
ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

1

All Rights Reserved © 2016 IJARBEST

A METHODOLOGY FOR DETECTING CODE SMELLS ACCORDING TO OBJECT

ORIENTED METRICS

S.Nandhini
1
, Dr.E.Baby Anitha

2

1,2Department of Computer Science & Engineering

1,2K.S.R College of Engineering, Tamilnadu, India

ABSTRACT:

Code smells are structural characteristics of software that may indicate a code or design problem that

makes software hard to evolve and maintain, and may trigger refactoring of code. There are many

automatic detection tools to help humans in finding smells but these tools are platform dependent. For

e.g. in eclipse we can execute the only java code. Automation detection tools are limited for detecting

some bad smells. So to detect the more number of bad smells, we have to work on many detection

tools so the window base GUI application is developed in the visual studio tool which detects more

bad smells according to their Object Oriented Metrics. This paper reviews the window base GUI

application developed in visual studio tool for code smell detection. This paper describes detection of

bad smells and used software metrics to identify the characteristics of bad smells “Data class”, “long

method”, “Too Many Parameters”, “Shotgun surgery”, “Feature Envy”.

Keywords: Bad Smell, bad smell detection window base GUI application, Software Metrics.

I. INTRODUCTION

In computer programming, code smell is any symptom in the source code of a program that possibly

indicates a deeper problem. Another way to look at smells is with respect to principles and

quality "smells are certain structures in the code that indicate violation of fundamental design

principles and negatively impact design quality". Code smells are usually not bugs they are not

technically incorrect and do not currently prevent the program from functioning. Instead, they indicate

weaknesses in design that may be slowing down development or increasing the risk of bugs or failures

in the future.

A. Bad Smells in Code

If we implement refactoring alone on code, then will not benefits of doing it, until we do not find the

correct location where we should apply refactoring. For the easiness of developer to find the correct

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Symptom
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Software_bug

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

2

All Rights Reserved © 2016 IJARBEST

location for applying refactoring ,fowler give a idea of bad smells .Bad smells is the symptoms of bad

design .Bad smells does not effect on code physically , it only degrade the quality of software by

timely.Here we focus our attention on code smells and on window base GUI application developed for

their detection. Code smells are structural characteristics of software that may specify a code or design

problem but they do not produce run time error and can make software hard to understand and

maintain.

B. Some Code smells are summarized below

 Long Method: when method is too long means more number of lines of code.

 Long Parameter List: Long parameter lists are hard to understand. Long parameter list means

that a method takes too many parameters.

 Data Class: Classes with fields which may get and set methods for fields and nothing else.

 Shotgun surgery: A single Change in a class requires a lot of little changes in several classes.

 Feature envy: A method seems to be more interested in another class than its actual residing

class.

II. RELATED WORK

Gabriele Bavota et al. [4] focuses on the system analyzes the impact of Application Program Interface

(API) changes and faults in Android environment. The goal of this study is survey Android

developers, with the purpose of understanding to what extent they experience problems when using

APIs and how much they consider these problems to be related with negative user ratings comments.

Hence, the study quality mainly focuses on perception of the developer ability for the impact change-

and fault-prone APIs found on the apps’ user ratings. Design factors are not focused in the system.

Abdelilah Sakti et al. [5] address a new automated SBST (search-based software test-data generation)

approach for unit-class testing to achieve high code coverage. The proposed instance generator allows

our approach to better explore the search space, reaching more test targets, thus increasing code

coverage in less time. To improve over random testing, global and local search algorithms have been

implemented in several ways. Despite of all the features, code smell discovery was not performed.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

3

All Rights Reserved © 2016 IJARBEST

David Notkin et al. [3] presented a technique called codebase replication which simplifies the

implementation of continuous analysis tools by converting an existing offline analysis into an IDE-

integrated. Isolation and currency are considered as the two desirable properties of a continuous tool.

Codebase Replication creates and maintains a copy of the developer’s codebase. The analysis runs on

the copy codebase without being disturbed by the changes made by the developer. Version based

history level analysis was not performed.

Wael Kessentini et al. [7] consider detection of code-smells as a distributed optimization problem.

During the process of optimization dissimilar methods are combined in parallel to find a consent

regarding the detection of code smells. In order to perform the above stated basic idea Parallel

Evolutionary algorithms (P-EA) is used. In P-EA many evolutionary algorithms with different

adaptations such as fitness functions, solution representations, and change operators are executed, in a

parallel cooperative manner, to serve a common goal called code-smell detection.

Fabio Palomba et al. [1] proposed a Historical Information for Smell detection(HIST), an approach

exploiting change history information to detect instances of five different code smells, namely

Divergent Change, Long Method, Data Class, Too Many Parameters, Parallel Inheritance, Blob, and

Feature Envy. Code smells are detected using structural information identified from version histories.

Structural and lexical information are analyzed with rule definitions to discover the code smells. Rules

are represented with metric factors with threshold values. Detection algorithm uses the code

components such s methods and classes for code smell detection process. Apriori algorithm is used to

extract code smells from change history data values. Minimum support and confidence values are used

to filter out the code smells.

III. PROPOSED WORK

Window base GUI application has been developed to detect bad smells. It detects more bad smells

according to their Object Oriented Metrics like Weighted Methods, Number of Methods (NOM) and

Instance Variable in a Class. Long method, Data class, Too Many Parameters, Divergent Change,

Parallel Inheritance, Feature Envy and Blob bad smells are detected using GUI application developed.

This application detects bad smells on both java source code and .net source code. Also provides a bad

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

4

All Rights Reserved © 2016 IJARBEST

smell description framework and bad smell interpretation framework to collect the information

regarding bad smells.

A. Code Smell Description Framework:

 Code Smell Name: It is the description of the code smell which is going to detect.

 Identifying main characteristics from description of the bad smell.

B. Code Smell Interpretation Framework:

 Code Smell Name: It is the description of the bad smell which is going to detect.

 Measurement Process: Describe possible measurement metrics that when applied to source-

code can help identify the problem.

IV. EXPERIMENTATION

The experimentation done is as following:

Tool used to create window base GUI application: visual studio ultimate window base GUI application

is developed through the tool: visual studio 2010 .this application is created in the c#.net. This

application is developed for detecting the various code smells according to their metrics rules. Each

bad smells has different metrics rules.

A. Lazy Class

The following metrics are used for the detection of lazy class:

 Rule 1: If number of method=0.

 Rule2: if Class has instance variables, getters, and setters.

If any of the above rules is/ are true, Lazy class code smell is detected.

B. Long Parameter List

The following metrics are used for the detection of long parameter:

 Rule 1: If a method contains parameters >3.

 Rule 2: If consists of Unused parameters(declared in a method but never used)

If any of the above rules is/ are true, Long Parameter List code smell is detected.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

5

All Rights Reserved © 2016 IJARBEST

C. Long Method

The following metrics are used for the detection of long method:

 Rule 1: If Number of line of code (NLOC) is greater than 50 and variables declared are not

used.

 Rule 2: If a method in a code contains more than 3 looping statements (if else).

If any of the above rules is/ are true, Long method bad smell is detected.

Fig. 1 detection of long method code smell

D. Shotgun Surgery

The following metrics are used for the detection of shotgun surgery class smell:

 Rule 1: If making a single Change in a class requires a lot of little changes in several places.

 Rule 2: If co-changes observed is found to be more than 2.

If any of the above rules is/ are true, Shotgun surgery code smell is detected.

E. Feature Envy

The following metric is used for the detection of feature envy class smells:

 Rule 1: If a method uses the properties of another class than its own.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

6

All Rights Reserved © 2016 IJARBEST

Fig. 2 Detection of Feature Envy code smell

V. CONCLUSION

The code smells are detected in the source code using GUI application developed. The measured

object oriented metrics shows the value of each metric in their respective code smells detected on the

coding. Calculated metric values will help in applying the refactoring methods directly on the source

code to eliminate the code smells and to improve the structure of existing code. Refactoring methods

will be applied on the basis of calculated metrics on source code to refactor code smells.

REFERENCES

[1] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Denys Poshyvanyk and

Andrea De Lucia, “Mining Version Histories for Detecting Code Smells”, IEEE Transactions On

Software Engineering, Vol. 41, No. 5, May 2015, pp.462-489.

[2] Seonah Lee, Sungwon Kang, Sunghun Kim and Matt Staats,”The Impact of View Histories on

Edit

Recommendations”, IEEE Transactions On Software Engineering, Vol. 41, No.3, March 2015,

pp.314-330.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 10, March 2016

7

All Rights Reserved © 2016 IJARBEST

[3] Kivancs Mu slu,Yuriy Brun,Michael D. Ernst and David Notkin, “Reducing Feedback Delay of

Software Development Tools via Continuous Analysis”, IEEE Transactions On Software

Engineering, Vol. 41, No. 8, August 2015, pp.745-763.

[4] Gabriele Bavota , Mario Linares-V_asquez, Carlos Eduardo Bernal-C_ardenas, Massimiliano Di

Penta,Rocco Oliveto and Denys Poshyvanyk,” The Impact of API Change and Fault-Proneness

on the User Ratings of Android Apps”, IEEE Transactions On Software Engineering, Vol. 41,

No. 4, April 2015, pp.384-407.

[5] Abdelilah Sakti, Gilles Pesant and Yann-Gael Gu_eh_eneuc, “Instance Generator and Problem

representation to Improve Object Oriented Code Coverage”, IEEE Transactions On Software

Engineering, Vol. 41, No. 3, March 2015, pp.294-313.

[6] Theodore Chaikalis and Alexander Chatzigeorgiou,”Forecasting Java Software Evolution

Trends Employing Network Models”, IEEE Transactions On Software Engineering, Vol. 41, No.

6, June 2015, pp.582-602.

[7] Wael Kessentini, Marouane Kessentini, Houari Sahraoui, Slim Bechikh and Ali Ouni, “A

Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells Detection”,

IEEE Transactions On Software Engineering, Vol. 40, No. 9, September 2014, pp.841-861.

