
ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

84

All Rights Reserved © 2016 IJARBEST

Quality Driven Approach for the Discovery of Software

Architectures
Dharani Angamuthu

1
, G.Tamil Mani

2
 , N.RajKumar

3

M.tech,Department of Software Engineering,Veltech Dr.RR & Dr.SR Technical

University,Avadi, Chennai.
1

Asst.Prof,Department of CSE ,Veltech Dr.RR & Dr.SR Technical University,Avadi,

Chennai.
2

Asst.Prof,Department of CSE ,Veltech Dr.RR & Dr.SR Technical University,Avadi,

Chennai.
3

 ABSTRACT

Software architectures constitute important analysis artefacts in software

projects, as they reflect the main functional blocks of the software. They

provide high-level analysis arte- facts that are useful when architects need to

analyse the structure of working systems. Normally, they do this process

manually, supported by their prior experiences. Even so, the task can be very

tedious when the actual design is unclear due to continuous uncon- trolled

modifications. Since the recent appearance of search based software

engineering, multiple tasks in the area of software engineering have been

formulated as complex search and optimisation problems, where evolutionary

computation has found a new area of application. This paper explores the

design of an evolutionary algorithm (EA) for the dis- covery of the underlying

architecture of software systems. Important efforts have been directed

towards the creation of a generic and human-oriented process. Hence, the

selec- tion of a comprehensible encoding, a fitness function inspired by

accurate software design metrics, and a genetic operator simulating

architectural transformations all represent important characteristics of the

proposed approach. Finally, a complete parameter study and experimentation

have been performed using real software systems, looking for a generic

evolutionary approach to help software engineers towards their decision

making process.

Introduction

 Throughout software development, software engineers need to make

decisions about the most appropriate structures, platforms and styles of their

designs. The automatic inference and evaluation of different design alternatives is

a challenging application domain where computational intelligence techniques

serve to provide support to software engineers, especially when limited

information about the system being developed is still available.

In this context, architectural analysis constitutes an important phase in

software projects, as it provides methods and techniques for handling the

specification and design of software in the earlier stages. It is considered a

human-centered decision process with a great impact on the quality and

reusability of the end product. During high level analysis, component

identification allows the discovery of system blocks, their functionalities and

interactions. For this reason, it is a good prac- tice when dealing with complex

system, resulting in more comprehensible software and making its development

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

85

All Rights Reserved © 2016 IJARBEST

and maintenance simpler and more affordable.

Frequently, software engineers need to tackle architectural analysis from

a working system in order to migrate it or extend its functionality. This could

be a difficult task when the underlying system conception has been perverted

due to requirements changes. A more dramatic situation occurs when reverse

engineering techniques from source code are the only way to extract system

information, leading to inappropriate abstractness because of missing

documentation. In the- se cases, engineers must expend their time and effort,

with their own experience as their only guarantee, in the manual dis- covery of

these functional blocks.

Architectural optimisation methods in the field of software engineering

(SE) have often proposed guidelines and recom- mendations to modellers for the

identification and improvement of software architectures. Hence, semi-automatic

tools and intelligent systems might be an efficient solution to support the

engineering work in order to obtain quality models.More specifically, the

discovery of the architecture of a software specification can also be formulated as

the search of the most appropriate distribution of available software artefacts in

more abstract units of construction. Traditionally, proposed approaches are

based on the refactoring of source code, implying that architectural blocks are

recovered at the end of the development process without regarding analysis

decisions. Besides, it is frequent that source code is evolved without an

exhaustive control from the analysis perspective, and it is likely not to be

representative of the original conception of the system. Instead, the discovery

process can be carried out using earlier available information, like the detailed

analysis mod- els in the form of class diagrams. These models offer an

intermediate view of the software, between the abstractness of the architecture

specification and the specificity of the code.

Recently, the combination of metaheuristic approaches and software

engineering as problem domain, denominated search based software

engineering (SBSE), has undergone a huge growth. Since the appearance of

SBSE, evolutionary computation (EC) has emerged as the most applied

metaheuristic, demonstrating that it constitutes an interesting and

complementary way to help software engineers in the improvement of their

object-oriented class designs or user interfaces. In this paper, EC is explored as

a search technique to extract the underlying software architecture of a system. It

constitutes a novelty in SBSE, where architectural discovery has been viewed

as a re-engineering task from source code, which is more oriented towards

maintenance and refactoring purposes.The identification of the architectural

models is considered during the early stages of software conception, when

software modellers still want to modify their current software structure as

requirements change or they are requested to check the correctness of the

resulting design.When source code artefacts are not yet available, architects

require other sources of information in order to discover the intended

architecture. Initial class diagrams, usually the most used representations in the

analysis phase, constitute an inter- esting starting point for architecture

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

86

All Rights Reserved © 2016 IJARBEST

discovery. These diagrams offer more specific analysis information than source

code, and they use modelling languages like UML 2 instead of programming

languages.

Therefore, the originally intended elements that conform a component-based

architecture (components, interfaces and connectors) will be identified from

these analysis models, resulting in an architecture represented with a UML 2

component diagram. At this point, the semi-automatic discovery of components

including its internal structure, candidate interfaces and connectors can be

constrained by the following assumptions:

1. A component is defined as a cohesive group of classes, meaning that they work

together to satisfy the expected behaviour of the component. Thus, classes

within the diagram will be organised searching the best abstraction of the

different func- tionalities that can be identified in the software.

A very important constraint to consider is that any class in the input diagram

must be contained in one and only one com- ponent in the resulting

architecture. Additionally, any operation or transformation of the architecture

must ensure that no empty components are returned.

2. A directed relationship between classes in the analysis model belonging to

different components represents a candidate interface. Although groups of

related classes should be allocated in the same component, some interactions

could remain between classes belonging to other components, representing

operational flows among them. Then, these relationships, required to perform

the overall functionality of the system, will be abstracted as interactions

between components, i.e. defining its interfaces.

It can be observed that not all the relationships can constitute a candidate

interface. For instance, generalisations repre- sent data abstractions, so they do

not imply a flow of operational information. The navigability of the

relationship is also important because, if it is not explicitly represented, it

would mean that information is exchanged in both directions, the

corresponding classes being highly dependent. If the navigability is presented

for only one direction, the flow represents a provided or required candidate

service.

Focusing on the interactions between components, isolated components are

not appropriated as they do not provide any ser- vice to others. Secondly,

mutually dependent components are not permitted from the architectural

perspective. This latter circumstance occurs when a component requires and

provides services from another component.

3. Connectors can be described as the linkage between a pair of required/provided

interfaces interconnecting different com- ponents. They will be identified after

the discovery of the interfaces created between components.

4.Proposed model for architecture

In this section, the different elements of the proposed evolutionary model are

presented, including the encoding chosen, the fitness function and

the genetic operator. All these elements are conceived with the aim of

creating a comprensible EA as posed by RQ1. Finally, the description of the

evolutionary algorithm is detailed.

Encoding of solutions

Selecting the most appropriate problem encoding is a key step in any search

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

87

All Rights Reserved © 2016 IJARBEST

algorithm. Usually, a trade-off between the performance and comprehensibility

must be achieved, especially when genetic algorithms are aimed at supporting

non expert users in metaheuristics. Although the linear encodings proposed to be

efficient represen- tations, difficult design problems still require its adaptation by

means of superstructures or groups of consecutive genes to represent more

complex features. In these cases, efficiency decreases due to the use of operators

which are too specific or the need for corrective procedures after the application

of generic operators.Human interpretation is usually hampered by complex

genotype/phenotype mappings. Therefore, an easier mapping pro- cess for

software design problems might be beneficial. Tree structures seem to be an

interesting option, as they have been used successfully in both computational

and human domains. Moreover, these types of representation are also familiar to

software architects, because they are common structures in modelling tools, and

they allow a flexible management of solu- tions with different sizes, e.g.

architectures with a variable number of components and

connectors.Components, interfaces, connectors and inner elements clearly

present a hierarchical composition. Classes and their rela- tionships may

constitute a component, whose complete specification requires the definition of

its provided and required interfaces. Connectors can be split into the interfaces

they link. Then, mapping a component diagram into a tree structure is feasible

as shown in Fig. 1, where shading nodes constitute the solution frame,

comprised by those mandatory artefacts appearing in any architectural model.

The rest of nodes represent the elements that can be different from one solution

to another, i.e. a number of component and connectors as well as the distribution

of classes and interfaces among them. More specifically, the root node,

Architecture, represents the component diagram that is comprised of a set of

components and con- nectors. Each component is defined by a node Component

in terms of its internal classes and its interfaces. Similarly, each connector is

described by the pair of required and provided interfaces that it links. Since they

are compound elements, they are represented as non-terminal nodes. Finally,

classes and interfaces constitute the terminal nodes.

Initial population

From the problem description (see Section 3), it can be noted that the

search space is constituted by all possible combi- nations of class distribution

among components, also identifying its interfaces and the connectors. These

candidate groups of classes, and the way in which interfaces and connectors are

deduced from them, must also guarantee that the correspondent architecture

represents a valid solution.

Firstly, a random number of components is selected between a minimum and a

maximum. Default values are set to a minimum of two and a maximum of n

components, n being the number of classes in the input model. The higher limit

guar- antees that no empty components will be generated. Then, each class is

assigned to one component, assuring that each com- ponent has at least one

class. After this initial assignment, the rest of the constraints detailed in

Section 3 are omitted, allowing a faster initialisation process. As will be

explained later, the main idea is that these invalid individuals will be pro-

gressively removed along the generations.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

88

All Rights Reserved © 2016 IJARBEST

i

i

Ranking fitness function
 Diverse functional or non-functional properties can be considered

depending on the under- lying goal of the architectural optimisation. In this case,

the search process is mainly focused on structural aspects, closely related to

reusability, since it looks for the optimal identification of well-defined

components, interfaces and connectors. Thus, the fitness function considers the

strength and independence of the inner functionality of each component.

The fitness function is calculated as an aggregation of rankings. The use of

rankings cancels out the need for stan- dardisation between metrics, which

could result in an artificial procedure when they are not defined in an appropriate

range

(a) Phenotype (b) Genotype

Fig. 1. The phenotype/genotype mapping process.

for a fair scalarisation and aggregation. Each ranking belongs to a specific

metric related to desirable characteristics in the architectural design. Therefore,

evaluating these design criteria requires the existence of quantifiable measures

applicable to the problem domain.

Firstly, the intra-modular coupling density (ICD) serves to determine a trade-

off between cohesion and cou- pling. For each component i; ICDi is calculated

as the ratio between internal and external relations, which has to be max-

imised. CIin is the number of interactions inside the component, i.e. the

relationships between classes allocated in the same component. CIout

represents the number of relationships between component i and the others, i.e.

the number of can- didate interfaces of the component. Then, every value is

properly weighted with the ratio of classes that participate in these

relationships. Hence, if two components reach the same ratio of interactions, the

smaller component, i.e. the one with less inner classes, is preferable meaning

that the density of interactions per class is higher. ICDi varies in [0, 1]. Finally,

the ICD of the overall architecture (individual) is calculated as the average of

every ICDi .

Finally, the groups/components ratio (GCR) metric, presented in Eq. (3), is

inspired by the component packing density (CPD) metric defined in CPD
calculates the ratio between the number of constituents, e.g. operations, classes

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

89

All Rights Reserved © 2016 IJARBEST

or modules, and the number of components in the overall architecture. Here, the

constituents are groups of interdependent classes (cgroups). In a graph

visualisation of the model, where classes are the nodes and its relationships, the

edges, each cgroup is a connected component of this graph. Since software

architects prefer a set of components with a well-defined functionality, the
optimal value of GCR is equal to its minimum, 1, meaning that each component

is comprised by a unique group of strongly interre- lated classes.

Genetic operator

Genetic operators allow the creation of new solutions from others. Here, a

mutation operator is considered for exploring design alternatives.Due to the

characteristics of the problem, the execution of other kinds of operators does not

seem applicable, as they would cause probably the replication of classes after

the combination of components from different indivduals.

Five mutation procedures are proposed in order to provide a variety of new

solutions, simulating those architectural transformations that software architects

could manually apply during the discovery process. Domain knowledge is

properly used in most cases, being an important success factor, as some of them

have a great impact in the structure of the resulting architecture. Next, the

description of each procedure is detailed.

Add a component. A new component is added to the architecture. Since

empty components are not valid, one or more classes are selected from others to

be inserted into the new one. The underlying heuristic considers the number of

groups of classes inside the rest of components as a decision factor. More

precisely, components built with more unconnected groups (which probably do

not present a well defined functionality) are considered better candidates to
provide classes than those with a unique group of classes.

At this point, the heuristic procedure uses the expression as a probability

threshold of selection of each com- ponent i to act as contributor. As can be

seen, this formula calculates a probabilistic value for each component i as the

ratio between its number of groups of classes (#cgroupsi) and the maximum

number of groups (maxcgroups) corresponding to some component j of the

architecture. Thus, the higher the number of groups inside the component i, the

greater the probability of selecting some of its groups.

Proposed Algorithm

The proposed algorithm follows the classical generational scheme.

Firstly, some preprocessing is required (lines 1–3) in order to extract classes and

its relationships from the analysis model (classDiagram). Then, candidate

interfaces are identified using the information comprised by these relationships.

Connectors are not explicitly obtained at this step, as they depend on the

association of two specific candidate interfaces, and this process is performed

during the creation of individuals. Next, these elements are used in combination

with the number of individuals (nInds) and the mini- mum and maximum in the

number of components (minComp and maxComp respectively), to initialise the

population (line 4). Then, individuals are evaluated (line 5) and the iterative

process begins. In each generation, parents are selected (line 8) and mutated (line

9) according to the mutation weights (weights). Candidate individuals must be

evaluated next (line 10), so metrics are computed over them and the ranking

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

90

All Rights Reserved © 2016 IJARBEST

fitness function is calculated. Note that this evaluation requires both the

offsprings and the actual population in order to assign rankings in a proper way.

Finally, the replacement strategy (line11) chooses those individuals that will

survive, assigning them to the next population. When the maximum number of

gen- erations (maxGen) is reached, the evolution ends and the best individual in

the current population is returned as the candi- date architecture

Concluding remarks

Making decisions during the software design process requires important

human-centered contributions and skills that could be mitigated by search-based

approaches, which are able to easily cover a great number of design alternatives.

With the ultimate aim of providing support for such a decision making process,

this paper presents a single-objective evolutionary approach for the discovery of

component-based software architectures from analysis models, where classes and

their rela- tionships are used in the search of architectural artefacts, like

components and interfaces. This proposal constitutes the first approximation to

semi-automatic architectural analysis as a way to help software engineers in the

improvement of their highly abstract designs which facilitate the understanding

of the software foundation.

The evolutionary approach has been conceived to deal with component-based

architectures, even when it could serve as a basis for being applied to other sorts of

design paradigms and areas. For example, dealing with service oriented

architectures would imply a further study of the suitability of other factors, like

cost and response time, whilst a model extended to com- prise low-level details,

like methods and properties, could serve to deal with refactoring tasks. Future

research will explore the inclusion of the expert’s opinion in the evolutionary

search.

References

[1] D. Belanger, et al., Architecture Styles and Services: An Experiment

Involving the Signal Operations Platforms-Provisioning Operations System,

AT&T Technical Journal, Jan/Feb 1996, pp. 54-63.

[2] S. Bot, C.-H. Lung, and M. Farrell, A Stakeholder- Centric Software

Architecture Analysis Approach, in Proc. ISAW 2 - Int’l Software Architecture
Workshop, 1996.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

Pattern-Oriented Software Architecture: A System of Patterns, John Wiley &

Sons, 1996.

[4] C. Gacek, A. Abd-Allah, B. Clark, B. Boehm. On the Definition of

Software System Architecture, in Proc. of ICSE 17 Software Architecture

Workshop, April 1995.

[5] D. Garlan and M. Shaw. An Introduction to Software Architecture,

Advances in Software Engineering and Knowledge Engineering, vol. 1, 1993.

[6] R. Kazman, G. Abowd, L. Bass, M. Webb, SAAM: A Method for

Analyzing the Properties of Software Architectures, in Proceedings of the 16th

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

91

All Rights Reserved © 2016 IJARBEST

International Conference on Software Engineering, May 1994, pp. 81-90.

[7] R. Kazman, G. Abowd, L. Bass, P. Clements.Scenario-Based Analysis of

Software Architecture, IEEE Software, Nov 1996. - 11 -

[8] P. B. Kruchten. The 4+1 View Model of Architecture, IEEE Software, Nov

1995, pp. 42-50.

[9] C. Krueger, Software Reuse, ACM Computing Surveys, 24(2), 1992, pp.

131-183.

[10] C.-H. Lung and J. Urban. An Expanded View of Domain Modeling for

Software Analogy. Proc. 19th AnnuaInt’l Comp Software & ApplicationsConf -
COMPSAC, pp.77-82, 1995.

[11] C.-H. Lung, Empirical Experiences in Analyzing Software Architecture

Sensitivity, in Proc. of COMPSAC, pp. 164-165, 1997.

[12] C.-H. Lung and K. Kalaichelvan, Metrics for Software Architecture

Robustness Analysis, submitted for publication.

[13] S. Wage, Preventive Software Maintenance: Prevention is Better Than

Cure, Tech. Report, School of InfO Science and Technology,

LiverpoolPolytechnic, 1988.

	(a) Phenotype (b) Genotype

