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Abstract 

Big data sharing operations are handled using the resources provided in the cloud 

computing environment. Cloud environment is divided into two categories based on the user 

privilege levels. They are public cloud and private cloud environment. Public cloud environment 

provides resources for the all the users. Private cloud resources are provided to a group of people 

only. Big data can be used in the health care, scientific and industrial applications.   

 Big data are provided in the private cloud environment. Services are provided under the 

public cloud environment. Cross cloud environment is constructed using the public and private 

cloud resources. Service selection methods are adapted to identify the suitable service provider 

from the public cloud environment for the private cloud big data values. Service provider 

selection is achieved using History record based Service optimization method (HireSome-II). 

Service selection operations are carried out with the support of the history records. HireSome-II 

scheme provides privacy ensured service selection support.  

Big data mining operations are integrated with the History record based Service 

optimization method (HireSome-II). The mining operations are performed with security and 

privacy features. Scalability is supported with privacy ensured MapReduce scheme. Big data 

classification is performed under the big data mining process.  

 

1. Introduction 

Processing large datasets has become crucial in research and business environments. 

Practitioners demand tools to quickly process increasingly larger amounts of data and businesses 

demand new solutions for data warehousing and business intelligence. Big data processing 

engines have experienced a huge growth. One of the main challenges associated with processing 

large datasets is the vast infrastructure required to store and process the data. Coping with the 

forecast peak workloads would demand large up-front investments in infrastructure. Cloud 

computing presents the possibility of having a large-scale on demand infrastructure that 

accommodates varying workloads. 

Traditionally, the main technique for data crunching was to move the data to the 

computational nodes, which were shared. The scale of today’s datasets has reverted this trend 

and led to move the computation to the location where data are stored. This strategy is followed 

by popular MapReduce implementations. These systems assume that data is available at the 

machines that will process it, as data is stored in a distributed file system such as GFS, or HDFS. 

This situation is no longer true for big data deployments on the cloud. Newly provisioned VMs 

need to contain the data that will be processed. 

2. Related Works 
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A number of distributed frameworks have recently emerged for big data processing [5], 

[6], [7]. We discuss the frameworks that improve MapReduce. HaLoop, a modified version of 

Hadoop, improves the efficiency of iterative computation by making the task scheduler loop-

aware and by employing caching mechanisms. Twister [9] employs a lightweight iterative 

MapReduce runtime system by logically constructing a Reduce-to-Map loop. iMapReduce [10] 

supports iterative processing by directly passing the Reduce outputs to Map and by 

distinguishing variant state data from the static data. i2MapReduce improves upon these previous 

proposals by supporting an efficient general-purpose iterative model. The above MapReduce-

based systems, Spark [2] uses a new programming model that is optimized for memory- resident 

read-only objects. Spark will produce a large amount of intermediate data in memory during 

iterative computation. When input is small, Spark exhibits much better performance than Hadoop 

because of in memory processing. Its performance suffers when input and intermediate data 

cannot fit into memory. We experimentally compare Spark and i2MapReduce in [11] and see 

that i2MapReduce achieves better performance when input data is large. 

Pregel follows the Bulk Synchronous Processing (BSP) model. The computation is 

broken down into a sequence of supersteps. In each superstep, a Compute function is invoked on 

each vertex. It communicates with other vertices by sending and receiving messages and 

performs computation for the current vertex. This model can efficiently support a large number 

of iterative graph algorithms. Open source implementations of Pregel include Giraph, Hama [12] 

and Pregelix [13]. Compared to i2MapReduce, the BSP model in Pregel is quite different from 

the MapReduce programming paradigm. It would be interesting future work to exploit similar 

ideas in this paper to support incremental processing in Pregel-like systems. 

Besides Incoop [15], several recent studies aim at supporting incremental processing for 

one-step applications. Stateful Bulk Processing addresses the need for stateful dataflow 

programs. It provides a groupwise processing operator Translate that takes state as an explicit 

input to support incremental analysis. But it adopts a new programming model that is very 

different from MapReduce. In addition, several research studies [1] support incremental 

processing by task-level re-computation, but they require users to manipulate the states on their 

own. In contrast, i2MapReduce exploits a fine-grain kv-pair level re-computation that are more 

advantageous. Naiad [14] proposes a timely dataflow paradigm that allows stateful computation 

and arbitrary nested iterations. To support incremental iterative computation, programmers have 

to completely rewrite their MapReduce programs for Naiad. In comparison, we extend the 

widely used MapReduce model for incremental iterative computation. Existing Map- Reduce 

programs can be slightly changed to run on i2MapReduce for incremental processing. 

3. Hadoop for MapReduce 

Mapreduce has emerged as a popular and easy-to-use programming model for large-scale 

data analytics in data centers. It is an important application for numerous organizations to 

process explosive amounts of data, perform massive computation and extract critical knowledge 

out of big data for business intelligence. The efficiency of MapReduce performance and 

scalability can directly affect our society’s ability to mine knowledge out of raw data [4]. In 

addition, energy consumption accounts for a large portion of the operating cost of data centers in 

analyzing such big data. While business and scientific applications are increasingly relying on 
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the MapReduce model, the energy efficiency of MapReduceis also critical for data centers’ 
energy conservation. 

Hadoop is an open-source implementation of MapReduce, currently maintained by the 

Apache Foundation and supported by leading IT companies such as Facebook and Yahoo!. It 

implements the MapReduce model by distributing user inputs as data splits across a large 

number of compute nodes. Hadoop uses a master program to command many TaskTrackers and 

schedule map tasks and reduce tasks to the TaskTrackers, A Hadoop program processes data 

through two main functions. The analytic functions are performed in two phases: mapping and 

reducing. In the mapping phase, the input dataset of a program is divided into many data splits. 

Each split is organized as many records of key and value ( < > ) pairs. One MapTask is launched 

per data split to convert the original records into intermediate data in the form of many ordered < 

k’,v’ > pairs. These ordered records are stored as a MOF (Map Output File) split. A MOF is 
organized into many data partitions, one per ReduceTask. In the reducing phase, each 

ReduceTask applies the reduce function to its own share of data partitions (a.k.a segments). 

Between the mapping and reducing phases, a ReduceTask needs to fetch a segment of the 

intermediate output from all finished MapTasks. Globally, this leads to a shuffling of 

intermediate data from MapTasks to Reduce- Tasks. For data-intensive MapReduce programs 

such as TeraSort, data shuffling can add a significant number of disk accesses, contending for the 

limited I/O bandwidth. In order to elaborate this problem, we conduct a data-intensive 

MapReduce test, where we run 200 GB TeraSort on 10 slave nodes. We have examined the wait 

time and the service time of I/O requests during the execution. The wait time can be more than 

1,100 milliseconds. Worse yet, most I/O requests are spending close to 100% of this time waiting 

in the queue, suggesting that the disk is not able to keep up with the requests. The shuffling of 

intermediate data competes for disk bandwidth with MapTasks. This can significantly overload 

the disk subsystem. It results in a serious bottleneck along with the severe disk I/O contention in 

data-intensive MapReduce programs, which entails further research on efficient data shuffling 

techniques. Although a number of recent efforts have investigated data locality of MapReduce by 

either preventing stragglers [3] or applying high performance interconnects to transfer data in 

large-scale Hadoop cluster [8], few studies have addressed the need of efficient I/O during data 

shuffling in the Hadoop MapReduce framework. Condie et al. have proposed a MapReduce 

online architecture to open up direct network channels between MapTasks and ReduceTasks and 

speed up the delivery of data from MapTasks to ReduceTasks. While their work reduces job 

completion time and improves system utilization, it cannot accommodate a gigantic dataset that 

does not fit in memory and also complicates the fault tolerance handling of Hadoop tasks. It 

often falls back to spilling data to the disks for large data sets. Our prior work has offered a 

network-levitated merging scheme to keep the data shuffling phase above disks. But the 

aggressive use of memory buffers in network-levitated merging makes it unable to cope with 

MapReduce jobs with tens of thousands or even millions of data splits. 

4. Big Data Sharing under Cloud Environment 

Cloud Computing and big data receives enormous attention internationally due to various 

business-driven promises and expectations such as lower upfront IT costs, a faster time to market 

and opportunities for creating value-add business. As the latest computing paradigm, cloud is 

characterized by delivering hardware and software resources as virtualized services by which 
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users are free from the burden of acquiring the low level system administration details. Cloud 

computing promises a scalable infrastructure for processing big data applications such as the 

analysis of huge amount of medical data. Cloud providers including Amazon Web Services 

(AWS), Sales force. com, or Google App Engine, give users the options to deploy their 

application over a network of a nearly infinite resource pool. By leveraging Cloud services to 

host Web, big data applications can benefit from cloud advantages such as elasticity, pay-per-use 

and abundance of resources with practically no capital investment and modest operating cost 

proportional. 

To satisfy different security and privacy requirements, cloud environments usually 

consist of public clouds, private clouds and hybrid clouds, which lead a rich ecosystem in big 

data applications. Current implementations of public clouds mainly focus on providing easily 

scaled up and scaled-down computing power and storage. If data centers or domain specific 

services center tend to avoid or delay migrations of themselves to the public cloud due to 

multiple hurdles, from risks and costs to security issues and service level expectations, they often 

provide their services in the form of private cloud or local service host. For a complex web-based 

application, it probably covers some public clouds, private clouds or some local service host. For 

instance, the healthcare cloud service, a big data application involves many participants like 

governments, hospitals, pharmaceutical research centres and end users. As a result, a healthcare 

application often covers a series of services respectively derived from public cloud, private cloud 

and local host. 
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Figure 4.1.: Cross Cloud Service Composition Scenario 

Some big data centers or software services cannot be migrated into a public cloud due to 

some security and privacy issues. If a web based application covers some public cloud services, 

private cloud services and local web services in a hybrid way, cross-cloud collaboration is an 

ambition for promoting complex web based applications in the form of dynamic alliance for 

value-add applications. It needs a unique distributed computing model in a network-aware 

business context. Cross-cloud service composition provides a concrete approach capable for 

large-scale big data processing. Existing analysis techniques for service composition, often 

mandate every participant service provider to unveil the details of services for network-aware 

service composition, especially the QoS information of the services. Unfortunately, such an 

analysis is infeasible when a private cloud or a local host refuses to disclose all its service in 

detail for privacy or business reasons. In such a scenario, it is a challenge to integrate services 

from a private cloud or local host with public cloud services such as Amazon EC2 and SQS for 

building scalable and secure systems in the form of mashups. As the diversity of Cloud services 

is highly available today, the complexity of potential cross-cloud compositions requires new 

composition and aggregation models. 

As a cloud often hosts a lot of individual services, cross cloud and on-line service 

composition is heavily time-consuming for big data applications. It always challenges the 

efficiency of service composition development on Internet. Besides, for a web service which is 

not a cloud service and its bandwidth probably fails to match to the cloud, it is a challenge to 

trade off the bandwidth between the web service and the cloud in a scaled-up or scaled-down 

way for a cross-cloud composition application. The time cost is heavy for cross-platform service 

composition. With these observations, it is a challenge to tradeoff the privacy and the time cost 

in cross cloud service composition for processing big data applications. In view of this challenge, 

an enhanced History record-based Service optimization method named HireSome-II, is presented 

in this paper for privacy-aware cross-cloud service composition for big data applications. In our 

previous work, a similar method, named HireSome aims at enhancing the credibility of service 

composition. HireSome-I is incapable of dealing with the privacy issue in cross-cloud service 

composition. Compared to HireSome-I, HireSome-II greatly speeds up the process of selecting a 

optimal service composition plan and protects the privacy of a cloud service for cross-cloud 

service composition. 

Cloud computing environment provides scalable infrastructure for big data applications. 

Cross clouds are formed with the private cloud data resources and public cloud service 

components. Cross cloud service composition provides a concrete approach capable for large 
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scale big data processing. Private clouds refuse to disclose all details of their service transaction 

records. History record based Service optimization method (HireSome-II) is privacy aware cross 

cloud service composition method. QoS history records are used to estimate the cross cloud 

service composition plan. k-means algorithm is used as a data filtering tool to select 

representative history records. HireSome-II reduces the time complexity of cross cloud service 

composition plan for big data processing. The following drawbacks are identified from the 

existing system. Big data processing is not integrated with the system. 

5. Secured Big Data Mining Scheme  

History record based Service optimization method (HireSome-II) is enhanced to process 

big data values. Security and privacy is provided for cross cloud service composition based big 

data processing environment. Privacy preserved map reduce methods are adapted to support high 

scalability. The HireSome-II scheme is upgraded to support mining operations on big data. 

Security and privacy preserved big data processing is performed under the cross cloud 

environment. Big data classification is carried out with the support of map reduce mechanism. 

Service composition methods are used to assign resources. The system is divided into six major 

modules. They are Cross Cloud Construction, Big Data Management, History Analysis, Map 

Reduce Process, Service Composition and Big Data Classification. 

Public and private clouds integrated in the cross cloud construction process. Big data 

management module is designed to provide big data for the cloud users. Resource sharing logs 

are analyzed under the history analysis. Task partition operations are performed under the map 

reduce process. Service provider selection is carried out service composition module. 

Classification process is carried out under the cross cloud environment. 

5.1. Cross Cloud Construction 
Private and public cloud resources are used in the cross cloud construction process. Big 

data values are provided under the data centers in private cloud environment. Service 

components are provided from public cloud environment.  Public cloud services utilize the 

private cloud data values. 

5.2. Big Data Management 

Larger and complex data collections are referred as big data.  Medical data values are 

represented in big data form.  Anonymization techniques are used to protect sensitive attributes. 

Big data values are distributed with reference to the user request. 

5.3. History Analysis 

Service provider manages the access details in the history files. User name, data name, 

quantity and requested time details are maintained under the data center. History data values are 

released with privacy protection. Data aggregation is applied on the history data values. 

5.4. Map Reduce Process 

Map reduce techniques are applied to break the tasks. Map reduce operations are 

partitioned with security and privacy features. Redundancy and fault tolerance are controlled in 

the system. The data values are also summarized in the map reduce process. 

5.5. Service Composition 

HireSome-II scheme is adapted for the service composition process. History records are 

analyzed with K-means clustering algorithm. Privacy preserved data communication is employed 

in the system. Public cloud service components are provided to the big data process. 
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5.6. Big Data Classification 

Medical data analysis is carried out on the cross cloud environment. Privacy preserved 

data classification is applied on the medical data values. Public cloud resources are allocated for 

the classification process. Bayesian algorithm is tuned to perform data classification on parallel 

and distributed environment. 

6. Conclusion 

  Service composition methods are used to provide resources for big data process. History 

record based Service optimization method (HireSome-II) is used as privacy ensured service 

composition method. HireSome-II scheme is enhanced with privacy preserved big data process 

mechanism. Map reduce techniques are also integrated with the HireSome-II scheme to support 

high scalability. Security and privacy are provided for the big data and history data values under 

the cloud environment. Map reduce techniques reduces the computational complexity in big data 

processing. Data classification is performed on sensitive big data values with cloud resources. 

Efficient resource sharing is performed under cross cloud environment 
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