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 ABSTRACT 
 

Software architectures constitute important analysis artefacts in software 

projects, as they reflect the main functional blocks of the software. They 

provide high-level analysis arte- facts that are useful when architects need to 

analyse the structure of working systems. Normally, they do this process 

manually, supported by their prior experiences. Even so, the task can be very 

tedious when the actual design is unclear due to continuous uncon- trolled 

modifications. Since the recent appearance of search based software 

engineering, multiple tasks in the area of software engineering have been 

formulated as complex search and optimisation problems, where evolutionary 

computation has found a new area of application. This paper explores the 

design of an evolutionary algorithm (EA) for the dis- covery of the underlying 

architecture of software systems. Important efforts have been directed 

towards the creation of a generic and human-oriented process. Hence, the 

selec- tion of a comprehensible encoding, a fitness function inspired by 

accurate software design metrics, and a genetic operator simulating 

architectural transformations all represent important characteristics of the 

proposed approach. Finally, a complete parameter study and experimentation 

have been performed using real software systems, looking for a generic 

evolutionary approach to help software engineers towards their decision 

making process. 

 

Introduction 

   Throughout software development, software engineers need to make 

decisions about the most appropriate structures, platforms and styles of their 

designs. The automatic inference and evaluation of different design alternatives is 

a challenging application domain where computational intelligence techniques 

serve to provide support to software engineers, especially when limited 

information about the system being developed is still available. 

 

In this context, architectural analysis constitutes an important phase in 

software projects, as it provides methods and techniques for handling the 

specification and design of software in the earlier stages. It is considered a 

human-centered decision process with a great impact on the quality and 

reusability of the end product. During high level analysis, component 

identification allows the discovery of system blocks, their functionalities and 

interactions. For this reason, it is a good prac- tice when dealing with complex 

system, resulting in more comprehensible software and making its development 
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and maintenance simpler and more affordable. 

 

Frequently, software engineers need to tackle architectural analysis from 

a working system in order to migrate it or extend its functionality. This could 

be a difficult task when the underlying system conception has been perverted 

due to requirements changes. A more dramatic situation occurs when reverse 

engineering techniques from source code are the only way to extract system 

information, leading to inappropriate abstractness because of missing 

documentation. In the- se cases, engineers must expend their time and effort, 

with their own experience as their only guarantee, in the manual dis- covery of 

these functional blocks. 

 

 

Architectural optimisation methods in the field of software engineering 

(SE) have often proposed guidelines and recom- mendations to modellers for the 

identification and improvement of software architectures. Hence, semi-automatic 

tools and intelligent systems might be an efficient solution to support the 

engineering work in order to obtain quality models.More specifically, the 

discovery of the architecture of a software specification can also be formulated as 

the search of the most appropriate distribution of available software artefacts in 

more abstract units of construction. Traditionally, proposed approaches are 

based on the refactoring of source code, implying that architectural blocks are 

recovered at the end of the development process without regarding analysis 

decisions. Besides, it is frequent that source code is evolved without an 

exhaustive control from the analysis perspective, and it is likely not to be 

representative of the original conception of the system. Instead, the discovery 

process can be carried out using earlier available information, like the detailed 

analysis mod- els in the form of class diagrams. These models offer an 

intermediate view of the software, between the abstractness of the architecture 

specification and the specificity of the code. 

 

Recently, the combination of metaheuristic approaches and software 

engineering as  problem  domain,  denominated search based software 

engineering (SBSE), has undergone a huge growth. Since the appearance of 

SBSE, evolutionary computation (EC) has emerged as the most applied 

metaheuristic, demonstrating that it constitutes an interesting and 

complementary way to help software engineers in the improvement of their 

object-oriented class designs  or user interfaces. In this paper, EC is explored as 

a search technique to extract the underlying software architecture of a system. It 

constitutes a novelty in SBSE, where architectural discovery has been viewed 

as a re-engineering task from source code, which is more oriented towards 

maintenance and refactoring purposes.The identification of the architectural 

models is considered during the early stages of software conception, when 

software modellers still want to modify their current software structure as 

requirements change or they are requested to check the correctness of the 

resulting design.When source code artefacts are not yet available, architects 

require other sources of information in order to discover the intended 

architecture. Initial class diagrams, usually the most used representations in the 

analysis phase, constitute an inter- esting starting point for architecture 
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discovery. These diagrams offer more specific analysis information than source 

code, and they use modelling languages like UML 2 instead of programming 

languages. 

Therefore, the originally intended elements that conform a component-based 

architecture (components, interfaces and connectors) will be identified from 

these analysis models, resulting in an architecture represented with a UML 2 

component diagram. At this point, the semi-automatic discovery of components 

including its internal structure, candidate interfaces and connectors can be 

constrained by the following assumptions: 

1. A component is defined as a cohesive group of classes, meaning that they work 

together to satisfy the expected behaviour of the component. Thus, classes 

within the diagram will be organised searching the best abstraction of the 

different func- tionalities that can be identified in the software. 

A very important constraint to consider is that any class in the input diagram 

must be contained in one and only one com- ponent in the resulting 

architecture. Additionally, any operation or transformation of the architecture 

must ensure that no empty components are returned. 

2. A directed relationship between classes in the analysis model belonging to 

different components represents a candidate interface. Although groups of 

related classes should be allocated in the same component, some interactions 

could remain between classes belonging to other components, representing 

operational flows among them. Then, these relationships, required to perform 

the overall functionality of the system, will be abstracted as interactions 

between components, i.e. defining its interfaces. 

It can be observed that not all the relationships can constitute a candidate 

interface. For instance, generalisations repre- sent data abstractions, so they do 

not imply a flow of operational information. The navigability of the 

relationship is also important because, if it is not explicitly represented, it 

would mean that information is exchanged in both directions, the 

corresponding classes being highly dependent. If the navigability is presented 

for only one direction, the flow represents a provided or required candidate 

service. 

Focusing on the interactions between components, isolated components are 

not appropriated as they do not provide any ser- vice to others. Secondly, 

mutually dependent components are not permitted from the architectural 

perspective. This latter circumstance occurs when a component requires and 

provides services from another component. 

3. Connectors can be described as the linkage between a pair of required/provided 

interfaces interconnecting different com- ponents. They will be identified after 

the discovery of the interfaces created between components. 

4.Proposed model for architecture  

In this section, the different elements of the proposed evolutionary model are 

presented, including the encoding                    chosen, the fitness function and 

the genetic operator. All these elements are conceived with the aim of 

creating a comprensible EA as posed by RQ1. Finally, the description of the 

evolutionary algorithm is detailed. 

 

Encoding of solutions 

Selecting the most appropriate problem encoding is a key step in any search 
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algorithm. Usually, a trade-off between the performance and comprehensibility 

must be achieved, especially when genetic algorithms are aimed at supporting 

non expert users in metaheuristics. Although the linear encodings proposed to be 

efficient represen- tations, difficult design problems still require its adaptation by 

means of superstructures or groups of consecutive genes to represent more 

complex features. In these cases, efficiency decreases due to the use of operators 

which are too specific or the need for corrective procedures after the application 

of generic operators.Human interpretation is usually hampered by complex 

genotype/phenotype mappings. Therefore, an easier mapping pro- cess for 

software design problems might be beneficial. Tree structures seem to be an 

interesting option, as they have been used successfully in both computational 

and human domains. Moreover, these types of representation are also familiar to 

software architects, because they are common structures in modelling tools, and 

they allow a flexible management of solu- tions with different sizes, e.g. 

architectures with a variable number of components and 

connectors.Components, interfaces, connectors and inner elements clearly 

present a hierarchical composition. Classes and their rela- tionships may 

constitute a component, whose complete specification requires the definition of 

its provided and required interfaces. Connectors can be split into the interfaces 

they link. Then, mapping a component diagram into a tree structure is feasible 

as shown in Fig. 1, where shading nodes constitute the solution frame, 

comprised by those mandatory artefacts appearing in any architectural model. 

The rest of nodes represent the elements that can be different from one solution 

to another, i.e. a number of component and connectors as well as the distribution 

of classes and interfaces among them. More specifically, the root node, 

Architecture, represents the component diagram that is comprised of a set of 

components and con- nectors. Each component is defined by a node Component 

in terms of its internal classes and its interfaces. Similarly, each connector is 

described by the pair of required and provided interfaces that it links. Since they 

are compound elements, they are represented as non-terminal nodes. Finally, 

classes and interfaces constitute the terminal nodes. 

 

 

Initial population 

From the problem description (see Section 3), it can be noted that the 

search space is constituted by all possible combi- nations of class distribution 

among components, also identifying its interfaces and the connectors. These 

candidate groups of classes, and the way in which interfaces and connectors are 

deduced from them, must also guarantee that the correspondent architecture 

represents a valid solution. 

Firstly, a random number of components is selected between a minimum and a 

maximum. Default values are set to a minimum of two and a maximum of n 

components, n being the number of classes in the input model. The higher limit 

guar- antees that no empty components will be generated. Then, each class is 

assigned to one component, assuring that each com- ponent has at least one 

class. After this initial assignment, the rest of the constraints detailed in 

Section 3 are omitted, allowing a faster initialisation process. As will be 

explained later, the main idea is that these invalid individuals will be pro- 

gressively removed along the generations. 
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Ranking fitness function 
   Diverse functional or non-functional properties can be considered 

depending on the under- lying goal of the architectural optimisation. In this case, 

the search process is mainly focused on structural aspects, closely related to 

reusability, since it looks for the optimal identification of well-defined 

components, interfaces and connectors. Thus, the fitness function considers the 

strength and independence of the inner functionality of each component. 

The fitness function is calculated as an aggregation of rankings. The use of 

rankings cancels out the need for stan- dardisation between metrics, which 

could result in an artificial procedure when they are not defined in an appropriate 

range 

 

 

 
 

 

 

(a) Phenotype (b) Genotype 

 

Fig. 1. The phenotype/genotype mapping process. 

 

 

 

for a fair scalarisation and aggregation. Each ranking belongs to a specific 

metric related to desirable characteristics in the architectural design. Therefore, 

evaluating these design criteria requires the existence of quantifiable measures 

applicable to the problem domain. 

Firstly, the intra-modular coupling density (ICD) serves to determine a trade-

off between cohesion and cou- pling. For each component i; ICDi is calculated 

as the ratio between internal and external relations, which has to be max- 

imised. CIin is the number of interactions inside the component, i.e. the 

relationships between classes allocated in the same component. CIout 

represents the number of relationships between component i and the others, i.e. 

the number of can- didate interfaces of the component. Then, every value is 

properly weighted with the ratio of classes that participate in these 

relationships. Hence, if two components reach the same ratio of interactions, the 

smaller component, i.e. the one with less inner classes, is preferable meaning 

that the density of interactions per class is higher. ICDi varies in [0, 1]. Finally, 

the ICD of the overall architecture (individual) is calculated as the average of 

every ICDi . 

Finally, the groups/components ratio (GCR) metric, presented in Eq. (3), is 

inspired by the component packing density (CPD) metric defined in CPD 
calculates the ratio between the number of constituents, e.g. operations, classes 
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or modules, and the number of components in the overall architecture. Here, the 

constituents are groups of interdependent classes (cgroups). In a graph 

visualisation of the model, where classes are the nodes and its relationships, the 

edges, each cgroup is a connected component of this graph. Since software 

architects prefer a set of components with a well-defined functionality, the 
optimal value of GCR is equal to its minimum, 1, meaning that each component 

is comprised by a unique group of strongly interre- lated classes. 

 

Genetic operator 

Genetic operators allow the creation of new solutions from others. Here, a 

mutation operator is considered for exploring design alternatives.Due to the 

characteristics of the problem, the execution of other kinds of operators does  not  

seem applicable, as they would cause probably the replication of classes after 

the combination of components from different  indivduals. 

 

Five mutation procedures are proposed in order to provide a variety of new 

solutions, simulating those architectural transformations that software architects 

could manually apply during the discovery process. Domain knowledge is 

properly used in most cases, being an important success factor, as some of them 

have a great impact in the structure of the resulting architecture. Next, the 

description of each procedure is detailed. 

Add a component. A new component is added to the architecture. Since 

empty components are not valid, one or more classes are selected from others to 

be inserted into the new one. The underlying heuristic considers the number of 

groups of classes inside the rest of components as a decision factor. More 

precisely, components built with more unconnected groups (which probably do 

not present a well defined functionality) are considered better candidates to 
provide classes than those with a unique group of classes. 

At this point, the heuristic procedure uses the expression  as a probability 

threshold of selection of each com- ponent i to act as contributor. As can be 

seen, this formula calculates a probabilistic value for each component i as the 

ratio between its number of groups of classes (#cgroupsi ) and the maximum 

number of groups (maxcgroups ) corresponding to some component j of the 

architecture. Thus, the higher the number of groups inside the component i, the 

greater the probability of selecting some of its groups. 

 

Proposed Algorithm 

The proposed algorithm follows the classical generational scheme. 

Firstly, some preprocessing is required (lines 1–3) in order to extract classes and 

its relationships from the analysis model (classDiagram). Then, candidate 

interfaces are identified using the information comprised by these relationships. 

Connectors are not explicitly obtained at this step, as they depend on the 

association of two specific candidate interfaces, and this process is performed 

during the creation of individuals. Next, these elements are used in combination 

with the number of individuals (nInds) and the mini- mum and maximum in the 

number of components (minComp and maxComp respectively), to initialise the 

population (line 4). Then, individuals are evaluated (line 5) and the iterative 

process begins. In each generation, parents are selected (line 8) and mutated (line 

9) according to the mutation weights (weights). Candidate individuals must be 

evaluated next (line 10), so metrics are computed over them and the ranking 
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fitness function is calculated. Note that this evaluation requires both the 

offsprings and the actual population in order to assign rankings in a proper way. 

Finally, the replacement strategy (line11) chooses those individuals that will 

survive, assigning them to the next population. When the maximum number of 

gen- erations (maxGen) is reached, the evolution ends and the best individual in 

the current population is returned as the candi- date architecture 

 

Concluding remarks 

Making decisions during the software design process requires important 

human-centered contributions and skills that could be mitigated by search-based 

approaches, which are able to easily cover a great number of design alternatives. 

With the ultimate aim of providing support for such a decision making process, 

this paper presents a single-objective evolutionary approach for the discovery of 

component-based software architectures from analysis models, where classes and 

their rela- tionships are used in the search of architectural artefacts, like 

components and interfaces. This proposal constitutes the first approximation to 

semi-automatic architectural analysis as a way to help software engineers in the 

improvement of their highly abstract designs which facilitate the understanding 

of the software foundation. 

 

The evolutionary approach has been conceived to deal with component-based 

architectures, even when it could serve as a basis for being applied to other sorts of 

design paradigms and areas. For example, dealing with service oriented 

architectures would imply a further study of the suitability of other factors, like 

cost and response time, whilst a model extended to com- prise low-level details, 

like methods and properties, could serve to deal with refactoring tasks. Future 

research will explore the inclusion of the expert’s opinion in the evolutionary 

search. 
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