provide high bandwidth and are able to meet the requirements of 

industrial real-time communications. Among RTE protocols, the EtherCAT standard is suitable for motion control and 

closed-loop control applications, which require very short cycle times. As EtherCAT was specifically devised for periodic 

traffic, aperiodic real-time transmissions are far from being efficient, as they entail long cycle times. To overcome this 

limitation, a general framework for aperiodic real-time messages over EtherCAT networks, which uniformly covers both 

static and dynamic priority and allows for very short cycle times. INET framework provides a schedulability analysis for both 

static priority and dynamic priority scheduling, and simulative assessments obtained through OMNeT++ simulations.  

 

INDEX TERMS: EtherCat, High Bandwidth, Short Cycle Time, Real-Time Ethernet(RTE), INET framework, OMNeT++ 
 

 

I. INTRODUCTION 

  ETHERCAT is a real-time Ethernet (RTE) network that is becoming increasingly popular in factory automation environments, in 

particular, at the shop-floor level. Although it relies on the conventional Ethernet technology, the communication protocol exploits a 

peculiar approach to access slave devices, that resembles closely the summation frame of INTERBUS. Moreover, a logical addressing 

scheme is defined which permits small-sized process data to be packed further. As a consequence, communication efficiency is very 

high (up to 90%) which achieves very short cycle times. This makes this solution particularly attractive for connecting decentralized 

peripherals (i.e., remote I/O devices) to the application master (either a real or Linux PC). Besides efficiency, another feature that 

makes EtherCAT appealing in a number of application domains such as, e.g., motion control, is the availability of a simple yet 

effective mechanism that enables devices to operate in a synchronized way. In particular, modern industrial networks must offer 

support for both time-driven and event-driven control applications. In time-driven applications, messages are periodically transmitted 

and control actions are taken at constant rate while in event-driven  applications, messages  are  transmitted  when one or more trigger 

events occur. For example, closed-loop control applications typically generate periodic messages with deadlines of approximately 

1ms. However, these application may also require the transmission of aperiodic real-time messages that have to be accommodated in 

the overall traffic schedule without affecting periodic messages. Recently, real-time Ethernet (RTE) technologies have become 

increasingly popular, as they offer high bandwidth, meet the requirements of industrial real-time communication, and allow for 

vertical integration of different levels in the automation pyramid. Precise clock synchronization is a feature which is becoming more 

and more important in control networks. As pointed out in unsynchronized networks usually suffer from non-negligible jitters. A 

number of approaches have been described in the literature aimed at supporting synchronized operations in popular networks such as, 

e.g., CAN, new-generation automotive networks, and even WLANs. Many real-time Ethernet solutions rely on precision time protocol 

(PTP) or its variants, such as the precision transparent clock protocol (PTCP) used in PROFINET. The performance of these 

approaches are well-known and prove to be satisfactory even in s/w implementations. Modifications of PTP have been defined in order 

to improve, e.g., fault tolerance or interoperability.  

    Thanks to its ring topology, EtherCAT provides a daisy-chain topology and a master/slave architecture in which the master 

periodically transmits a standard Ethernet frame that embeds an EtherCAT frame containing multiple telegrams (as shown in Fig. 1). 

Slaves read and/or write data in the telegram by processing the frame “on-the-fly,” so when a byte arrives to a slave, it is processed 

and transmitted to the next slave without waiting for the complete reception of the Ethernet frame. The last slave in the chain transmits 

the frame back to the master by exploiting the full-duplex capability of Ethernet. The main goal of this paper is to focuses on the 
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EtherCAT protocol, assess several properties of this mechanism and, in particular, the accuracy and precision  with which coordinate 

actions can be carried out by devices connected through the network. To this extent, a number of thorough measurement campaigns 

were carried out on real-world devices, in order to determine to which degree the actual performance matches the figure provided by 

OMNet++. All these components can be implemented in hardware in the case of FPGA/ASIC ESC. The minimum required 

component for a fully working slave consist of a programmable FPGA  and  two EEPROMs together with a  power supply  and other 

auxiliary components and  connectors. The FPGA  itself  contains the ESC, which is configured to use the microcontroller PDI  

interface. Therefore EtherCAT master will be an Linux based PC to control the FPGA slave design. 

    This paper is structured as follows. Sections II describes the EtherCAT protocol basics and structure. Section III presents the 

analytic assessment and frame processing. Section IV deals with simulative assessments of omnetpp. Finally, Section V conclude the 

paper with simulation results. 

  

II. ETHERCAT PROTOCOL BASICS 

 

    The basic EtherCAT protocol only supports single-master network configurations, where the master communicates with the other 

devices (namely, the slaves) by sending them suitable telegrams. Each telegram encodes exactly one EtherCAT command, that is, 

read, write or some combination of these operations, as well as the address of the item to be accessed. In this context, an item can be 

either a register or a memory location on one or more devices. Two addressing modes are foreseen, that is logical and physical. The 

latter, in turn, can be either configured or positional. More than one telegram can be included in the same EtherCAT frame, which 

yields high network throughput. In turn, each EtherCAT frame can be encapsulated in either an Ethernet frame or an UDP message. 

Only the first option was considered in the following, in that it ensures the highest degree of real-time performance. 

    EtherCAT networks are based on a physical ring topology. All EtherCAT frames are generated by the master, to which they come 

back after they have passed through all the slaves. Each slave processes and propagates the frame onward in a very short time (usually 

less than 1µs ). When an EtherCAT slave recognizes a command of its interest, it executes the related actions on-the-fly, by reading 

and/or changing directly parts of the Ethernet frame which is being relayed. 
 

 
Fig. 1. Structure of an EtherCAT frame containing multiple telegrams. 

 

 

However, such a mechanism would entail long cycle times, as the master must provide room in the EtherCAT frame for any slave that 

has the potential to transmit aperiodic real-time traffic, regardless of whether such a slave actually has traffic to transmit. For instance, 

in a network with 20 slaves, each with the potential for transmitting 32-byte-long aperiodic real-time messages, the master should 

provide 20 telegrams for each cycle. 

 

 

III.  ANALYTIC ASSESSMENT 
 

A. Frame Propagation and Timing 
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    In EtherCAT networks, if the data to be embedded in the Ethernet frame exceed the maximum payload size (i.e., 1500 bytes), 

multiple Ethernet frames will have to be trans mitted by the master to complete a cycle. However, this paper addresses the case of very 

short cycle times (e.g., in the order of 100 µs), and a maximum payload Ethernet frame has a cycle time of 150 µs.  

 

 
Fig. 2. EtherCAT frame processing sequence. 

 

    Hence, here only a single frame cycle is considered. Fig. 2 illustrates the propagation of the Ethernet frame and the related 

terminology and notations (also summarized in Table I). This figure shows a scenario with an Ethernet frame that is transmitted by the 

master to a chain of three slaves, Fig. 2. EtherCAT frame processing sequence and then goes back to the master according to the daisy 

chain topology. In Fig. 2, the master is represented twice to illustrate separately the transmission (top-side) and the reception (bottom-

side). The propagation of the Ethernet header and the Frame Check Sequence (FCS) field is drawn in light gray. The Ethernet payload 

is drawn in two shades of gray (gray/dark gray). In the payload, we highlight in dark gray the EtherCAT telegrams (three in the figure) 

dedicated to the transmission of ApMs. All the notations are described in Table II. The master periodically sends an Ethernet frame 

with period P. Each frame then propagates to the slaves through the network. Slaves are labeled following the frame reception order, 

so slave 1 is the one that receives the frame first, while slave m is the last. The time elapsing from the transmission of a frame by the 

master to its reception, as a response is equal to the time needed by the signal to propagate through the medium (Tpr), plus the time 

needed by the m slaves to process the frame (Tde). From Fig. 2, it is possible to observe that the slaves process the frame “on-the-fly,” 

i.e., each frame starts to be transmitted before it has been fully received from the preceding node. This allows a low end-to-end latency 

and enables the transmission of an ApM even if the external event generating the ApM arrives during the reception of the Ethernet 

frame. The availability of aperiodic telegrams must be carefully analyzed, as illustrated in the following.  

 

TABLE I 

SUMMARY OF NOTATION 

Symbol Definition 

T et 
Sum of the transmission times of the Ethernet  

header and Frame Check Sequence (FCS) fields. 

T ec Time necessary to transmit the EtherCAT frame. 

T pr 
Propagation delay over the communication 

medium that is equal to T pr = u ∑k=0 lk 

T de Frame delay, that is, mTsv 

T if 

Inter-frame gap, i.e., the time between the end of 

the transmission of the Ethernet frame and the 

start of the transmission of the next one. 

T ap 

Time between the start of the transmission of the 

Ethernet frame and the start of the transmission of 

the first aperiodic telegram. 



ISSN 2395-695X (Print) 

                                                                                                                                                         ISSN 2395-695X (Online)    

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) 

Vol. 2, Special Issue 10, March 2016 

1469 

All Rights Reserved © 2016 IJARBEST 

 

B. EtherCAT Mechanism 

    Rather than transmitting data to each slave node within the network, EtherCAT passes the Ethernet frame through each salve node. 

When passing through, the data is read and written in units of several nanoseconds to each corresponding area within the frame at each 

slave node. Upon passing through all EtherCAT slaves without being stopped along the way, the Ethernet frame transmitted from the 

EtherCAT master is sent back by the last slave, and returns to the EtherCAT master after passing through all frames again by 

achieving daisy- chain topology in the Fig.3 . With this mechanism, the high-speed data transmission and realtime capability are 

achieved. 

 

Fig. 3. Daisy-chain topology of data transmission. 

Periodic data exchange between the EtherCAT master and the EtherCAT slaves is performed by the "EtherCAT telegram" that is 

stored directly in the Ethernet frame. Each "EtherCAT telegram" consists of 1 or multiple slave addresses,  data, and working 

counters(check bits). If an Ethernet frame is compared to a "train," an EtherCAT telegram would be a "compartment." 

 

 

IV. SIMULATIVE ASSESSMENTS 
 

A. Simulation Model Assessment  

    To assess the performance of the proposed approach, a suitable simulation model was developed using the OMNeT++ framework. 

In the simulation model, two kinds of nodes are implemented, i.e., 1) the EtherCAT Master and 2) the EtherCAT Slave. The 

EtherCAT Master is composed of a EtherHost module. The first module periodically generates Ethernet frames and collects statistics. 

The Master transmits the frame in one-byte long packets and transmits each byte every 0.08 µs (i.e., the byte time of the 100 Mb/s 

Ethernet).  

    In this way, the timing of the simulation model is compliant with that of the EtherCAT standard. The EtherCAT Slave module 

provides several functionalities. Among them, the EtherCAT, which supports both the periodic telegrams foreseen by the standard and 

the aperiodic telegrams of the proposed PdS approach, the forwarding mechanisms for incoming packets, the read/write and 

management functions of the ApMs local queue, and the slave application layer. 

 

B. Simulation Perspective 

    The OMNeT++ IDE defines the  Simulation Perspective so that it is specifically geared towards the design of simulations. The 

Simulation Perspective is simply a set of conveniently selected views, arranged to make the creation of NED, INI and MSG files 

easier. If you are working with INI and NED files a lot, we recommend selecting this perspective showen in the flow chart of Fig.4. 

Other perspectives are optimized for different tasks like C++ development or debugging. 
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Fig.4. Flow chart of OMNeT++ works. 

C. Simulation Result 

    Telegrams are transmitted from ethercat_master to ethercat_slave through the medium at which the packet contains request and 

response token along with the telegram. On the other end, slave receives the telegrams of packet and response to the master and 

transmit the telegrams to the following slaves as shown in the Fig.5. The process continuous like daisy-chain topology.  

 

 

 
 

Fig.5. OMNeT++/TKenv- Simulation Output 

 

Number of event that the EtherCAT master/slave transmission was calculated and its response time and delay between the nodes are 

specified. Time taken to send and receive the packets are also calculated and mentioned in the Table II. In the process of transmission 

Event, Time, Source/Destination, Name and Resp/Req Information's are generated. 
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TABLE II 

PARAMETERS OF SIMULATION 

 

S.No Parameter EtherCAT Protocol 

1 Bandwidth Up to 1 Gbps 

2 Data bytes/frame 128 

3 Flexibility High 

4 Error Detection 32 bit CRC 

5 Latency Jitter < 1µs 

6 Messaging Event &  Time triggered 

7 Payload 1500 bytes 

 

 

V. CONCLUSION 
 

    In this work, a mechanism to deal with the problem of providing support for aperiodic real-time traffic over EtherCAT networks 

was presented. The proposed mechanism provides the possibility for slaves to transmit aperiodic real-time messages under static and 

dynamic priorities, respectively, while maintaining the compatibility with the EtherCAT standard. The proposed approach is suitable 

for event-triggered applications, as the ApMs can be transmitted while maintaining short cycle times. The paper proposed a general 

analysis for the response times(i.e., in the order of less than1μs) which can be used to assess the feasibility of a static priority message 

set. As far as dynamic priorities are concerned. This paper provided extensive simulative assessment of transferring data between 

master and slave with high bandwidth and fastest network at the response time.  
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