
ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

1466

All Rights Reserved © 2016 IJARBEST

INDUSTRIAL STANDARD COMMUNICATION OF APERIODIC REAL-TIME

MESSAGES OVER ETHERCAT NETWORKS

Arun D

PG Student [VLSI Design], Department of Electronics and Communication Engineering

TRP Engineering College, Trichy, Tamil Nadu, India.

ABSTRACT: EtherCAT is a real-time Ethernet protocol mainly designed for periodic real-time transmission in factory

automation. Real-time Ethernet (RTE) technologies provide high bandwidth and are able to meet the requirements of

industrial real-time communications. Among RTE protocols, the EtherCAT standard is suitable for motion control and

closed-loop control applications, which require very short cycle times. As EtherCAT was specifically devised for periodic

traffic, aperiodic real-time transmissions are far from being efficient, as they entail long cycle times. To overcome this

limitation, a general framework for aperiodic real-time messages over EtherCAT networks, which uniformly covers both

static and dynamic priority and allows for very short cycle times. INET framework provides a schedulability analysis for both

static priority and dynamic priority scheduling, and simulative assessments obtained through OMNeT++ simulations.

INDEX TERMS: EtherCat, High Bandwidth, Short Cycle Time, Real-Time Ethernet(RTE), INET framework, OMNeT++

I. INTRODUCTION

 ETHERCAT is a real-time Ethernet (RTE) network that is becoming increasingly popular in factory automation environments, in

particular, at the shop-floor level. Although it relies on the conventional Ethernet technology, the communication protocol exploits a

peculiar approach to access slave devices, that resembles closely the summation frame of INTERBUS. Moreover, a logical addressing

scheme is defined which permits small-sized process data to be packed further. As a consequence, communication efficiency is very

high (up to 90%) which achieves very short cycle times. This makes this solution particularly attractive for connecting decentralized

peripherals (i.e., remote I/O devices) to the application master (either a real or Linux PC). Besides efficiency, another feature that

makes EtherCAT appealing in a number of application domains such as, e.g., motion control, is the availability of a simple yet

effective mechanism that enables devices to operate in a synchronized way. In particular, modern industrial networks must offer

support for both time-driven and event-driven control applications. In time-driven applications, messages are periodically transmitted

and control actions are taken at constant rate while in event-driven applications, messages are transmitted when one or more trigger

events occur. For example, closed-loop control applications typically generate periodic messages with deadlines of approximately

1ms. However, these application may also require the transmission of aperiodic real-time messages that have to be accommodated in

the overall traffic schedule without affecting periodic messages. Recently, real-time Ethernet (RTE) technologies have become

increasingly popular, as they offer high bandwidth, meet the requirements of industrial real-time communication, and allow for

vertical integration of different levels in the automation pyramid. Precise clock synchronization is a feature which is becoming more

and more important in control networks. As pointed out in unsynchronized networks usually suffer from non-negligible jitters. A

number of approaches have been described in the literature aimed at supporting synchronized operations in popular networks such as,

e.g., CAN, new-generation automotive networks, and even WLANs. Many real-time Ethernet solutions rely on precision time protocol

(PTP) or its variants, such as the precision transparent clock protocol (PTCP) used in PROFINET. The performance of these

approaches are well-known and prove to be satisfactory even in s/w implementations. Modifications of PTP have been defined in order

to improve, e.g., fault tolerance or interoperability.

 Thanks to its ring topology, EtherCAT provides a daisy-chain topology and a master/slave architecture in which the master

periodically transmits a standard Ethernet frame that embeds an EtherCAT frame containing multiple telegrams (as shown in Fig. 1).

Slaves read and/or write data in the telegram by processing the frame “on-the-fly,” so when a byte arrives to a slave, it is processed

and transmitted to the next slave without waiting for the complete reception of the Ethernet frame. The last slave in the chain transmits

the frame back to the master by exploiting the full-duplex capability of Ethernet. The main goal of this paper is to focuses on the

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

1467

All Rights Reserved © 2016 IJARBEST

EtherCAT protocol, assess several properties of this mechanism and, in particular, the accuracy and precision with which coordinate

actions can be carried out by devices connected through the network. To this extent, a number of thorough measurement campaigns

were carried out on real-world devices, in order to determine to which degree the actual performance matches the figure provided by

OMNet++. All these components can be implemented in hardware in the case of FPGA/ASIC ESC. The minimum required

component for a fully working slave consist of a programmable FPGA and two EEPROMs together with a power supply and other

auxiliary components and connectors. The FPGA itself contains the ESC, which is configured to use the microcontroller PDI

interface. Therefore EtherCAT master will be an Linux based PC to control the FPGA slave design.

 This paper is structured as follows. Sections II describes the EtherCAT protocol basics and structure. Section III presents the

analytic assessment and frame processing. Section IV deals with simulative assessments of omnetpp. Finally, Section V conclude the

paper with simulation results.

II. ETHERCAT PROTOCOL BASICS

 The basic EtherCAT protocol only supports single-master network configurations, where the master communicates with the other

devices (namely, the slaves) by sending them suitable telegrams. Each telegram encodes exactly one EtherCAT command, that is,

read, write or some combination of these operations, as well as the address of the item to be accessed. In this context, an item can be

either a register or a memory location on one or more devices. Two addressing modes are foreseen, that is logical and physical. The

latter, in turn, can be either configured or positional. More than one telegram can be included in the same EtherCAT frame, which

yields high network throughput. In turn, each EtherCAT frame can be encapsulated in either an Ethernet frame or an UDP message.

Only the first option was considered in the following, in that it ensures the highest degree of real-time performance.

 EtherCAT networks are based on a physical ring topology. All EtherCAT frames are generated by the master, to which they come

back after they have passed through all the slaves. Each slave processes and propagates the frame onward in a very short time (usually

less than 1µs). When an EtherCAT slave recognizes a command of its interest, it executes the related actions on-the-fly, by reading

and/or changing directly parts of the Ethernet frame which is being relayed.

Fig. 1. Structure of an EtherCAT frame containing multiple telegrams.

However, such a mechanism would entail long cycle times, as the master must provide room in the EtherCAT frame for any slave that

has the potential to transmit aperiodic real-time traffic, regardless of whether such a slave actually has traffic to transmit. For instance,

in a network with 20 slaves, each with the potential for transmitting 32-byte-long aperiodic real-time messages, the master should

provide 20 telegrams for each cycle.

III. ANALYTIC ASSESSMENT

A. Frame Propagation and Timing

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

1468

All Rights Reserved © 2016 IJARBEST

 In EtherCAT networks, if the data to be embedded in the Ethernet frame exceed the maximum payload size (i.e., 1500 bytes),

multiple Ethernet frames will have to be trans mitted by the master to complete a cycle. However, this paper addresses the case of very

short cycle times (e.g., in the order of 100 µs), and a maximum payload Ethernet frame has a cycle time of 150 µs.

Fig. 2. EtherCAT frame processing sequence.

 Hence, here only a single frame cycle is considered. Fig. 2 illustrates the propagation of the Ethernet frame and the related

terminology and notations (also summarized in Table I). This figure shows a scenario with an Ethernet frame that is transmitted by the

master to a chain of three slaves, Fig. 2. EtherCAT frame processing sequence and then goes back to the master according to the daisy

chain topology. In Fig. 2, the master is represented twice to illustrate separately the transmission (top-side) and the reception (bottom-

side). The propagation of the Ethernet header and the Frame Check Sequence (FCS) field is drawn in light gray. The Ethernet payload

is drawn in two shades of gray (gray/dark gray). In the payload, we highlight in dark gray the EtherCAT telegrams (three in the figure)

dedicated to the transmission of ApMs. All the notations are described in Table II. The master periodically sends an Ethernet frame

with period P. Each frame then propagates to the slaves through the network. Slaves are labeled following the frame reception order,

so slave 1 is the one that receives the frame first, while slave m is the last. The time elapsing from the transmission of a frame by the

master to its reception, as a response is equal to the time needed by the signal to propagate through the medium (Tpr), plus the time

needed by the m slaves to process the frame (Tde). From Fig. 2, it is possible to observe that the slaves process the frame “on-the-fly,”

i.e., each frame starts to be transmitted before it has been fully received from the preceding node. This allows a low end-to-end latency

and enables the transmission of an ApM even if the external event generating the ApM arrives during the reception of the Ethernet

frame. The availability of aperiodic telegrams must be carefully analyzed, as illustrated in the following.

TABLE I

SUMMARY OF NOTATION

Symbol Definition

T et
Sum of the transmission times of the Ethernet

header and Frame Check Sequence (FCS) fields.

T ec Time necessary to transmit the EtherCAT frame.

T pr
Propagation delay over the communication

medium that is equal to T pr = u ∑k=0 lk

T de Frame delay, that is, mTsv

T if

Inter-frame gap, i.e., the time between the end of

the transmission of the Ethernet frame and the

start of the transmission of the next one.

T ap

Time between the start of the transmission of the

Ethernet frame and the start of the transmission of

the first aperiodic telegram.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

1469

All Rights Reserved © 2016 IJARBEST

B. EtherCAT Mechanism

 Rather than transmitting data to each slave node within the network, EtherCAT passes the Ethernet frame through each salve node.

When passing through, the data is read and written in units of several nanoseconds to each corresponding area within the frame at each

slave node. Upon passing through all EtherCAT slaves without being stopped along the way, the Ethernet frame transmitted from the

EtherCAT master is sent back by the last slave, and returns to the EtherCAT master after passing through all frames again by

achieving daisy- chain topology in the Fig.3 . With this mechanism, the high-speed data transmission and realtime capability are

achieved.

Fig. 3. Daisy-chain topology of data transmission.

Periodic data exchange between the EtherCAT master and the EtherCAT slaves is performed by the "EtherCAT telegram" that is

stored directly in the Ethernet frame. Each "EtherCAT telegram" consists of 1 or multiple slave addresses, data, and working

counters(check bits). If an Ethernet frame is compared to a "train," an EtherCAT telegram would be a "compartment."

IV. SIMULATIVE ASSESSMENTS

A. Simulation Model Assessment

 To assess the performance of the proposed approach, a suitable simulation model was developed using the OMNeT++ framework.

In the simulation model, two kinds of nodes are implemented, i.e., 1) the EtherCAT Master and 2) the EtherCAT Slave. The

EtherCAT Master is composed of a EtherHost module. The first module periodically generates Ethernet frames and collects statistics.

The Master transmits the frame in one-byte long packets and transmits each byte every 0.08 µs (i.e., the byte time of the 100 Mb/s

Ethernet).

 In this way, the timing of the simulation model is compliant with that of the EtherCAT standard. The EtherCAT Slave module

provides several functionalities. Among them, the EtherCAT, which supports both the periodic telegrams foreseen by the standard and

the aperiodic telegrams of the proposed PdS approach, the forwarding mechanisms for incoming packets, the read/write and

management functions of the ApMs local queue, and the slave application layer.

B. Simulation Perspective

 The OMNeT++ IDE defines the Simulation Perspective so that it is specifically geared towards the design of simulations. The

Simulation Perspective is simply a set of conveniently selected views, arranged to make the creation of NED, INI and MSG files

easier. If you are working with INI and NED files a lot, we recommend selecting this perspective showen in the flow chart of Fig.4.

Other perspectives are optimized for different tasks like C++ development or debugging.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

1470

All Rights Reserved © 2016 IJARBEST

Fig.4. Flow chart of OMNeT++ works.

C. Simulation Result

 Telegrams are transmitted from ethercat_master to ethercat_slave through the medium at which the packet contains request and

response token along with the telegram. On the other end, slave receives the telegrams of packet and response to the master and

transmit the telegrams to the following slaves as shown in the Fig.5. The process continuous like daisy-chain topology.

Fig.5. OMNeT++/TKenv- Simulation Output

Number of event that the EtherCAT master/slave transmission was calculated and its response time and delay between the nodes are

specified. Time taken to send and receive the packets are also calculated and mentioned in the Table II. In the process of transmission

Event, Time, Source/Destination, Name and Resp/Req Information's are generated.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

1471

All Rights Reserved © 2016 IJARBEST

TABLE II

PARAMETERS OF SIMULATION

S.No Parameter EtherCAT Protocol

1 Bandwidth Up to 1 Gbps

2 Data bytes/frame 128

3 Flexibility High

4 Error Detection 32 bit CRC

5 Latency Jitter < 1µs

6 Messaging Event & Time triggered

7 Payload 1500 bytes

V. CONCLUSION

 In this work, a mechanism to deal with the problem of providing support for aperiodic real-time traffic over EtherCAT networks

was presented. The proposed mechanism provides the possibility for slaves to transmit aperiodic real-time messages under static and

dynamic priorities, respectively, while maintaining the compatibility with the EtherCAT standard. The proposed approach is suitable

for event-triggered applications, as the ApMs can be transmitted while maintaining short cycle times. The paper proposed a general

analysis for the response times(i.e., in the order of less than1μs) which can be used to assess the feasibility of a static priority message

set. As far as dynamic priorities are concerned. This paper provided extensive simulative assessment of transferring data between

master and slave with high bandwidth and fastest network at the response time.

REFERENCES

[1] Lucia Lo Bello, Enrico Bini, Gaetano Patti, "Priority-Driven Swapping-Based Scheduling of Aperiodic Real-Time Messages Over

EtherCAT Networks," IEEE Transactions on industrial informatics, vol. 11, no. 3, june 2015

[2] K.W. Schmidt and E. G. Schmidt, “Distributed real-time protocols for industrial control systems: Framework and examples,”

IEEE Trans. Parallel Distrib. Syst., vol. 23, Oct. 2012.

[3] A.Pawlowski, A.Cervin, J. L.Guzman, and M.Berenguel, “Generalized predictive control with actuator deadband for event-based

approaches,” IEEE Trans. Ind. Informat., vol. 10, Feb. 2014.

[4] E. Moradi-Pari et al., “Design, modeling, and simulation of on-demand communication mechanisms for cyber-physical energy

systems,” IEEE Trans. Ind. Informat., vol. PP, 2014.

[5] S.Bose et al., “Shipboard power systems reconfiguration: A cyber physical framework for response time analysis,” IEEE Trans.

Ind. Informat., vol. 10, Feb. 2014.

[6] D.M.E. Ingram, P. Schaub, R. R. Taylor, and D. A. Campbell, “Performance analysis of IEC 61850 sampled value process bus

networks,” IEEE Trans. Ind. Informat., vol. 9, Aug. 2013.

[7] W. Kang, K. Kapitanova, and S. H. Son, “RDDS: A real- time data distribution service for cyber-physical systems,” IEEE

Trans. Ind. Informat., vol. 8, May 2012.

[9] T. Sauter, “The three generations of field-level networks Evolution and compatibility issues,” IEEE Trans. Ind. Electron., vol. 57,

Nov. 2010.

http://dblp.uni-trier.de/pers/hd/b/Bello:Lucia_Lo
http://dblp.uni-trier.de/pers/hd/p/Patti:Gaetano

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

1472

All Rights Reserved © 2016 IJARBEST

[10] P. Gaj, J. Jasperneite, and M. Felser, “Computer communication within industrial distributed environment — A survey,” IEEE

Trans. Ind. Informat., vol. 9, Feb. 2013.

