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Abstract  

 Big data is used to handle the large amount of data using hadoop. Today, the Data 

mining application result become stale and obsolete over time due to an arrival of the new data 

and updates in many important areas such as e-commerce, health care, social network, education 

and environment. In Exiting, incremental processing is very promising approach to refreshing 

the mining result. The proposed work of i
2
MapReduce is an extension to Map Reduce that 

supports fine-grain incremental processing for both one step incremental processing and iterative 

computation. In this computation, three algorithms are mainly used: i) A novel Fine-grain 

incremental processing using MRBG-Store, ii) Collaborative clustering approach algorithm and 

iii) a novel incremental processing. This algorithm increases the efficiency of the incremental 

processing. In order to provide good performance and fast analysis in any data set such as e-

commerce, health care, social network and education are handled by using Hadoop. 
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I. Introduction 

 Streaming data to be incremented once fix the data set in Hadoop Distributed File System 

(HDFS). During that time, incremental map reduce big data mining evaluating the incremental 

processing. The Incremental Streaming data for Map Reduce in big data using hadoop through 

Hadoop environment incremental data to be automatically added mapper and reducer to working 

incremental data. Thus the response time of the system is very fewer and it works very fast. 

1.1 Purpose 

A novel incremental iterative processing is significantly more difficult than incremental in a 

step process, because even a small number of updates to influence can circulate a large part of the 

Midway states after a number of iterations. The MRBG-store supports the preservation and retrieval 

of fine-grained MRBGraph states for incremental processing. A novel incremental processing is a 

hopeful approach to inspirational mining results. 

 Map Reduce is a programming model and an associated implementation for processing and 

generating large data sets. Users denote a map function that processes a key/value pair to create a 

set of in-between key/value pairs, and a reduce function that merges all halfway values correlated 

with the same intermediate key. 

 A Map Reduce system (e.g. Apache Hadoop MapReduce) receives the input data of the 

calculation and writes the final results for a Distributed File System (e.g.  Between HDFS), the 

shares a file in the same size (e.g. , 64 MB) blocks and saves the building blocks over a cluster of 

machines. For a program Map Reduce, the Map Reduce system runs a job Tracker process on a 

master node to monitor the progress and a number of task Tracker processes on workers to perform 

the actual node map and reduce tasks. 
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 The Job Tracker starts a Map Task per data block, and in the rule maps the Task Tracker on 

the machine stops the corresponding data block to minimize the communication overhead. 

I
2
MapReduce expected delta input data, the just inserted, deleted, changed, or kv-pairs as input for 

incremental processing. The goal of many incremental data acquisition or incremental crawling 

techniques has been developed to better data collection performance. 

 

1.2 Scope of project 

To propose i
2
MapReduce an extension to MapReduce that support novel fine-grain 

incremental processing for both one step incremental processing and iterative computation. The 

proposed work of i
2
MapReduce includes the following three features: i) Novel Fine-grain 

incremental processing using MRBG-Store, ii) Collaborative clustering approach algorithm and iii) 

a novel incremental processing. It supports incremental data input, incremental data processing, 

intermediate state defence, incremental map and reduce functions. The input manager can 

dynamically find out new inputs and then give in jobs to the master node. 

 

1.3 Overview 

The main objectives of the incremental streaming data for map reduce in big data using 

hadoop is to improvement and updating of the existing system by increasing the efficiency and use. 

The software improves the working methods by replacing the existing system with Hadoop 

incremental data-based system. Big data is being constantly developed. As new data are collected 

the input data and updates a large data mining algorithm will gradually change and the calculated 

results are outdated and obsolete in the course of time.  Incremental processing is a hopeful 

approach to refreshing mining results [21]. In view of the size of the input large amounts of data, it 

is often very expensive, again the entire calculation of reason. 

 

II. Related Works 

Yanfeng Zhang et al., describes that iMapReduce significantly improves the performance 

of iterative algorithms (1) Reduction of overheads to create a new task in each iteration, (2) 

abolition of redistribution of static data in the shuffle stage of MapReduce, and (3), causing the 

asynchronous execution of each iteration [20]. MapReduce has become extremely popular is for the 

analysis of large quantities of data. It offers a simple programming framework and is responsible for 

the distributed execution of calculations, fault tolerance and load balancing. In MapReduce, the 

captain shall notify a job in many small tasks, the number of tasks can be executed at the same time 

cannot be greater than the available task slots. It provides support for the elimination of the 

redistribution of static data between tasks. 
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Figure 1: Iterative Processing Structure 

 

Pramod Bhatotia et al., explains online data sets grow gradually in the course of time as 

new entries are slowly added and existing entries are deleted or changed. Here present a system 

called Incoop, which enables existing MapReduce programs not for incremental processing, to 

transparently in an incremental manner [15]. In Incoop, calculations can respond automatically and 

efficiently on changes to your data input by the re-use of intermediate results from earlier 

calculations and step-by-step Update of the output according to the changes in the input. The aim is 

to create a system for large-scale data processing, is able to recognize the performance benefits of 

incremental calculations, while the complexity of the application and development effort is low.  

 

Yanfeng Zhang et al, showed the calculations are frequently used in the variety of data 

mining algorithms. PageRank can be used for computing PageRank scores [10]. Iterative algorithms 

usually stop if an abort condition is fulfilled. To stop a iterative calculation, PrIter offers three 

alternative methods to do check termination. 1) Distance-based termination check. After each 

iteration, each worker sends the sum of the values for the master (State the sum operation is 

performed together with the priority queue extraction). The Master collects these values of various 

employees and it will stop the iteration if the difference between the added values of two 

consecutive iterations is less than a threshold. 2) Check sub pass-based termination. Parsing 

massive data-set iteratively is a time-consuming process.The prioritized execution of iterative 

calculations accelerates iterative algorithms [10]. 

 

III. Incremental MapReduce 

 

Handling Incremental MapReduce 

 To describe the incremental MapReduce part of the infrastructure by separately considering 

how Map and Reduce tasks handle incremental inputs.  

 

Scheme1: Map Task 

 Given that Inc-HDFS already provides the basic rule over the arrangement and granularity 

of the input parts that are provided to Map tasks, the job of the incremental Map tasks becomes 

basic, from the time when they can execute task-level memorization without having to worry about 

finding finer-grained misaligned, or omitted opportunities for reusing previous results. Explicitly, 

after a Map task runs, store its results constantly and insert a corresponding reference to the result at 

the memorization server.  

 

Scheme2: Reduce Task 
 The Reduce function processes the output of the Map function grouped by the keys of the 

generated key-value pairs. More specifically, for a subset of all keys, each Reduce retrieves the key-

value pairs generated by all Map tasks and applies the Reduce function. To ensure efficient 

memorization of Reduce tasks, to perform memorization at two levels: first as a novel-grained 

memorization of entire Reduce tasks, and second as a fine-grained memorization of novel 
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abbreviation tasks as described.  

As with Map tasks, remember the results of a Reduce task by storing patiently and locally 

their result and by inserting a mapping from a collision-resistant hash of the input to the location of 

the output in the memorization server. Since a Reduce task receives input from n Map tasks, the key 

stored in the memorization server consists of the hashes of the outputs from all n Map tasks that 

collectively form the input to the Reduce task.  

 

IV. Proposed Work 

 

The incremental streaming data for mapreduce in big data using hadoop is used to 

improving the performance and efficiency. There are two process in incremental streaming data for 

mapreduce namely dynamic incremental processing and iterative processing for MapReduce. 

 

4.1 Dynamic Incremental Processing 

Compared to previous solutions, i2MapReduce includes the following four characteristics: 

 

(i) Novel fine-grained incremental processing with MRBG-store 

In contrast to Incoop, i2MapReduce supports the KV-pair level novel fine-grained 

incremental processing to the level of the calculation back as much as possible. Our model of the 

KV-pair level data flow and data dependency in a MapReduce also as a two-sided graphics, called 

MRBGraph. A MRBG-store is for the conservation of the novel fine-grained states in the 

MRBGraph and sustains competent queries to retrieve fine-grained states for novel incremental 

processing. 

 

(ii) Novel incremental processing for the iterative calculation. 

A novel incremental iterative processing is radically more difficult than incremental in a step 

process, because even a small number of updates can propagate to affect a large part of the 

intermediate steps after a certain number of iterations. To resolve this issue, suggest that the re-use 

of converged condition from the previous calculation and employ a Change propagation Control 

(CPC)–mechanism. Also improve the MRBG-store to better support the access patterns in 

incremental iterative processing was shown in figure 2. 

 

(iii) Clustering-based Collaborative Filtering 

Clustering-based collaborative filtering (ClubCF), also called as Clustering and 

collaborative filtering. Clustering is a pre-processing step to divide, large quantities of data into 

manageable parts. A cluster contains some similar services like a club contains some like-minded 

users. This is a further reason alongside the abbreviation that this ClubCF. Since the number of 

services in a group is much lesser than the total number of services on the network. The computing 

time of the algorithm can radically reduce CF. 

 

Stage 1: Clustering Stage 

1. The words will be stemmed in  and  using Porter Stemmer. The stemmed words in  are 

set into ′ and the stemmed words in  are put into ′ . 
2. Compute _( , sj), and �_ �( , ) using  

Jaccard similarity coefficient is individually.  

3. Calculate _( t, sj) by weighted sum of _ �( t, j) and �_ �( t, j). Construct a matrix  

each record of which is a characteristic similarity. 

4. Cluster the services rendering to their characteristic similarities in  using an agglomerative 

hierarchical clustering algorithm. 
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Figure 2: Architecture of Incremental Streaming Data for MapReduce in HDFS 

 

Stage 2: Collaborative filtering Stage  

1. Calculate the �_ �( t,sj) using Pearson correlation coefficient if  and  belong to the 

similar cluster, and calculate �_ �′( t,sj) by weighting �_ �( t, j).  

2. Select services whose boosted rating similarity with t exceed a rating similarity threshold �, and 

put them into a neighbours set.  

3. Compute the expected rating of t for an active user. If the expected rating exceeds a 

recommending threshold, it will be suggested to the active user.  

The idea of a ClubCF method for big data applications related to service recommendation is 

explained. Services are merged into some clusters via an AHC algorithm before applying any CF 

technique. After that the rating likenesses between services within the same cluster will be 

calculated. Moreover, as the ratings of services in the same cluster are more related with each other 

than with the ones in other clusters. The prediction based on the ratings of the services in the same 

cluster will be more correct than that of based on the ratings of all similar or dissimilar services in 

all clusters. 

 

4.2 Iterative Processing for MapReduce 

Many algorithms for the analysis of the data and the machine learning use an iterative 

process. In this section, start with two examples of iterative algorithms, and then together, the 

limitations for the implementation of these algorithms in MapReduce. I
2
MapReduce support 

iterative processing by directly passing the Reduce outputs to Map and by distinguishing variant 

state data from the static data. Iterative algorithm examples present the Single Source Shortest Path 

(SSSP) and PageRank algorithms, together with their MapReduce implementations in this section 

[Figure1]. 
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 1) Single Source Shortest Path: Single Source Shortest Path (SSSP) is a classical problem that 

derives the shortest distance from a source node s to all other nodes in a graph [19]. Formally, given 

a weighted, directed or undirected graph G = (V,E.W), where V is the set of nodes, E is the set of 

edges, and W(i, j) is a positive weight of the edge from node i to node j. The shortest distance from 

the source node s to a node j can be computed iteratively as follows: 

 

D
(k)

(j) = min{D
(k-1)

(j), mini{D
(k-1)

(i) +W(i, j)}} 

 

Where k is the number of iteration, and i is an incoming neighbor of node j. Initially, D
0
(s) = 0, and 

D
0
(j) = 1 for any node j other than s. Formally, the prioritized SSSP can be described by the 

MapReduce programming model as follows: 

 

Map: Compute D(i) + W(i,j) for node i, send the result to its neighboring node j. 

 

Reduce: Select the minimum value among node j's current D(j) and all the results received by j, and 

update D(j) with the minimum value. 

 

Priority: Node j is eligible for the next map operation only if D(j) has changed since the last map 

operation on j.Priority is given to the node j with smaller value of D(j) [19]. 

 

2) PageRank: PageRank is an algorithm for calculating the importance of nodes in a graph. It was 

widely used in applications such as Web search, link prediction. Similar algorithms, such as 

PageRank and rooted the average algorithm have found applications in personalized news and video 

recommendation systems. 

 

Algorithm 1: PageRank in MapReduce 

 

 Map Phase input: < i, Ni| Ri> 

1. output <i, Ni> 

2. for all j in Ni do 

3.  Ri,j= Ri / Ni 

4.  output <j, Ri,j > 

5. end for 

 Reduce Phase input: < j, {Ri,j , Nj} > 

6. Rj= d∑  Ri,j  + (1 - d) 

7. Output <j, Nj| Rj> 

 

Proposed Design 

The following scheme are describing about the incremental streaming data for mapreduce. 

 

Client Model 
 Client request the big data in to HDFS server to get the data and read it. Receiving dynamic 

outsources from the external memories and distributing outsources to Mapper and Reducer. 
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Server Model 

 Server model gets the requested data set and read the data to load worker node to how many 

node should work mapping and how many nodes should work reduce job to allocate. 

 

 Worker node 

This module has takes over the work from server module which is allocated work and 

processed the job. Worker node should display the result to MapReduce. 

 

MapReduce 

In MapReduce, mapper should collect mapped result and reducer should reduce the efficient 

result to describe shortly. 

 

 

Report  

 Finally, report module can received the result from server. Significantly reduce the run time 

for refreshing big data mining results to re-computation on i
2
mapreduce. 

 

V. Experimental Analysis 

 

Iterative Processing 

The following Table 1 describes experimental result for proposed system algorithms. The 

table input text size for HDFS and Incremental Processing HDFS algorithms execution time details 

are shown in the Incremental Processing HDFS Performance Table. 

 

Table 1: Performance of HDFS and Incremental Processing HDFS 

 

Version Skip offset [MB] 
Throughput 

[MB/S] 

HDFS 

0.8 

0.9 

0.97 

0.99 

1.15 
 

0.4 

Incremental 

Processing 

HDFS 

 

1.0 

1.1 

1.0 

  1.05 

1.2 

0.8 

 

The following Figure 3 describes experimental result for proposed system algorithms. The 

table input text size for HDFS scheduler and incremental processing scheduler algorithms for 

encryption execution time details are shown. 

 



ISSN 2395-695X (Print) 

                                                                                                                                                         ISSN 2395-695X (Online)    

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) 

Vol. 2, Special Issue 10, March 2016  

260 

All Rights Reserved © 2016 IJARBEST 

 
 

Figure 3: Execution time of Incremental Processing 

 

Incremental Processing 

Performance analysis between fine grain incremental processing and a novel fine Grain 

incremental processing speed up chart in Hadoop for encryption execution time details are shown in 

the figure 4. A novel fine grain incremental processing algorithm has compared to fine grain 

incremental processing algorithm, through this chart analyzed the performance. By this chart, 

throughput has been evaluated capably. 

 

 
 

Figure 4: Performance analysis of novel fine grain incremental processing 

 

VI. Conclusion 

 

To describe i
2
MapReduce, a MapReduce based framework for incremental big data 

computing. I2MapReduce combines a fine-grained, incremental engine, a general iterative model 

and a number of effective techniques for incremental iterative calculation. Real-Machine 

experiments show that i2MapReduce can significantly reduce the duration for a refreshing large 

data mining results in comparison to re-calculate on both simple and iterative MapReduce. This 

algorithm increases the efficiency of the incremental processing. MapReduce is the most widely 

used in production because of its simplicity, generality, and maturity. These papers have to improve 

the MapReduce performance and also data collections. 
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